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Dilated cardiomyopathy (DCM) is a heart condition that causes enlarged and
weakened left ventricles and affects the heart’s ability to pump blood effectively.
Most genetic etiology still needs to be understood. Previously, we have used the
known germline hereditary fusion genes (HFGs) to identify HFGs associated with
multiple myeloma and leukemia. In this study, we have developed a statistical
model to study fusion transcripts discovered from the left ventricles of 122 DCM
patients and 252 GTEx (Genotype Tissue Expression) healthy controls to discover
novel HFGs, ranging from 4% to 87.7%, and EFGs, ranging from 4% to 99.2%,
associated with DCM. This discovery of numerous novel HFGs and EFGs
associated with DCM provides first-hand evidence that DCM results from
interactive developmental consequences between germline genetic and
environmental abnormalities and paves the way for future research and
diagnostic and therapeutic applications, instilling hope for the future of DCM
treatment.
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Introduction

Dilated cardiomyopathy (DCM) is a heart disease characterized by the enlarged and
thin muscle walls of one or both ventricles. The thinner (dilated) walls are weak and cannot
pump blood adequately to the rest of the body. DCM is the most common indication for
heart transplantation and the third most common cause of heart failure (Maron et al., 2006).
The prevalence of DCM is estimated to be one out of 2,500 people in the general population
(Hershberger et al., 2013; Weintraub et al., 2017). However, this estimation may be
significantly underestimated (Diamant et al., 2003). The Global Burden of Disease study
showed that the total global prevalence of cardiomyopathy was about 2.5 million cases
(Schultheiss et al., 2019; Tayal et al., 2021; Harding et al., 2023). The DCM disease
disproportionately affects men more frequently than women, and outcomes are worse
in patients of Black African descent (Ingle, 2008; Dries et al., 1999). The DCM onset occurs
between 20 and 60 years old, although DCM can affect children and constitute 60% of
cardiomyopathy (Billings et al., 2018). Electrocardiogram, chest X-ray, and echocardiogram
are used to diagnose DCM.

The causes of DCM can be classified as genetic and acquired, though the two are not
mutually exclusive. The pathogenesis of DCM patients is quite heterogeneous due to the
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broad spectrum of genetic and environmental abnormalities leading
to the appearance of the phenotype of the disorder (Roberts et al.,
2015; Haggerty et al., 2019). Studies from the 1990s established that
idiopathic DCM (IDC) frequently has a genetic etiology and is
considered familial when more than one first-degree relative has
been diagnosed with DCM or has experienced a sudden cardiac
death (SCD) (Mestroni et al., 1999; Lewsey and Breathett, 2021).
About 25%–35% of affected individuals have familial forms of DCM,
with most cases inherited in an autosomal dominant form (Chen
et al., 2021). Recent comprehensive targeted sequencing studies
showed that 40%–50% of these families have an identifiable
monogenic cause (Hershberger et al., 2013), or at least a rare
variant of large effect size as the primary determinant of risk
(Pugh et al., 2014). More than twenty mutated genes have been
identified as the causative genes for familial DCM, including TTN,
LMNA, FLNC, SCN5A, JPH2, PLN, RYR2, DSP, RBM2), and BAG3
(Tayal et al., 2021; Harding et al., 2023; Chen et al., 2021; Yamada
and Nomura, 2021). The primary causative genes for DCM are TTN
(Gerull et al., 2002; Norton et al., 2013; Herman et al., 2012) and
LMNA (Zahr and Jaalouk, 2018; Brodt et al., 2013; Levine et al.,
2016). Recent advances in RNA-Seq and next-generation
sequencing (NGS) have made it possible for scientists to study
the gene expression of DCM (Alimadadi et al., 2020; Yuan et al.,
2022; Huang et al., 2019; Januel et al., 2021).

The fusion gene is a hybrid gene formed from two previously
independent genes of the reference genome. It has been thought to
result from random somatic genomic abnormalities and is
associated with cancer. Unlike BCR-ABL1 generated by somatic
genomic alterations, germline structural variants have been the
foundation of germline HFGs. Congenital red-green color
blindness is an inherited disease caused by the germline
structural variants (Hayashi et al., 1999; Nathans et al., 1986).
Investigations have shown that congenital red-green color
blindness is caused by germline chimeric genes of OPN1LW and
OPN1MW genes at position Xq28 (Hayashi et al., 1999;
Drummond-Borg et al., 1989). Many inherited peripheral
neuropathies are caused by CMT1A gene duplication. α-
thalassemia is an inherited blood disorder that is shown to be
associated with deletions/inactivation of chromosome 16p
(Farashi and Harteveld, 2018). Smith-Magenis syndrome (SMS)
is a developmental disorder affecting behavior, emotions, and
learning processes and has been shown to be caused by a ~4-Mb
heterozygous interstitial deletion on chromosome 17p11.2 in ~80%–
90% of affected patients (Bi et al., 2003). These discoveries have been
performed by traditional molecular technologies, which have often
been costly, time-consuming, and labor-intensive. More recently,
analyses of whole-genomic and RNA-Seq sequencing of five
generations show that germline chimeric KANK1-DMRT1
transcript derived from a complex structural variant is associated
with a congenital heart defect (da Costa et al., 2024). Complex
genomic rearrangements cause rare diseases (Schuy et al., 2022).
More recently, Raghav et al. analyzed RNA-Seq data fromTarget
ALS and the NYGC ALS Consortium and identified 607 unique
“gene fusions,” some significantly higher in ASL samples than those
in control (Raghav et al., 2024). However, the keys to successful
analyses of whole-genomic and RNA-Seq data depend on the
accurate identifications of fusion junctions of fusion transcripts
and structural variants.

To accurately identify fusion transcripts and minimize
potential artifacts of fusion transcripts, we used the splicing code
theory to develop Splicing code Identify Fusion Transcripts (SCIF)
to discover fusion transcripts at the maximum accuracy (Zhou
et al., 2017). During experimental validation of fusion transcripts,
we observed that fusion transcripts were present in healthy tissues
at such high frequencies that it was mathematically impossible to
generate them from somatic abnormalities (Zhou et al., 2017). We
systematically validated KANSARL (KANSL1-ARL17A) as the first
predisposition (germline) fusion gene specific to 29% of the
population of European ancestry (Zhou et al., 2017). TPM4-
KLF2, detected in 92.2% of 727 multiple myeloma patients, was
also positive in all five healthy controls (Fei et al., 2022). These
widespread presences of fusion transcripts in healthy populations
systematically forced us to study hereditary fusion genes (HFGs).
We have defined HFGs as the fusion genes offspring inherited from
their parents, excluding epigenetic (readthrough) fusion transcripts
generated by cis-splicing of readthrough pre-mRNAs of two
identical neighboring genes (Zhuo, 2022). Using monozygotic
(MZ) twins as a genetic model, we identified 1,180 hereditary
fusion genes from 37 pairs of monozygotic twins (Zhuo, 2022).
We used 1,180 HFGs discovered in monozygotic twins to analyze
fusion transcripts from 390 acute myeloid leukemia (AML) patients
and identified 242 hereditary fusion genes ranging from 10% to
82.2% and were associated with AML (Ling and Zhuo, 2022).
Similarly, hereditary fusion genes are associated with
amyotrophic lateral sclerosis (ALS) (Yang et al., 2023). In this
study, we develop a robust statistics model to perform comparative
statistical analysis between dilated cardiomyopathy patients and
GTEx healthy controls to discover hereditary and epigenetic fusion
genes associated with non-cancerous dilated
cardiomyopathy (DCM).

Materials and methods

Materials

Dilated cardiomyopathy (DCM)RNA-Seq dataset
DCM RNA-Seq data (Accession: PRJEB8360) were

downloaded from NCBI (https://www.ncbi.nlm.nih.gov/
bioproject/PRJEB8360/). RNA-Seq dataset contained 366 RNA-
Seq data samples from left ventricle heart tissues of 122 dilated
cardiomyopathy (DCM) of 128 subjects with end-stage heart
failure. According to the data description, all subjects were
transported to the Royal Brompton and Harefield NHS
Foundation Trust (London, United Kingdom). In the final
analyzed dataset, we parsed 366 RNA-Seq data from 122 DCM
patients out of 384 RNA-Seq data from 128 DCM patients.

Get left ventricle heart RNA-Seq data
The Genotype-Tissue Expression (GTEx) RNA-Seq data (dB

Gap: phs000424) was downloaded from NCBI (https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA75899). We selected and
performed RNA-Seq data of left ventricle heart tissues of
252 GTEx healthy controls with unique IDs. We used them as
health controls to investigate whether fusion genes are
associated with DCM.
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Methods

Identification of total fusion transcripts from RNA-
Seq data

We used SCIF (SplicingCodes Identify Fusion Genes v.1.0) to
perform RNA-Seq analysis of 366 DCM RNA-Seq samples and
252 RNA-Seq samples at the default conditions described previously
(Zhou et al., 2017). The detailed steps to produce SCIF and
parameters can be found in the Supplementary Material of the
paper (Zhou et al., 2017).

Discovery of hereditary (germline) fusion genes
generated by genomic abnormalities

Since HFGs were defined as the fusion genes offspring inherited
from their parents, excluding epigenetic (readthrough) fusion
transcripts generated by cis-splicing of readthrough pre-mRNAs
of two identical-strand neighboring genes (Zhuo, 2022). Genomic
abnormalities generating fusion genes included inversion, gene
duplications, insertion, deletion, and translocations (intra-
chromosomal or inter-chromosomal). For fusion genes generated
by insertions, deletions, and intra-chromosomal translocations, if
the intergenic gaps of two parental genes are larger than 200,000 bp,
they were associated with genomic abnormalities. If offspring inherit
fusion genes from their parents, they are germline hereditary fusion
genes (HFGs).

Discovery of epigenetic fusion genes (EFGs)
To distinguish fusion genes generated by genomic alterations,

we defined epigenetic fusion genes as fusion transcripts generated
by cis-splicing of readthrough pre-mRNAs of two identical-
strand neighboring genes (Zhuo, 2022). If intergenic gaps
between two identical strand neighboring genes were equal to
and smaller than 200,000 bp, the fusion transcripts generated by
these two genes were epigenetic fusion genes. Therefore, all
human populations have potentially identical EFGs.

A statistical model to identify hereditary and
epigenetic fusion genes

To develop a robust statistical model to identify hereditary
and epigenetic fusion genes, we first used a well-documented
germline KANSARL (KANSL1-ARL17A) fusion gene specific
to the population of European ancestry origin but absent
from those of Asia and Africa as a reference. We used three
sets of statistical parameters to analyze and compare RNA-Seq
data from Asia, Africa, Europe, and North America to identify
consistent parameters of producing expected outcomes. Then,
we used all humans with almost identical sets of epigenetic fusion
genes (EFGs) to validate if the parameters used in the
analysis could obtain consistent results. When setting α =
0.01 and α/2 = 0.005,we can obtain Zα/2 = 2.576; we
found that n*p ≥ 5 enable us to obtain hereditary and
epigenetic fusion genes, which are statistically significant,
where n and p are sample size and percentage of samples with
a specific positive fusion gene. Then, we classified fusion
transcripts into HFGs and EFGs based on the definitions
described above and performed downstream analyses. Then,
we analyzed and summarized the HFG and EFG data
independently.

A simple validation algorithm of the hereditary and
epigenetic fusion gene data

To validate the hereditary and epigenetic fusion gene data in this
study, we can use the fusion junction sequences provided in
Supplementary Tables S1, S2 to obtain the results in this study.
The following algorithm is able to generate results identical to those
presented in this paper except for the fusion genes generated via
highly repetitive genomic duplications.

1. Download RNA-Seq data from NCBI.
2. Use the fusion junction sequences to produce a hash table.
3. Read in each RNA-Seq read and scan the hash table to see if the

fusion junction sequences are present.
4. Count, analyze, and compare isoforms of thehereditary and

epigenetic fusion genes.

The algorithm described above also allows scientists and readers
to discover the hereditary and epigenetic fusion genes associated
with other diseases and complex traits. BLAST can be used to search
NCBI databases to determine whether the fusion genes are from
highly repetitive sequences.

Results

Identification of fusion transcripts from
RNA-Seq data of dilated cardiomyopathy
(DCM) patients

To discover germline hereditary fusion genes (HFGs) associated
with dilated cardiomyopathy (DCM), we downloaded RNA-Seq
data from 384 SRA (Sequence Read Archive) experiments, which
were generated by Max Delbrück Center for Molecular Medicine,
Berlin-Buch, Germany, and from left ventricle heart tissue of
128 dilated cardiomyopathy (DCM) cases from NCBI (Accession:
PRJEB8360). According to the information, the cardiac samples
were collected when transplants were performed for all DCM
patients at the Royal Brompton and Harefield NHS Foundation
Trust. From 384 RNA-Seq samples of 128 DCM patients, we
obtained analytic results of 366 RNA-Seq samples of 122 DCM
patients. We downloaded RNA-Seq data of left ventricle heart
tissues of 252 GTEx healthy controls with unique IDs used as
healthy controls to investigate whether fusion genes are
associated with DCM. As shown in Figure 1A, we first used SCIF
(SplicingCodes Identify Fusion Transcripts) to discover total fusion
transcripts fromDCM patients and GTEx healthy controls at default
conditions. We identified 138,000 fusion transcripts from 122 DCM
patients, the average of which was 1,131 fusion transcripts of three
RNA-Seq data per patient (Figure 1B).

There were 855 and 814 fusion transcripts of ≥5 SRA samples
and ≥ five unique DCM patients, counting only 0.62% and 0.59% of
the total DCM fusion transcripts. The slight differences between
fusion transcripts with ≥5 RNA-Seq SRA samples and
with ≥5 unique DCM patients suggested that increased numbers
of RNA-Seq SRA experiments did not significantly affect the total
numbers of fusion transcripts with recurrent frequencies
of ≥5 RNA-Seq SRA samples (Figure 1C). In comparison, we
discovered 49,900 fusion transcripts from 252 GTEx healthy
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controls (Figure 1B), the average of which was 198 fusion transcripts
per GTEx healthy control. We identified 881 fusion transcripts with
recurrent frequencies of ≥5 GTEx healthy controls, counting only
1.8% of 49,900 GTEx fusion transcripts. Exceptionally low
percentages of ≥5 GTEx and DCM samples suggested that highly
recurrent fusion transcripts were rare, not randomly distributed, and
potentially associated with the intrinsic characteristics of
the datasets.

To characterize fusion transcripts more accurately, we classified
814 DCM fusion transcripts of ≥5 DCM patients into two groups:
fusion transcripts generated by genomic abnormalities and
epigenetic fusion transcripts generated via cis-splicing of
readthrough pre-mRNAs. We identified 328 transcripts generated
by genomic alterations and 486 epigenetic fusion transcripts
(Figure 1D). In comparison, we classified 881 fusion transcripts
of ≥5 GTEx healthy controls into 507 fusion transcripts generated by

FIGURE 1
Identification and analysis of fusion transcripts from DCM and GTEx. (A). Schematic diagram of a simplified procedure for identifying HFG and EFG
fusion transcripts associated with DCM. The solid black and light gray rectangles represented the total fusion transcripts of the DCM patients and GTEx
healthy controls; (B). Comparison of the total fusion transcripts between DCM and GTEx; (C). Comparison of numbers of fusion transcripts identified
in ≥5 DCM RNA-Seq SRA samples, ≥5 DCM patients, and ≥5 GTEx healthy controls. The solid black, dark gray, and light gray rectangles showed the
numbers of fusion transcripts of ≥5 DCM RNA-Seq samples, ≥5 unique DCM patients, and ≥5 GTEx healthy controls, respectively; (D). Classification and
comparisons of genomic and epigenetic fusion transcripts of ≥5 unique DCM patients and ≥5 GTEx healthy controls. The solid black and gray rectangles
displayed the numbers of fusion transcripts of ≥5 unique DCM patients and ≥5 GTEx healthy controls; (E). Comparisons of average frequencies of fusion
transcripts of ≥5DCMpatients and ≥5GTEx healthy controls. The solid black and gray rectangles showed the fusion transcripts of ≥5 unique DCMpatients
and ≥5 GTEx healthy controls; (F). The HFG, EFG, and total transcripts distribution among 122 DCM patients. The black, gray, and green lines represented
the HFG, EFG, and total transcripts, respectively.
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genomic alterations and 374 epigenetic fusion transcripts. Figure 1E
showed that the frequency average of DCM fusion transcripts
formed by genomic alterations was 9.3%, while its GTEx
counterpart was 1.7%. The former was 5.5-fold of the latter. The
average frequency of DCM epigenetic fusion transcripts was 20.4%.
Its GTEx counterpart was 6.1% (Figure 1E). The former was 3.3-fold
of the latter, suggesting that epigenetic fusion transcripts increased
3.3-fold during DCMdevelopment. Figure 1F shows that the average
frequency of GTEx epigenetic fusion transcripts was 3.6-fold of the
GTEx genomic fusion transcripts, confirming that genomic fusion
transcripts differed from epigenetic fusion transcripts.

Next, we examined the distribution of fusion transcripts
of ≥5 DCM patients among different DCM patients. Figure 1E
shows that 122 DCM patients ranged from 44 to 161 fusion
transcripts per DCM patient, the average of which was 99.2,
while 252 GTEx healthy controls ranged from 1 to 123 fusion
transcripts per GTEx healthy control, the average of which was
49.7. Even though the total DCM fusion transcripts were 5.7-fold of
the GTEx counterpart, the former was only 2-fold of the latter,
indicating that additional RNA-Seq numbers dramatically expanded
collections of DCM fusion transcripts expressed at low levels.

We examined fusion transcripts with ≥5 DCM patients to
investigate distributions of these fusion transcripts among
different individuals. Figure 1F shows that 328 fusion genes
generated by genomic alterations were distributed among
122 DCM patients and ranged from 5 to 64 per DCM patient,
the average of which was 27.8. Figure 1F shows that the
486 epigenetic fusion transcripts were apportioned among
122 DCM patients and ranged from 32 to 109 per DCM patient,
the average of which was 71.3. The epigenetic average was 2.6-fold
that of the genomic counterpart, suggesting that DCM patients had
an increased expression of epigenetic fusion genes associated with
DCM. The more fusion transcripts generated by DCM patients’
genomic alterations, the more epigenetic fusion transcripts the DCM
patients had (Figure 1F), suggesting that epigenetic fusion
transcripts reflected genetic and environmental alterations.

Develop a statistical model to discover
hereditary and epigenetic fusion genes
associated with dilated
cardiomyopathy (DCM)

As described above, fusion genes generated by genomic
alterations were detected at high frequencies in both DCM
patients and GTEx healthy controls. One of the natural questions
was whether these fusion genes resulted from germline structural
variants or somatic genomic rearrangements. Since structural
variants generating a fusion gene per individual had a rate of
3.6 × 10−2 (Conrad et al., 2010b; Campbell and Eichler, 2013),
the possibility of generating ≥5 identical fusion transcripts by
random genomic alteration was 6 × 10−8. The probability of
identical fusion transcripts per individual was 7.3 × 10−6 in DCM
patients and 1.5 × 10-5in GTEx healthy controls. Due to DCM
patients and GTEx healthy controls being a no-cancerous disease,
the possibilities of 7.3 × 10−6 and 1.5 × 10−5 were little chance and
mathematically unlikely for these fusion transcripts to be generated
by somatic genomic abnormalities. Hence, we could conclude that

fusion transcripts with ≥5 DCM and GTEx healthy controls
generated by genomic alterations were from germline genomic
structural variants or inherited from their parents. Previously, we
defined the hereditary fusion genes (HFGs) as fusion genes offspring
inherited from their parents, excluding epigenetic fusion genes,
defined as the fusion genes generated via cis-splicing of
readthrough pre-mRNAs of two identical strand neighboring
genes. Therefore, these DCM fusion transcripts generated by
genomic alterations were treated as hereditary fusion genes
(HFGs). Instead of using the known HFGs to discover HFGs
associated with human disease, we used Z-tests to compare DCM
fusion transcripts with GTEx fusion transcripts and set Zα/2 equal to
2.576. Supplementary Table S1 showed that 210 HFGs encoding
224 fusion transcripts were identified to be associated with DCM,
which was statistically significant. Among 210 HFGs associated with
DCM, 206 HFGs coding for 220 HFG transcripts were positively
associated with DCM. Only four HFGs were negatively associated
with DCM and had preventive effects on DCM. 220 HFG transcripts
positively associated with DCM ranged from 4.1% to 87.7%, with an
average of 9.1%. In comparison, we detected these HFG counterparts
in 0%–22.2% of 252 GTEx healthy controls, the average of which was
1.12%. The former average was 8.2-fold of the GTEx healthy control
counterpart. 8.2-fold differences between DCM and GTEx and only
four HFGs negatively associated with DCM suggested that these
HFGs dramatically increased DCM.

Similarly, we used the statistical method to analyze EFGs of
DCM patients and GTEx healthy controls. We discovered
181 epigenetic fusion genes (EFGs) coding for 217 EFG
transcripts ranging from 4.1% to 99.2%, the average of which
was 20.4% (Supplementary Table S2). In comparison, their GTEx
counterparts ranged from zero to 81%, the average of which was
6.1%. The average frequency of EFG transcripts associated with
DCM was 3.3-fold that of the GTEx counterpart, suggesting that
environmental abnormalities were essential for DCM. Only SIDT2-
TAGLN EFG was negatively associated with DCM, and 216 EFG
transcripts were positively associated with DCM, implying that most
genetic and environmental abnormalities promoted DC initiation,
development, and prognosis. If the genetic and environmental
abnormalities leading to DCM counted for 100%, the ratio of
differences between DCM and GTEx HFG frequency averages vs.
their EFG counterpart was 8.1:3.3 and equal to 2.48:1. Therefore, we
obtained germline HFG abnormalities which contributed 71.3% of
DCM. In comparison, environmental abnormalities contributed to
28.7% of DCM. This data suggested that genetic abnormalities
represented by HFGs were much more powerful driving forces
than environmental ones.

Characterize germline HFGs associated
with DCM

To characterize these HFGs, we examined 206 HFGs coding for
220 HFG transcripts positively associated with DCM. Table 1 shows
the top 11 HFGs encoding 12 HFG transcripts positively associated
with DCM, which ranged from 20% to 87.7%. They ranged from
1.2% to 22.2% of GTEx healthy controls. The most recurrent HFG
was RYR2-ACTN2, detected in 87.7% of left ventricle heart tissues of
122 DCM patients and 21.4% of 252 GTEx counterparts (Table 1).
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The DCM RYR2-ACTN2 recurrent frequency was four-fold that of
the GTEx counterpart. As shown in Table 1, the second RYR2-
ACTN2 isoform was detected in 22.1% of DCM patients and 1.2% of
GTEx healthy controls. The DCM frequency of the second RYR2-
ACTN2 isoform was 18-fold of the GTEx counterpart and suggested
that increasing RYR2-ACTN2 expression and/or RYR2-ACTN2
alternative splicing significantly increased possibilities of DCM.
Figure 2A showed that RYR2 and ACTN2 were located on
1q43 and encoded ryanodine receptor 2 (cardiac) and actinin α2.
A potential inversion of ACTN2→RYR2 structure resulted in
RYR2→ACTN2 structure, and the first RYR2 exon replaced the
first ACTN2 exon to form putative 867 aa (cardiac) ryanodine
receptor 2-actinin α2 fusion protein, which was 27 aa shorter
than actinin α2. RYR2-ACTN2 HFG expressed twenty-five
isoforms in DCM patients. In comparison, only eight RYR2-
ACTN2 isoforms were detected in GTEx healthy controls.
Figure 2A shows that three RYR2-ACTN2 main isoforms were
detected in 87.7%, 22.1%, and 14.8% of 122 DCM patients, while
their GTEx counterparts were observed in 21.4%, 1.2%, and 0% of
252 GTEx healthy controls. The former were four-, 18-, and 37-fold
of the latter, suggesting that increasing RYR2-ACTN2 gene
expression and/or RYR2-ACTN2 alternative splicing were
associated with DCM initiation, development, and prognosis.

After examining HFGs associated with DCM, we found that
multiple different 5′genes were fused with a single 3′gene.
Supplementary Table S3 showed that twenty-five different 5′genes
were fused with 3′- ACTG1 genes encoding actin gamma 1 to form
different 3′-ACTG1-fused HFGs. Supplementary Table S3 showed
that the frequencies of 3′-ACTG1-fused HFGs were observed in 4.1%
to 73% of DCM patients, while they were detected in 0% to 22.2% of
GTEx healthy controls. The former were 2.1- to 24.8 folds of the latter.
Consequently, these large numbers of different 3′-ACTG1 fusedHFGs
produced diverse ACTG1 fusion proteins and provided diverse
transcription regulation disrupting 3′-ACTG1 gene expression.

Among the top eleven HFGs associated with DCM (Table 1),
there were the three highly recurrent 3′-ACTG1-fused HFGs:
NDUFV1-ACTG1, TINAGL1-ACTG1, and TPM2-ACTG1 (Figure
2B). These three HFGs were detected in 72.9%, 50.9%, and 24.6%
of left ventricle heart tissues of 122 DCM patients. On the other hand,
they were detected in 17.9%, 22.2%, and 11.9% of left ventricle heart
tissues of 252 GTEx healthy controls. The DCM NDUFV1-ACTG1,
TINAGL1-ACTG1, andTPM2-ACTG1were 4.1-, 2.3-, and 2.1-folds of
the GTEx healthy controls, showing that these highly recurrent
3′ACTG1-fused HFGs had less impact on DCM than
other3′ACTG1-fused HFGs such as TTN-ACTG1 and PFKP-
ACTG1. The high recurrent frequencies of these 3′-ACTG1-fused
HFGs in GTEx healthy controls supported that these HFGs were
inherited from their parents, not from the random somatic genomic
abnormalities. It confirmed the theoretical basis of our statistical
approach to studying HFGs.

Similarly, we found twenty 3′TTN-fused HFGs associated with
DCM, from 3.1-fold to 37.2-fold of the GTEx counterparts
(Supplementary Table S4). Table 1 showed that two highly
recurrent TTN-LSM1 and TTN-LMF1 HFGs of twenty-one 3′-
TTN-fused HFGs were detected in 40.2% and 23.8% of 122 DCM
patients and were 5.3- and 8.6-fold of the GTEx counterparts.
Figure 2C showed that TTN and LSM1 were located on
2q31.2 and 8q11.2 and encoded titin and LSM1 homolog. A
potential translocation produced a TTN-LSM1 fusion structure to
generate TTN-LSM1 HFG encoding 3664 aa titin- LSM1 homolog
fusion protein, which was only 11% of 33,430 titin (NM_133378.4).

After performing a statistical analysis of HFGs between DCM
and GTEx, we discovered four HFGs that were negatively
associated with DCM. These six HFGs were detected in 0.8%
to 36.1% of 122 DCM patients. In contrast, they were observed in
11.5% to 51.6% of 252 GTEx healthy controls. The latter were
from 1.9 to 8.7 folds of the former, suggesting that these four
HFGs reduced and retard DCM development and prognosis. The
most significant difference between DCM and GTEx was
CCDC76-ARSA HFG, detected in 0.8% of 122 DCM patients
and 13.1% of 252 GTEx healthy controls. The most frequently
observed HFG was GPR82-POPDC2, detected in 36.1% of DCM
patients and 51.1% of GTEx healthy controls. The numbers and
frequencies of HFGs positively associated with DCM were
significantly higher than those of HFGs negatively associated
with DCM, suggesting that these HFGs overwhelmingly led to
DCM under the environmental conditions in which these DCM
patients lived.

To show the relationship between HFGs and DCM patients, we
used Morpheus (https://software.broadinstitute.org/morpheus/) to
generate a heatmap of 224 HFG transcripts of 122 DCM patients.
Figure 3A shows the heatmap of 224HFG transcripts associated with
DCM among 122 DCM patients. Only twelve HFG transcripts were
clustered into the highly recurrent HFG group and corresponded to
the HFG transcripts in Table 1. The rest of the HFG transcripts were
clustered into the sparsely recurrent group, and their distribution
was not uniformly distributed, supporting that these HFGs played
roles in DCM developments among 122 DCM patients. Figure 3B
shows the heatmap of 224 HFG transcripts of GTEx healthy controls
224 HFG transcripts were clustered into highly recurrent and
sparsely recurrent groups. Figure 3B indicates that the GTEx
highly recurrent HFG transcripts had about five HFG transcripts,

TABLE 1 The highly-recurrent germline hereditary fusion genes (HFGs)
associated with DCM.

HFGs DCM (122) GTEx (252) Folds

# % # %

RYR2-ACTN2 107 87.70 54 21.43 4.1

NDUFV1-ACTG1 89 72.95 45 17.86 4.1

TINAGL1-ACTG1 62 50.82 56 22.22 2.3

TTN-LSM1 49 40.16 19 7.54 5.3

C20orf166-C9orf3 48 39.34 23 9.13 4.3

C20orf166-MYH6 45 36.89 42 16.67 2.2

PCBP3-USP28 39 31.97 12 4.76 6.7

MYH7-C9orf3 31 25.41 10 3.97 6.4

TPM2-ACTG1 30 24.59 30 11.90 2.1

TTN-LMF1 29 23.77 7 2.78 8.6

RYR2-ACTN2 27 22.13 3 1.19 18.6

TTN-PPFIA1 25 20.49 13 5.16 4.0
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FIGURE 2
Schematic diagrams of Germline HFGs’ association with DCM. Schematic diagrams showed potential germline genomic abnormalities to generate
RYR2-ACTN2. (A)NDUFV1-ACTG1 (B) and TTN-LSM1 (C). The solid black, red, and gray horizontal arrows represented the five ‘genes, 3’genes, and genes
surrounded by 5′ and 3′ genes. The solid black and red squares were 5′ and 3′exons. The solid black angle line and dashed line were introns and omitted
sequences. Open vertical arrows indicated potential steps from genomic alterations to producing fusion gene sequences. The numbers above the
squares were exon numbers.

Frontiers in Genetics frontiersin.org07

Fei et al. 10.3389/fgene.2024.1438887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1438887


three of which were negatively associated with DCM. Most GTEx
sparsely recurrent HFG transcripts were “empty” on the Figure 3B
heatmap and were not frequently observed in GTEx healthy
controls. A comparison between the heat maps in Figures 3A, B
showed that DCM patients had quite different HFG signatures from
those of GTEx.

Identification of epigenetic fusion genes
(EFGs) associated with DCM

As described above, we identified 181 EFGs encoding for
217 EFG transcripts positively associated with DCM, ranging
from 4% to 99.2% of left ventricle heart tissues of 122 DCM
patients. In contrast, the GTEx counterparts ranged from 0.4% to
81%. The former was from 1.2-fold to 237.5-fold of the latter. Table 2
showed 22 EFGs with recurrent frequencies of ≥50% of 122 DCM
patients, ranging from 50% to 99.2%, while their GTEx counterparts
ranged from 0.4% to 81%. The former were 1.2- to 237.5-fold of the
latter. Themost recurrent EEF1DP3-FRY EFGwas detected in 99.2%
of 122 DCM patients and 52.8% of 252 GTEx healthy controls. The
former was 1.9-fold of the latter. Figure 4A shows that EEF1DP3 and
FRY were located on 13q13.1 and encoded eukaryotic translation
elongation factor 1 delta pseudogene 3 and furry homolog
(Drosophila). The EEF1DP3 transcription termination failure
resulted in EEF1DP3-FRY readthrough pre-mRNAs, which were
spliced into EEF1DP3-FRY HFG and encoded a truncated 2963 aa
furry protein (Figure 4A).

The EFG with the most significant difference between DCM
and GTEx was LINC00670-MYOCD, detected in 23% of 122 DCM
patients and 0.4% of 252 GTEx healthy controls. The former was
57.8-fold of the latter, suggesting that LINC00670-MYOCD was
one of the most significant biomarkers associated with DCM.
Figure 4B shows that LINC00670 and MYOCD were located on
17q12 and encoded long intergenic non-protein coding RNA
670 and myocardin. Figure 4B showed that failed LINC00670
transcription termination resulted in LINC00670-MYOCD
readthrough pre-mRNAs, which were spliced into LINC00670-
MYOCD EFG, coding for a truncated 907 myocardin, shorter of
eighty-six aa than the native one. Among 486 EFG transcripts
of ≥5 DCM patients, we identified only one SIDT2-TAGLNEFG
negatively associated with DCM, detected in 23% of DCM patients
and 40.5% of GTEx healthy controls. The latter was 1.8-fold of the
former, suggesting that SIDT2-TAGLNEFG reduced and
prevented DCM development and prognosis. Figure 4C showed
that SIDT2 and TAGLN were located on the 11q23.2 plus strand
and formed a SIDT2-TAGLN EFG via cis-splicing of SIDT2-
TAGLN readthrough pre-mRNAs. SIDT2-TAGLN putatively
encoded a 1,038 aa SID1 transmembrane family member 2-
transgelin fusion protein.

We used Morpheus with identical conditions to analyze EFGs
associated with DCM. Figure 5A shows the heatmap of 220 EFG
transcripts among 122 patients. EFG transcripts were classified into
highly recurrent and sparsely recurrent EFG transcripts, which were
13.3% and 86.7%. There were no dramatic differences in EFG
transcripts among 122 DCM patients. These suggested that

FIGURE 3
The heatmaps of HFG transcripts associated with DCM. (A)Morpheus generated a Germline HFG heatmap of 122 DCM patients from Broad Institute
(https://software.broadinstitute.org/morpheus/). We used Morpheus to create a heatmap of 224 HFG transcripts of the 122 DCM patients. (B)Morpheus
generated a heatmap of 224HFG transcripts of GTEx healthy controls from Broad Institute. K-means clustering was used to cluster rows and columns
using Euclidean distance (number clustering of 2). Then, hierarchical clustering was used to cluster both rows and columns using Euclidean distance
and grouping both rows and columns. The results were saved as a PDF document. The horizontal orange and light-yellow rectangles represented
sparsely and highly recurrent HFG transcripts. The vertical orange and light-yellow rectangles represented HFGs-poor and HFG-rich DCM patients/GTEx
healthy controls.
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common environmental and genetic abnormalities resulted in
DCM. Figure 5B shows that 220 EFG transcripts were distributed
among 252 GTEx healthy controls. The 220 EFG transcripts were
clustered into highly recurrent and sparsely recurrent groups. As
described above, only SIDT2-TAGLN EFG was negatively associated
with DCM, which was detected in 40.5% of GTEx healthy controls.
Hence, the rest of the highly-recurrent EFG transcripts were highly
recurrent in DCM patients and GTEx healthy controls. The
differences between DCM patients and GTEx healthy controls
were significant but small. Comparison between Figures 5A, B
heatmaps shows that the DCM EFG signatures became wildly
divergent from the GTEx ones and were consistent with
increasing expressions of EFGs during the DCM development.

Discussion

Previously, we used the splicingcode theory to develop a
software system to discover fusion gene transcripts at maximum
accuracy. To implement this algorithm of achieving the most
accurate fusion transcripts, we used a splicingcode table counting
for 0.5% of human genome sequences. In theory, we expected
significantly fewer fusion transcripts to be identified than the
software available so far (Zhou et al., 2017). 138,000 DCM and
49,900 GTEx fusion transcripts discovered in this study (Figure 1B)
were much larger than those reported in the literature. Even though

each DCM patient had three RNA-Seq samples, the difference
between 855 and 814 fusion transcripts of ≥5 RNA-Seq SRA
samples and ≥5 DCM patients (Figure 1C) was <5% and
suggested that fusion transcripts of ≥5 samples were not three-
fold theoretically and were the samples’ intrinsic characteristics. It
also indicated that the ceilings of technologies used limited the
number of highly recurrent fusion transcripts. Extra fusion
transcripts were discovered by increasing RNA-Seq samples
beyond the technological ceilings, behaved like random events,
and were not essential to finding the samples’ valuable
properties. On the other hand, much smaller numbers of fusion
transcripts discovered by other software available made fusion
transcripts like random events. Consequently, fusion genes were
thought to be generated by random somatic genomic abnormalities
associated with cancer.

Since highly recurrent fusion transcripts were unlikely generated
by random genomic abnormalities in non-cancerous tissues, where
somatic genomic rearrangements had been considered highly rare
(Gottlieb et al., 2010), we assumed that if structural variants
generating a fusion gene per individual had a rate of 3.6 × 10−2
41,42, five unique individuals possessing ≥5 identical fusion genes by
identical genomic alterations were 6 × 10−8. The chances of
discovering identical fusion genes of ≥5 samples in 122 DCM
patients and 252 GTEx healthy controls would be far smaller
than 7.4 × 10−6 in DCM patients and 1.5 × 10−5 in GTEx healthy
controls. These low possibilities suggested that somatic genomic
rearrangements did not generate these fusion genes simultaneously;
instead, they were inherited from their parents (Zhuo, 2022). We
used well-documented germline KANSARL (KANSL1-ARL17A)
fusion gene specific to 29% of the population of European
ancestry but absent in the populations from Asia and Africa
(Zhou et al., 2017) as a reference. We used three sets of statistical
parameters to compare KANSARL fusion gene among different
populations and identify the statistical parameters to generate
consistent results. We further used EFGs of different RNA-Seq
datasets to validate if these parameters can generate the
consistent results. After extensive manual and computational
analysis, we set α = 0.01 (α/2 = 0.005), Zα/2 = 2.576, and n*p ≥
5 and performed direct statistical analysis to fusion transcripts
of ≥5 DCM patients between 122 DCM patients and 252 GTEx
healthy controls. The identification of 224HFG transcripts among
DCM patients and healthy controls supported the idea that they
were inherited from their parents instead of somatic abnormalities.

Previously, we used the HFGs discovered in monozygotic twins
(Zhuo, 2022) to study whether these HFGs were associated with
multiple myeloma (Fei et al., 2022), acute myeloid leukemia (Ling
and Zhuo, 2022), and amyotrophic lateral sclerosis (Yang et al.,
2023). In this study, we have developed a statistical method to
perform a comparative analysis of total fusion transcripts of
122 DCM patients and 252 GTEx healthy controls. We identified
210 HFGs encoding 224 fusion transcripts, which were statistically
significant and ranged from 4.1% to 87.7%. Ninety-eight percent of
210 HFGs were positively associated with DCM development and
prognosis. These 206 HFGs promoted DCM initiation,
development, and progress. Only four HFGs were negatively
associated with DCM and had preventive effects on DCM. Even
though DCM patients and GTEx healthy controls were two different
random populations, many factors may affect the correct

TABLE 2 The most highly-recurrent epigenetic fusion genes (EFGs)
associated with DCM.

EFG ID DCM (122) GTEx (252) Folds

# % # %

EEF1DP3-FRY 121 99.2 133 52.8 1.9

DCUN1D2-ADPRHL1 120 98.4 105 41.7 2.4

IGSF5-PCP4 118 96.7 204 81.0 1.2

CDKL3-SKP1 114 93.4 100 39.7 2.4

CKMT2-ZCCHC9 108 88.5 100 39.7 2.2

ZNF782-ZNF510 105 86.1 75 29.8 2.9

MRPS10-GUCA1B 99 81.1 68 27.0 3.0

TM9SF3-TLL2 95 77.9 75 29.8 2.6

MTG1-SCART1 84 68.9 105 41.7 1.7

SLC29A1-HSP90AB1 80 65.6 76 30.2 2.2

CTNNBIP1-CLSTN1 78 63.9 42 16.7 3.8

SCART1-CYP2E1 73 59.8 104 41.3 1.4

DNAJC25-GNG10-UGCG 72 59.0 24 9.5 6.2

PRSS42-PRSS45 71 58.2 46 18.3 3.2

PLEKHM1P-LOC146880 68 55.7 88 34.9 1.6

MARCH2-HNRNPM 64 52.5 45 17.9 2.9

AGGF1-LOC728723 63 51.6 29 11.5 4.5

SLC25A16-DNA2 61 50.0 63 25.0 2.0
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identification of HFGs associated with DCM. RNA-Seq methods,
RNA-Seq sequencing sizes, and insert sizes were the most important
factor affecting the analysis accuracies. To overcome potential
pitfalls, we must select the dominant isoforms of reference HFGs
and EFGs to determine if DCM and GTEx samples behaved
similarly. The second most important issue of using RNA-Seq to
discover HFGs is that HFGs are differentially expressed. For
example, many HFGs and EFGs were expressed in left ventricle
heart tissue, not expressed in the blood samples. Therefore, we
cannot use HFGs and EFGs discovered in blood samples to analyze
RNA-Seq data of left ventricle heart tissue. The ages and races of the
two populations would significantly affect the correct identification
of HFGs associated with DCM. The sources of the sample collections
and origins (e.g., car accidents vs. transplants) will greatly affect the
correct HFG identification. Since healthcare services were localized,

high recurrent HFGs of a local population may be due to genetic
drift and were like local environmental factors affecting the
identification of EFGs associated with DCM.

The most highly recurrent HFG was RYR2-ACTN2, detected in
107 (87.7%) out of 122 DCM patients and 54 (21.4%) out of
252 GTEx healthy controls. These large numbers of RYR2-
ACTN2 fusion genes in both DCM patients and GTEx healthy
controls supported the fact that these highly recurrent HFG fusion
genes were germline and confirmed the soundness of our statistical
approach to fusion genes in non-cancerous tissues (Zhuo, 2022).
210 HFGs that were identified to be associated with DCM were
much more than the numbers of “inherited” mutated genes, which
were thought to count for 20%–40% of familial DCM cases
(Mestroni et al., 1999), suggesting that “inherited” HFGs were
dominant genetic factors associated with DCM and contributed

FIGURE 4
Schematic diagrams of potential genomic events to generate EFGs associated with DCM. Schematic diagrams showed potential mechanisms to
generate EEF1DP3-FRY (A) LINC00670-MYOCD (B) and SIDT2-TAGLN (C) generated via cis-splicing of readthrough pre-mRNAs of two identical-strand
neighboring genes. The solid black, red, and gray horizontal arrows represented the 5′genes, 3′gene, and genes surrounded by 5′and 3′genes. The solid
black and red squares were 5′and 3′exons. The solid black angle line and dashed line were introns and omitted sequences. Open vertical arrows
indicated potential steps from transcription readthrough to producing fusion gene sequences. The numbers above the squares were exon numbers.

Frontiers in Genetics frontiersin.org10

Fei et al. 10.3389/fgene.2024.1438887

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1438887


71.3% of total factors associated with DCM. In comparison,
environmental abnormalities contributed to 28.7% of DCM. The
low recurrent frequencies of the most “inherited” mutated genes in
DCM patients (Chen et al., 2021) further supported that HFGs were
more critical “inherited” genetic factors. Since mutated TTNwas one
of the most essential “inherited” genetic factors (Chen et al., 2021),
identifying 20 3′TTN-fused HFGs confirmed that defected TTN was
associated with DCM. However, it was essential to understand that
the mutated TTN gene and 3′-TTN-fused HFGs were partially
responsible for DCM. We must consider the complex
developmental interactions between genetic and environmental
abnormalities that lead to DCM initiation, development,
and prognosis.

If a sample had one and/or more copies of RNA-Seq reads
having fusion gene junction sequences of a fusion gene discovered by
SCIF, this sample was thought to be fusion gene-positive (Zhou
et al., 2017). Hence, enormous computation-assistant approaches
exist to identify at least one of these RNA-Seq reads. We provided a
validation algorithm using fusion junction sequences in
Supplementary Tables S1, S2 to validate our analysis results (see
Materials and Methods). This algorithm validated the most results
except for some HFGs generated via highly repetitive genomic
sequences. More importantly, this method identified HFGs and
EFGs in other RNA-Seq datasets to study heart and
diabetes diseases.

Our previous study showed that the total copy numbers of
fusion gene isoforms were positively related to fusion gene
expression levels36. Generally, the higher the sample numbers of
fusion genes were positive, the easier the fusion genes were to be
amplified by RT-PCR. Hence, one could use BLAST 5′ and 3′ fusion
gene junction sequences of Supplementary Tables S1, S2 to
experimentally validate fusion genes to locate the 5′ and 3′ exon
sequences. Then, 5′ and 3′ exon sequences were merged into fusion
gene sequences, based on which 5′ and 3′ RT-PCR primers were
designed. This pair of primers was used for RT-PCR amplification of
RNA sequences. Then, RT-PCR products were isolated and
sequenced. If the RT-PCR products had sequences identical to
the fusion junction sequence, we validated it as the fusion gene.
We selected the top 21 fusion transcripts of the most highly
recurrent fusion genes discovered in multiple myeloma. We
validated all of them in multiple myeloma patients, confirming
that highly recurrent HFGs and EFGs were reproducible and
ready to be validated (In preparation). Since many DCM HFGs
and EFGs were differentially expressed, we must consider the age
and tissue types for easy validation.

As reported previously, EFGs reflected these developmental
interactions between genetic and environmental abnormalities.
Figure 5A shows that large numbers of EFG transcripts were
classified together and highly recurrent, suggesting that these
EFG transcripts reflected interactions between genetic and

FIGURE 5
The heatmap of EFG transcripts associated with DCM. (A). A heatmap of 181 EFGs encoding 221 EFG transcripts of 122 DCM patients was generated
by Morpheus from Broad Institute (https://software.broadinstitute.org/morpheus/). We used Morpheus to create a heatmap of 221 EFG transcripts of the
122 DCM patients. (B) A heatmap of 221EFG transcripts of GTEx healthy controls was generated by Morpheus from Broad Institute. K-means clustering
was used to cluster rows and columns using Euclidean distance (number clustering of 2). Then, hierarchical clustering was used to cluster both rows
and columns using Euclidean distance and grouping both rows and columns. The results were saved as a PDF document. The horizontal orange and light-
yellow rectangles represented sparsely and highly recurrent EFG transcripts. The vertical orange and light-yellow rectangles represented EFGs-poor and
EFG-rich DCM patients/GTEx healthy controls.
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environmental abnormalities. As shown in Supplementary Table S2
and Table 2, we had identified 181 EFGs coding for 221 EFG
transcripts. 180 EFGs of 181 EFGs were positively associated
with DCM, and only one EFG was negatively associated with
DCM. These overwhelming numbers of positively associated
EFGs suggested that environmental conditions in which
122 DCM patients lived promoted DCM initiation, development,
and progress. The differences in the highly recurrent EFGs between
DCM patients and GTEx healthy controls in Table 2 were smaller
than the HFG counterparts in Table 1. They confirmed that
“inherited” HFG transcripts were much stronger forces of
developing DCM than environmental factors. Environmental
factors become powerful only in the presence of “inherited”
genetic factors associated with DCM. If no genetic factors were
associated with DCM, only persistent long-term environmental
abnormalities might result in DCM initiation, development, and
progress. In the future, we can genotype the general populations
including children. Based on their highly recurrent HFG genotypes,
we should provide personalized guides to individuals to increase
physical activities to decrease possibilities to develop DCM by
monitoring EFG genotypes. Consequently, we will require the
identification of shared environmental factors to promote DCM
and reduce these HFG and EFG interactions to minimize DCM
initiation and development. Furthermore, we used medical and
environmental interventions to interrupt and retard DCM
initiation, developments, and progression initialized by HFGs.
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