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Background: Low temperature pose significant challenges to peach cultivation,
causing severe damage to peach buds and restricting production and distribution.
Ethylene, an important phytohormone, plays a critical role in enhancing plant
cold resistance. Structural genes and transcription factors involved in ethylene
biosynthesis and signal transduction pathways are associated with cold
resistance. However, no research has specifically addressed their roles in
peach cold resistance.

Methods: In this study, we aimed for cold-resistance gene discovery in cold-
sensitive peach cultivar “21Shiji” (21SJ) and cold-resistance cultivar “Shijizhixing”
(SJZX) using RNA-seq and gas chromatography.

Results: The findings revealed that under cold stress conditions, ethylene
biosynthesis in “SJZX” was significantly induced. Subsequently, a structural
gene, PpACO1-1, involved in ethylene biosynthesis in peach buds was
significantly upregulated and showed a higher correlation with ethylene
release rate. To identify potential transcription factors associated with
PpACO1-1 expression and ethylene signal transduction, weighted gene co-
expression network analysis was conducted using RNA-seq data. Four
transcription factors: PpERF2, PpNAC078, PpWRKY65 and PpbHLH112,
were identified.

Conclusion: These findings provide valuable theoretical insights for investigating
the regulatory mechanisms of peach cold resistance and guiding breeding
strategies.
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Introduction

Peach (Prunus persica L.) originates in China. It is widely
cultivated in the North China Plain and the Yangtze River Basin,
where it holds the top rank globally in both yield and cultivation
areas. However, the low temperature (<0°C) during winter and
early spring in Northern China significantly restricts peach
growth and geographical distribution. Most peach cultivars are
susceptible to the environments, and those with higher cold
resistance are insufficient to meet the market demand. This
scarcity significantly limits the high-quality development of
the peach industry.

Two regulatory pathways are recognized in plant cold
resistance research: the abscisic acid (ABA)-dependent and
ABA-independent pathway. Among them, the ABA-
independent pathway can be further categorized into C-repeat
binding transcription factor (CBF)-dependent regulatory and
CBF-independent regulatory pathways (Park et al., 2015; Lim
and Lee, 2020). Multiple studies have reported that ABA
signaling significantly induces cold resistance gene expression
in plants (Ju et al., 2020; Guo et al., 2021; Lee et al., 2021; Song
et al., 2022; Yu et al., 2023). The ABA receptor protein (PYR/PYL/
RCAR), 2C protein phosphatase (PP2C), and sucrose
nonfermenting-1-related protein kinase 2 (SnRK2) constitute
the primary components of the ABA signal transduction
pathway. ABA presence inactivates PP2C and releases SnRK2.
Activated SnRK2 then binds to ABA response elements (ABRE)
or ABA response binding factors (ABF) in downstream cold gene
promoters, thereby activating their expression (Ma et al., 2009;
Nakashima et al., 2009; Klingler et al., 2010; Gonzalez-Guzman
et al., 2012; Soon et al., 2012). Recent studies indicate that several
transcription factors, such as b-ZIPs, LEAs, MYBs, WRKYs, and
NACs, can be regulated by ABA signaling under cold stress (Sun
et al., 2019; Ju et al., 2020; Shu Y. et al., 2023; Mei et al., 2023; Shen
et al., 2023).

CBFs belong to the APETALA2/ETHYLENE RESPONSE
FACTOR (AP/ERF) family. In the ABA-independent pathway,
CBFs play a central role in regulating plant cold resistance.
Under cold stress, the CBFs can be induced by Inducer of CBF
Expression (ICE). The induced CBFs then bind to the C-repeat/
Dehydration Responsive Element (CRT/DRE), a cis-acting element
in the promoter region of Cold Regulated (COR) genes, thereby
activating their transcription (Thomashow, 1999; Chinnusamy et al.,
2007). Several CBFs involved in plant cold resistance have been
identified (Park et al., 2015; Jia et al., 2016; Wang H. et al., 2021;
Wang et al., 2021). Among these, the ICE-CBFs-COR signaling
cascade stands out as a typical cod-resistant pathway, extensively
documented in the literature (Hwarari et al., 2022; Kopeć et al., 2022;
Ma et al., 2023; Wang et al., 2023). Furthermore, several
transcription factors can directly regulate the expression of CBF
genes, thereby improving plant cold resistance, such asMdNAC104,
MdHYL1, MdMYB88, and MdMYB124 in apples (Mei et al., 2023;
Shen et al., 2023).

In CBF-independent pathways, structural genes and transcription
factors involved in ethylene signal transduction are pivotal for cold
resistance (Shu P. et al., 2023). Ethylene biosynthesis begins with
methionine conversion to S-adenosyl-methionine (SAM) by SAM
synthetases. SAM is further converted to the ethylene precursor 1-

aminocyclopropane-1-carboxylic acid (ACC) by ACC synthetases.
Ultimately, ACC is converted to ethylene by ACC oxidases (ACO)
(Adams and Yang, 1977; Adams and Yang, 1979; Hamilton et al., 1991;
Pattyn et al., 2021). The ethylene receptors and CONSTITUTIVE
TRIPLE RESPONSE1 (CTR1) downstream of ethylene synthesis
negatively regulate the ethylene-signaling pathway. The presence of
ethylene inactivates the ethylene receptors and CTR1, activating
ETHYLENE INSENSITIVE 2 (EIN2) expression. EIN2, downstream
of CTR1, promotes the activity of ETHYLENE INSENSITIVE 3 (EIN3)
and EIN3-LIKE 1 (EIL1) (Chen et al., 2010; Shakeel et al., 2015; Zhao
et al., 2021), which controls the expression of numerous
ethylene-responsive genes, including ETHYLENE RESPONSE
FACTORs (ERFs) (Lorenzo et al., 2003; Cheng et al., 2013; Li et al.,
2019; Hu et al., 2020). In plants, ERFs contribute positively to cold
resistance. For instance, in apples, overexpressing MdERF1B enhances
cold tolerance by interacting with MdACO1 and MdERF3, key
components in ethylene biosynthesis (Wang et al., 2021a). In Vitis
amurensis, overexpressing the VaERF092 gene in the ethylene signal
transduction pathway enhances cold resistance of Arabidopsis.
Additionally, VaERF092 interacts with the cis-acting element (GCC-
box) in the VaWRKY33 promoter, indirectly enhancing the cold
resistance of Arabidopsis (Sun et al., 2019). In bermudagrass,
CdERF1 positively regulates plant cold response by activating the
expression of PODs, CBF2 and LTPs (Hu et al., 2020). ERF41 and
ERF180 in kiwi fruit are significantly induced under low temperatures
(Gunaseelan et al., 2019).

Several studies have explored the chilling response of postharvest
peach fruit and the cold response of peach shoots (Pons et al., 2014;
Wang et al., 2017; Yu et al., 2020; Guo et al., 2023; Li et al., 2023). Peach
buds are notably more susceptible to cold stress compared to the trunk
and shoots. In Northern China, prolonged winter low temperatures can
lead to peach bud ossification, significantly reducing peach orchard
yield. However, their studies regarding the cold resistance of peach buds
remain unexplored. Therefore, in this study, we aimed to investigate the
essential structural genes and transcription factors associated with
resistance in peach buds using the cold-sensitive peach cultivar
“21Shiji” (21SJ) and the cold-resistant cultivar “Shijizhixing” (SJZX),
commonly cultivated in Northern China. “21SJ” came from the
hybridization of peach cultivar “Dangui” × “Xuetao” and “SJZX”
came from the hybridization of “21Shiji” × “Jiucui”. The approach
involves transcriptome analysis and weighted gene co-expression
network analysis (WGCNA). The findings could serve as a valuable
reference for future research on cold resistance research in peach buds.

Materials and methods

Plant material

Peach cultivars “21SJ” and “SJZX” were cultivated in the Peach
Experimental Garden of Hebei Normal University of Science and
Technology (39°42′N, 119°10′E). Dormant buds from “21SJ” and
“SJZX” were utilized to identify cold resistance. Peach shoots (1 year
old) containing dormant buds were randomly collected in
20 November 2022, the temperature at that time was ranged
from 1°C to 5°C. The collected buds were then subjected to cold
storage in a programmable incubator set at −4°C for 0, 12, 24, 48, and
72 h. For ethylene release rates assessment, dormant bud samples of

Frontiers in Genetics frontiersin.org02

Xia et al. 10.3389/fgene.2024.1438276

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1438276


these two cultivars were collected and randomly assigned to 5 sets of
10 buds each (in total 100 buds per time point). Dormant bud
samples which used for RNA-seq were randomly collected at 12, 24,
48 h, 3 sets of 10 buds were used at each time point.

Determination of electrolyte leakage and
ethylene release rate

The full buds were excised from peach shoots using flat cuts
and subsequently placed in a dish with moist blotting paper and
cut into small pieces. Approximately 0.2 g of each sample was
incubated in 30 mL of ddH2O for 2 h at 25°C with shaking at
200 rpm. The first electrolyte (C1) and second electrolyte leakage
were measured using a digital conductivity meter (DDS−307,
Rex, China). C2 was achieved after boiling the bud samples at
100°C for 30 min and subsequently cooled down to 25°C with
shaking. Relative electrolyte leakage (REL) was calculated as (C1/
C2) × 100%. 10 buds of each set were sampled and placed in
sealed tube (5 mL), 1 mL of air from the headspace of each tube
was withdrawn with a syringe and manually injected into a gas
chromatograph (7890A, Agilent Technology, United States). The
ethylene release rate in the buds was determined according to the
method described by Tian et al. (2013).

Analysis of peach bud transcriptomics at
different cold stress times

RNA concentration and purity were determined using the
NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE,
United States). RNA integrity was assessed with the RNA Nano
6000 Assay Kit on the Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, United States). Sequencing libraries were prepared
with 1 μg RNA per sample using the NEBNext Ultra TM RNA Library
Prep Kit for Illumina (NEB, United States) following the instructions of
themanufacturer. The prepared libraries were sequenced on an Illumina
platform, yielding clean reads after adapter, poly-N sequence, and low-
quality read removal. The high-quality, paired-end clean reads from each
sample were aligned to the Prunus_persica.Chinese_Cling_v1.0.genome
[Prunus persica genome assembly ASM1834083v1 - NCBI - NLM
(nih.gov)] using Hisat2 software. Subsequently, differential gene
expression analysis was performed using DESeq2.

Identification of candidate genes using
qRT-PCR

Total RNAwas extracted from “21SJ” and “SJZX” bud samples at 0,
12, 24, 48, and 72 h using the Plant Total RNA Isolation Kit (SK8631;
Sangon Biotech, Shanghai, China), following the instruction of the
manufacturer. Subsequently, cDNA synthesis was conducted using the
PrimeScript™ RT-PCRKit (RR047A; TaKaRa Bio, Kusatsu, Japan) and
diluted fivefold. Quantitative real-time PCR (qRT-PCR) was performed
using ABI QuantStudio™ 6 Flex System (Applied Biosystems). Gene
expression levels were calculated using the 2−ΔΔCT method, with three
biological replicates per reaction. Primer sequences for the candidate
genes are provided in Supplementary Table S5.

Results

Cold resistance and ethylene release rate
assessment in “21SJ” and “SJZX” buds

The cold resistance of “21SJ” and “SJZX” buds was measured at
different time points under stress using their electrolyte leakage rate
(ELR) (Figure 1A). Both cultivars showed increased ELR under cold
stress conditions. “21SJ” exhibited an increase from 21.25% to
56.17%, while “SJZX” increased from 18.43% to 45.42%. “21SJ”
consistently had significantly higher ELR values compared to “SJZX”
from 12 h to 72 h. No significant difference in ELR between “SJZX”
at 12 h and 24 h was observed.

To investigate the relationship between ethylene biosynthesis
and the different cold resistance of “21SJ” and “SJZX”, ELR was
analyzed in these cultivars at different stages of cold stress using gas
chromatography (Figure 1B). The findings showed that both
cultivars experienced an increase in ELR from 0 h to 24 h during
cold stress, reaching a peak at 24 h, followed by a decrease from 24 h
to 72 h “SJZX” exhibited a significantly higher ELR compared to
“21SJ” from 12 h to 72 h, suggesting a strong link between ethylene
biosynthesis and cold resistance in peach buds.

Differential gene expression analysis
between “21SJ” and “SJZX” using
transcriptomics

In this study, peach buds subjected to cold stress treatments for 12, 24,
and 48 h underwent RNA-Seq to identify candidate genes. After filtering
out low-quality raw reads, a total of 123.91Gb cleandatawere obtained and
deposited in the NCBI Sequence Read Archive (SRA) with accession
number PRJNA1071065 and Q30 (%) was 93.58%–95.29%
(Supplementary Table S1). These clean reads were aligned to the
reference genome sequence using Hisat2 tools, resulting in the
identification of 27,506 annotated unigenes through alignment with Nr,
eggNOG, KOG, COG, Swiss-Prot, GO, KEGG, and Pfam databases
(Table 1; Supplementary Table S2), including 1,807 novel genes
(Supplementary Table S3). Expression levels of each unigene are
presented in Supplementary Table S4. Correlation coefficients were
calculated to assess gene expression consistency (Figure 2A). After this,
differential expression analysis revealed significant differences: 526 genes
weredifferentially expressed in 21SJ-12 vs. SJZX-12 (|[log2

(fold change)]|>1 and
adjusted p < 0.05), with 168 upregulated and 358 downregulated genes.
Moreover, 489 genes displayed differential expression in 21SJ-24 vs. SJZX-
24, including 293 upregulated and 196 downregulated genes. Furthermore,
489 genes exhibited differential expression in 21SJ-48 vs. SJZX-48, with
197 upregulated and 292 downregulated genes (Figure 2B).

Discovery of candidate structural genes in
ethylene signal transduction

Ethylene biosynthesis and signal transduction in plants are
complex processes involving several structural genes (Figure 3A).
14 candidate genes were identified from the RNA-Seq data based on
their annotation and expression levels in 21SJ-12 vs. SJZX-12, 21SJ-
24 vs. SJZX-24, and 21SJ-48 vs. SJZX-48 (Figure 3B).
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FIGURE 1
Cold resistance identification and ethylene release rate determination. (A) Electrolyte leakage rates determination for “21SJ” and “SJZX” buds at
different time. (B) Ethylene release rate determination for “21SJ” and “SJZX” buds at different time.

TABLE 1 Summary of transcripts annotated in different database.

Database Annotated gene number New annotated gene number

NR 27,469 1786

eggNOG 21,546 1,061

KOG 13,216 523

COG 7,999 248

Swiss-Prot 17,827 726

GO 21,760 1,192

KEGG 17,760 868

Pfam 20,416 866

FIGURE 2
Pearson’s correlation coefficients analysis for all expressed genes and different expressed genes statistics between each group. (A) reliability and
rationality between samples based on Pearson’s correlation coefficients for all gene expression levels between each sample. (B) Values plotted in red
represent up-regulated genes in “21SJ” vs. “SJZX”; those plotted in blue represent down-regulated genes in “21SJ” vs. “SJZX” and red plot represent up-
regulated genes in “21SJ” vs. “SJZX”.
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To further identify candidate genes associated with ethylene
biosynthesis and signal transduction during cold stress in peach
buds, Pearson correlation coefficients (p < 0.05) were calculated
for these 14 candidate genes and ELR (Figure 4A). Subsequently,
one structural gene significantly correlated with ELR was identified
and designated as PpACO1-1 (evm.TU.contig279.342). The
expression of PpACO1-1 was significantly induced under cold
stress in “SJZX”, peaking at 24 h. Moreover, the expression level of
PpACO1-1 was significantly higher in “SJZX” compared to
“21SJ” (Figure 4B).

Transcription factors influencing ethylene biosynthesis and the
PpACO1-1 gene were identified using WGCNA. Different modules
represented clusters of genes with high correlation (Figure 5A).
Initially, 17 transcription factors linked to ERFs, WRKYs, NACs, and
bHLHs were identified (Figure 5B). Subsequently, four candidate
transcription factors PpERF2 (evm.TU.contig268.88), PpNAC078
(evm.TU.contig277.535), PpWRKY65 (evm.TU.contig38.293), and
PpbHLH112 (evm.TU.contig38.614) were selected based on qRT-PCR
(Figures 5C–F). PpERF2, PpNAC078, and PpbHLH112 exhibited
upregulation in both “21SJ” and “SJZX” peach buds under cold

FIGURE 3
Candidate structural genes in ethylene biosynthesis and signal transduction pathway. (A) Structural genes involved in ethylene biosynthesis and
signal transduction pathway in plants. (B) Candidate genes filtration in ethylene biosynthesis and signal transduction pathway based on RNA-seq data.
Orange corresponds to highly expressed and blue to poorly expressed.

FIGURE 4
Candidate structural genes discovery and qRT-PCR verification based on Pearson correlation coefficients analysis. Blue bars represent cultivar
“21SJ” and red bars represent cultivar “21SJ”. (A) Pearson correlation coefficients analysis for candidate genes and ELR. (B) qRT-PCR verification for
PpACO1-1. Error bars represent the standard deviation of three biological replicates. Lowercase letters on the bar chart represent significant differences
between the two cultivars at different cold stress stages according to Duncan’s multiple range test at p < 0.05.
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stress, with significantly higher expression levels in “SJZX” than in
“21SJ”. Furthermore, PpWRKY65 showed upregulation in “SJZX” and
downregulation in “21SJ,”with its expression level significantly higher in
“SJZX” than in “21SJ”.

Discussion

Relationship between ethylene biosynthesis
and plant cold resistance

Ethylene, an important phytohormone, influences plant growth
and development, especially in fruit ripening (McMurchie et al., 1972;

Iqbal et al., 2017). Low temperatures causing freezing stress significantly
affect plant distribution, growth, and yield, including in peach
cultivation (Li and Wang, 2020). Several studies have explored the
deep mechanisms of plant resistance to cold stress (Ding et al., 2020;
Hwarari et al., 2022; Ma et al., 2022). Phytohormones such as ABA, ET,
Jasmonic Acid (JA), and Salicylic acid (SA) are pivotal in plant cold
resistance (Huang et al., 2017; Yang et al., 2019; Huang et al., 2023;
Zhang et al., 2023). Studies have also highlighted their role in peach cold
resistance, including ABA, JA, and SA (Zhang et al., 2009; Zhao et al.,
2021b; Zhao et al., 2021c). Ethylene enhances cold resistance in various
fruit tree species, such as apples, pears, and grapevine (Hershkovitz
et al., 2009; Sun et al., 2016; Wang Y. et al., 2021). However, until now,
no research has investigated the relationship between ethylene

FIGURE 5
Transcription factors discovery related to peach buds cold resistance based on weighted gene co-expression network analysis and qRT-PCR
validation. (A) Weighted gene co-expression network analysis based on the expression of PpACO1-1 and ethylene release rate. (B) Cluster heat map of
differentially expressed transcription factors in ERF, WRKY, NAC and bHLH family. Genes are shown horizontally; samples are represented by columns.
Red corresponds to highly expressed genes and green to poorly expressed genes. (C–F) qRT-PCR analysis of selected transcription factors involved
in peach buds cold resistance. Blue bars represent cultivar “21SJ” and red bars represent cultivar “SJZX”. Error bars represent the standard deviation of
three biological replicates. Lowercase letters on the bar chart represent significant differences between the two cultivars and different developmental
stages according to Duncan’s multiple range test at p < 0.05.
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biosynthesis and cold resistance in peaches. The findings in this study
identified a positive correlation between ethylene biosynthesis and cold
resistance in peach buds.

Plants synthesize ethylene in response to various biotic and abiotic
stresses, either inducing or repressing structural genes in the ethylene
biosynthesis and signal transduction pathway (Chen et al., 2009; Boutrot
et al., 2010; Xu et al., 2019; Zhao Z. X. et al., 2021; Hartman et al., 2021;
Wei et al., 2022). Structural genes such as SlACS1A, SlACS1B, SlACO1,
and SlACO4 in tomato (Dong et al., 2022), PaACS1, PaACS2, PaACO,
and PaCTR1 in pear (Hershkovitz et al., 2009), and VvACO and
MdACO1 in apple and grapevine (Sun et al., 2016; Wang Y. et al.,
2021), are known for their roles in ethylene biosynthesis under cold
stress. However, the key structural gene involved in peach ethylene
biosynthesis under cold stress remains unreported. The findings of this
study reveal PpACO1-1 (evm.TU.contig279.342) as a key structural gene
responding significantly to cold stress in peach buds.

Transcription factors involved in ethylene
signaling pathway associated with cold
resistance

Extensive literature exists on ethylene signaling pathway genes and
transcription factors associated with cold resistance compared to the
genes involved in ethylene biosynthesis. ERFs, important transcription
factors regulated by ET, play a significant role in plant cold resistance.
For instance, PtrERF108 in trifoliate orange regulates raffinose synthesis
by modulating PtrRafS expression, PtrERF109 positively regulates
POD-encoding genes to scavenge reactive oxygen species (ROS),
and PtrERF9 positively modulates ROS homeostasis by regulating
PtrGSTU17 expression under cold stress (Wang M. et al., 2019;
Khan et al., 2021; Zhang et al., 2022). Additionally, ThERF5,
ThERF31, ThERF46, and ThERF55 in Tetrastigma hemsleyanum
exhibit a sensitive response to cold stress (Xie et al., 2022).
Furthermore, MfERF1 from Medicago falcata enhances cold
tolerance through upregulation of polyamine turnover, antioxidant
protection, and proline accumulation (Zhuo et al., 2018). MdERF1B
in apples enhances cold tolerance by upregulating the expression of the
cold-responsive gene MdCBF1 and ethylene biosynthesis gene
MdACO1 (Wang Y. et al., 2021). VaERF092 in Amur grape induces
cold tolerance calli by regulating VaWRKY33 expression (Sun et al.,
2019). The investigation in this study identified an ERF designated
PpERF2, which exhibits significantly induced expression in the buds of
the cold-resistant cultivar “SJZX”, suggesting its potential function in
peach cold resistance.

Transcription factors involved in CBF-COR
cold resistance pathway

NACs, WRKYs, and bHLHs represent three major TF families
in plants, acting as key regulators that transmit upstream stress
signals to downstream stress responses. Transcription factors from
these families are primarily involved in the CBF-COR cold
resistance pathway, directly binding to the promoter regions of
CBFs to enhance their expression. For instance, GmNAC20 in
soybean (Hao et al., 2011), PbeNAC1 in pear (Jin et al., 2017),
and MdNAC104 in apple (Mei et al., 2023), MdCIbHLH1/MdICE1,

MdICE1L andMdbHLH4 in apple (Feng et al., 2012; An et al., 2021;
An et al., 2022; Yang et al., 2023), PavbHLH106 and PavbHLH28 in
sweet cherry (Cao et al., 2023; Hou et al., 2023), VaWRKY33 in
grapevine (Sun et al., 2019), VbWRKY32 in Verbena bonariensis
(Wang M. Q. et al., 2019), KoWRKY40 in Kandelia obovate (Fei
et al., 2022), CdWRKY2 in bermudagrass (Huang et al., 2022). To
date, no research has reported candidate transcription factors from
these families involved in peach cold resistance. Three transcription
factors, PpNAC078, PpWRKY65, and PpbHLH112, were
preliminarily identified in this study. However, further
investigation is needed to understand the precise cold resistance
mechanisms mediated by these transcription factors.

Conclusion

In the study, cold-sensitive peach cultivar “21SJ” and cold-
resistance cultivar “SJZX” were used to discovering peach bud cold
resistant genes by using RNA-seq and gas chromatography. In total of
123.91 Gb clean data were achieved based on RNA-seq and 526,
489 and 489 genes were differentially expressed in 21SJ-12 vs. SJZX-
12, 21SJ-24 vs. SJZX-24 and 21SJ-48 vs. SJZX-48, respectively. Finally,
the ethylene biosynthesis gene, PpACO1-1, was discovered as pivotal in
peach bud cold resistance, given its significant response to cold stress in
resistant cultivars. Subsequently, four transcription factors PpERF2,
PpNAC078, PpWRKY65, and PpbHLH112 were selected based on
WGCNA, as they potentially regulate PpACO1-1 expression and
ethylene biosynthesis. These findings provide crucial insights for
future research and breeding endeavors aimed at bolstering peach
cold resistance.
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