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Small Proteins (SPs) are pivotal in various cellular functions such as immunity,
defense, and communication. Despite their significance, identifying them is still in
its infancy. Existing computational tools are tailored to specific eukaryotic
species, leaving only a few options for SP identification in prokaryotes. In
addition, these existing tools still have suboptimal performance in SP
identification. To fill this gap, we introduce PSPI, a deep learning-based
approach designed specifically for predicting prokaryotic SPs. We showed that
PSPI had a high accuracy in predicting generalized sets of prokaryotic SPs and
sets specific to the human metagenome. Compared with three existing tools,
PSPI was faster and showed greater precision, sensitivity, and specificity not only
for prokaryotic SPs but also for eukaryotic ones. We also observed that the
incorporation of (n, k)-mers greatly enhances the performance of PSPI,
suggesting that many SPs may contain short linear motifs. The PSPI tool,
which is freely available at https://www.cs.ucf.edu/~xiaoman/tools/PSPI/, will
be useful for studying SPs as a tool for identifying prokaryotic SPs and it can
be trained to identify other types of SPs as well.
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1 Introduction

Small proteins (SPs), typically consisting of 100 amino acids (AA) or fewer, are
indispensable components in cells, serving critical functions such as cell defense,
adaptive immunity, and intercellular communication (Sberro et al., 2019). For instance,
the SP MgrB regulates the activity of the sensor kinase PhoQ in response to antimicrobial
peptides during bacterial infection (Jiang et al., 2023). Toddler, another SP, facilitates cell
migration during embryonic gastrulation (Pauli et al., 2014). Because of the pivotal roles of
SPs, identifying SPs is imperative for understanding cellular processes.

The identification of SPs is still in its infancy. Traditionally, open reading frames
(ORFs) are at least 303 nucleotide long and proteins encoded by these ORFs are thus at
least 100 AA long (Su et al., 2013). Although these cutoffs are somewhat arbitrary, they
are necessary because the shorter cutoffs would have resulted in a much higher false
positive prediction of genes and proteins. Because of such a historical constraint,
despite their widespread existence, SPs have only started to be appreciated and studied
in the last decade or so.

Experimentally, SPs are often identified by mass spectrometry or ribosome profiling
(Kaltashov et al., 2013; Brar and Weissman, 2015; Ahrens et al., 2022). These experimental
methods are originally designed for regular proteins of at least 100 AA long, while later
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adapted for SP identification. They have enabled our rudimentary
understanding of SPs. Note that these experiments can only uncover
SPs under a given experimental condition, as the activity of SPs or
small ORFs (sORFs) coding them is condition-specific. Because it is
impossible to do experiments under every condition, it is imperative
to develop computational approaches for systematically predict SPs
directly from nucleotide or peptide sequences without additional
experimental data input.

A handful of computational methods have been developed for
predicting SPs without additional experimental data (Miravet-Verde
et al., 2019; Zhu and Gribskov, 2019; Durrant and Bhatt, 2021; Yu
et al., 2021; Zhang et al., 2021; Zhang et al., 2022). Most of these
methods are created to target SPs or sORFs in eukaryotes, such as
csORF-Finder, MiPepid, and DeepCPP.

csORF-Finder is a tool focused on coding sORFs and can
identify sORFs in the coding sequence and non-coding regions of
DNA. It showed better performance than other existing methods
(Zhang et al., 2022). MiPepid applies a logistic regression
model with nucleotide tetramer features to predict whether a
sequence contains sORFs coding for SPs (Zhu and
Gribskov, 2019). DeepCPP is a deep-learning tool for RNA
coding potential prediction, including sORFs coding SPs
(Zhang et al., 2021).

There are also three computational methods for prokaryotic
SP identification directly from genomic sequences: RanSEPs
(Miravet-Verde et al., 2019), SmORFinder (Durrant and Bhatt,
2021), and PsORF (Yu et al., 2021). RanSEPs and SmORFinder
predict SPs in the input prokaryotic genome or metagenome.
They thus require prior knowledge of certain genome features,
such as a fraction of known ORFs and the genome structure.
Such a prerequisite prevents their wide application to
unassembled prokaryotic sequences or short sequences.
Although PsORF considers short sequences as input for SP
identification, it is no longer accessible. Therefore, there is a
great need to develop computational methods for prokaryotic SP
identification.

To fill this gap, we present in this study a long short-term
memory (LSTM) based approach for prokaryotic SP
identification (PSPI). PSPI uses the AA sequences, codified as
a series of binary vectors, and a parameter we’ve called (n, k)-
mers, which is a form of gap k-mer, to identify SPs. Through
testing on known prokaryotic SPs, human metagenome
prokaryotic SPs, and known eukaryotic SPs, as well as their
randomly permuted negatives and known non-coding
negatives, we demonstrated that PSPI reliably distinguishes
known SPs from random or known negatives. Compared with
three existing approaches, PSPI significantly outperforms in
nearly every instance in regard to precision, sensitivity,
specificity, F1 score, AUROC, and AUPR. While PSPI is
developed to identify prokaryotic SPs, we discovered it has
additional capabilities for identifying eukaryotic SPs as well.
Specifically, it does not have the same high false positive rate
that other tools have, and it performs better than them if trained
using eukaryotic data instead. Additionally, we explored the
crucial features for accurate SP prediction and identified
gapped dimers as particularly significant. In the following, we
detail the PSPI method, its evaluation and comparison with other
methods, and the pivotal features enhancing its accuracy.

2 Materials and Methods

2.1 Positive data

We collected prokaryotic SPs from three sources. First, we
extracted data from the prokaryotic dataset Pro-6318 by Yu et al.
(2021). This dataset comprises 6,318 sORFs from 56 prokaryotic
species, with average and median lengths of 76 and 78 AA,
respectively. Secondly, we retrieved SPs from the UniprotKB
database (UniProt, 2023). We filtered for bacterial SPs with
length ≤ 100 AA (taxonomy_id:2) and removed any SPs already
present in Pro-6318, resulting in 24,433 SP sequences with an
average length of 75 AA and a median length of 79 AA. This SP
collection was designated as UniprotKB-pro. Thirdly, we collected
SPs from the study by Sberro et al. (2019). They analyzed
1773 human body site metagenomes and computationally
predicted 4,539 clusters of short peptide sequences and their
corresponding nucleotide sequences. Each cluster comprises
sequences from at least eight assembled contigs (“species”),
indicating sequence conservation across species and thus likely
representing authentic SPs. After filtering out sequences
containing unknown AA, those with missing nucleotides in
homologs, containing intermittent stop codons, or already in the
Pro-6318 dataset we retained 27,794 potential SPs and their
corresponding nucleotide sequences, termed microbiome_hs.

We also collected eukaryotic SPs from UniprotKB, similar to the
prokaryotic SPs from UniprotKB described above. The distinction is
the use of eukaryote taxonomy ID 2759 instead of taxonomy ID 2.
This yielded 22,075 SPs, averaging 57 AA in length with a median
length of 62 AA.We called this set UniprotKB-euk. The UniprotKB-
euk set serves to explore the differences between prokaryotic and
eukaryotic SPs and to assess the efficacy of PSPI in predicting
eukaryotic SPs.

2.2 Negative data

We also constructed negative data in two ways. One was to
permute the SP sequences. Given a SP sequence, we converted each
of its AA into one of the codons that corresponds to it, followed by
appending a stop codon to the end of the converted sequence. If an
AA had multiple codons that correspond to it, one of those codons
would be randomly chosen. We then randomly shuffled the
obtained nucleotide sequence while preserving the start and stop
codons. Finally, we converted the resulting nucleotide sequence back
into a peptide sequence. Notably, we avoided permuting the original
SP sequence to generate a negative sequence, as the permuted
sequence shares the same AA composition, potentially still being
a SP sequence. If we already had the sORF sequence, we directly
permuted it accordingly. If a stop codon occurred in the middle of
the permuted sequence, it was randomly substituted with a non-stop
codon. This yielded four sets of negatives, corresponding to three
positive sets of prokaryotic SPs and one positive set of eukaryotic SPs
collected above.

The other way we constructed negatives was using eukaryotic
microRNAs. A large number of microRNAs exist, and the short
microRNAs are unlikely to contain sORFs. We could also include
other non-coding RNAs, however obtaining many other non-coding
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sequences that were unlikely to contain SPs was challenging. We
downloaded the hairpin.fa file from miRbase (Kozomara et al.,
2019), which contains the ~70 nucleotide long precursor
microRNA sequences. We concatenated all sequences into a
single sequence and then randomly partitioned it into non-
overlapping substrings, each ranging from 30 to 300 nucleotides
in length. Any stop codons within these substrings were randomly
replaced with non-stop codons. We then converted each nucleotide
sequence into its corresponding protein sequence, yielding
69,153 negative sequences from microRNAs. This set of negatives
was then randomly divided into microRNA subsets 1, 2, 3, and four
which contained 17,289, 17,290, 17,288, and 17,286 negatives,
respectively.

2.3 Training and testing data

We used the SPs obtained from the Pro-6318 dataset as the
positive training data and paired them with the permuted SPs
generated from them alongside the microRNA subset 1 as the
training negatives. This combination of the training positives and
negatives, called the pro-6318 training dataset below (Figure 1A),

was employed to train the PSPI model. We tested the trained PSPI
on three independent testing datasets: the UniprotKB-pro testing
dataset, the microbiome-hs testing dataset, and the UniprotKB-euk
testing dataset. Similar to the training dataset, each testing dataset
comprised of one of the three remaining sets of positive SPs
(UniprotKB-pro, microbiome-hs, UniprotKB-euk) as positives,
juxtaposed with the corresponding permuted SPs and one of the
remaining microRA subsets as negatives (Figure 1A). For instance,
in the UniprotKB-pro testing data, its positives were the SPs in
UniprotKB-pro, and its negatives were the permuted SPs from
UniprotKB-pro alongside microRNA subset 2.

2.4 The PSPI model and its input

We developed a deep learning model called PSPI to predict
whether an input peptide sequence is an SP (Figure 1B). PSPI adopts
a LSTM-based architecture. LSTMs are a type of recurrent neural
networks, specializing in learning order dependence within data
which includes short, long, and variable length patterns in sequences
(Hochreiter and Schmidhuber, 1997; Talukder et al., 2021; Athaya
et al., 2023). LSTMs have been used to identify different types of

FIGURE 1
(A) Training and testing datasets. (B) The PSPI model architectures. Solid lines show the final parameters used. Dotted ones are other
parameters evaluated.
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proteins in the past (Yi et al., 2019; Youmans et al., 2020; Qin et al.,
2023). Given the significance of AA order in protein folding and
interaction, we employed LSTM to model the ordered AA
within an SP.

The PSPI model architecture, implemented using the Keras
Python Package (Chollet, 2021), constitutes a multi-layer
sequential model. The initial layer is an LSTM layer, which
converts the input data into a 128-dimensional vector. Next, a
dropout layer with a dropout rate of .25 is applied, followed by a
dense layer and a Sigmoid activation layer, yielding a single decimal
score within the range [0,1] (Figure 1B). We classified all sequences
with a score ≥ .75 as positive and those below as negative. We
assessed different version of the LSTMmodel which output a 16, 32,
64, or 128-dimensional vector and settled on 128 as it gave us the
best overall results. Similarly, we assessed a dropout rate of .25 and
.5 and settled on .25.

We coded the sequences in two different ways to train different
PSPI models. One way was to code each sequence as a binary vector
of 2000 dimensions, in which each AA corresponds to a vector of
20 dimensions, with only one of its entries having a value of one and
the rest being zeros. For sequences shorter than 100 AA, the
positions after their maximal lengths are represented by 20-
dimensional zero vectors. That is, short sequences are paddled
with 20-dimensional zero vectors to reach the maximal length
of 100 AA.

The other way we coded a sequence was by using the
aforementioned 2000 binary numbers together with the count of
(n, k)-mers. An (n, k)-mer is a gap k-mer in peptide substrings which
is at most n AA long. For instance, ACD, AC.D, and A.C.D are the
same (7, 3)-mer, while A. . ..C.D is not a (7, 3)-mer (longer than 7).
With this said, (n, k)-mers are different from the gapped k-mers
mentioned in previous studies (Zhang et al., 2021), where every
gapped k-mer has a fixed length. The (n, k)-mers considered here
mimic short linear motifs in proteins (Van Roey et al., 2014), whose
functions are determined by their ordered k AA and do not depend
on their tertiary structures. Note that when k > 2, the number of
possible (n, k)-mers is too large to train PSPI well. We thus used
degenerated AA. That is, we considered AA with similar chemical
and physical properties as one type and grouped the 20 AA into the
following nine groups (Yi et al., 2019): [AGILPV], [FW], [M], [C],
[ST], [Y], [D], [HKR], and [NQ]. We also tried other possible
groupings and found that PSPI performed slightly better with the
above grouping. For each sequence in the training dataset, in
addition to the 2000 binary numbers describing its AA in order,
a vector of 9k is added to represent the count of the 9k (n, k)-mers in
this sequence when k > 2. For k ≤ 2, a vector of 20k is used, since we
use regular AA rather than the degenerated groups. We input such
vectors 2000+9k (k > 2) or 2000 + 20k (k ≤ 2) for the training
sequences to train the PSPI model. Because of the limited training
data, we consider k from two to 4. Because protein linear motifs are
3–10 AA long, we considered different n from 3 to 10.

2.5 Comparison with other methods

We compared PSPI with three representative tools, csORF-
Finder, MiPepid, and DeepCPP, on the testing datasets (Zhu and
Gribskov, 2019; Zhang et al., 2021; Zhang et al., 2022). We selected

these tools for comparison because they are specifically designed to
predict SPs from sequences. Moreover, csORF-Finder demonstrated
superior performance in their own recent evaluation; MiPepid
performed well in the study of csORF-Finder; and DeepCPP is a
deep learning-based approach and expected to perform well.
Because these tools use the nucleotide sequences as inputs, we
generated the corresponding nucleotide sequences of the testing
peptide sequences in our testing datasets when running the tools.

With csORF-Finder, we configured it to predict SPs using its
H.sapiens-CDS model and ran the following command for each
testing dataset stored in separated files: “python3 csorf_finder_
predict_sORFs.py -i <filename> -o <filename>.csv -m H.
sapiens-CDS”. CDS refers to the coding sequence regions of
mRNA. csORF-finder has models trained using both CDS and
nonCDS regions. In their validation testing, CDS models
consistently performed better than the non-CDS models, hence
we opted for the CDS model for comparison (Zhang et al., 2022).

With MiPepid, we ran the following command for each of our
testing datasets: “python3./src/
mipepid.py <filename> <filename>.csv”. MiPepid attempts to
find sORFs in a sequence without the requirement to set any
specific species. It can thus predict an input sequence in any
eukaryotic species as an sORF or its substrings as a sORF. The
MiPepid results we reported refer to all sequences instead of their
substrings it considers a potential sORF, since each sequence in our
testing datasets was either a sORF or not a sORF.

DeepCPP includes a file DeepCPP.ipynb used to run the tool.
For each testing dataset, we gave the.ipynb file the command “test_
model(’./input_files/’, ‘./output_files/’, ‘<filename>’, ‘human’,
‘sorf’)”. Similarly, we configured DeepCPP to predict SPs using
its human sORF model.

2.6 Performance measures

We used precision, sensitivity, specificity, F1, AUROC, and
AUPR as performance measurements when comparing PSPI to
other models and when we determined the ideal training data.
We used only the AUROC and AUPR to determine how
implementing different (n, k)-mers impacted the model.

3 Results

3.1 PSPI predicted prokaryotic SPs with high
performance

We trained the original PSPI model on the pro-6318 training
dataset with the 2000-dimensional binary vector representation of
an input sequence (Material and Methods). We evaluated this PSPI
model on three independent testing datasets (Table 1). PSPI had a
high performance in predicting prokaryotic SPs. It had an area
under the receiver operating characteristic curve (AUROC) of
0.994 and an area under the precision-recall curve (AUPR) of
0.986 on the UniprotKB-pro testing dataset. The AUROC and
AUPR were similar but slightly lower on the microbiome-hs
testing dataset, indicating that the UniprotKB annotated SPs are
of higher quality than the computationally inferred SPs in
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microbiome-hs. The AUROC and AUPR were at least 19% lower on
the UniprotKB-euk testing dataset, suggesting that the eukaryotic
SPs may have different characteristics from their prokaryotic
counterparts.

To assess the impact of the positive training dataset on PSPI
performance, we trained additional PSPI models using three subsets
of SPs fromUniprotKB-pro. We randomly divided the 31,125 SPs in
UniprotKB-pro into three non-overlapping similar-sized subsets.
Each subset served as positive training data, while their
corresponding permuted SPs and the microRNA negatives from
the original PSPI model were retained as negatives to train a
different PSPI model. Testing these models on independent
datasets revealed AUROC and AUPR values very close to the
original ones (e.g., AUROC 0.985 versus 0.994 on the
UniprotKB-pro testing data), indicating minimal influence of the
positive SPs onmodel performance. The similar AUROC and AUPR
also suggests that SPs in pro-6318 are as reliable as those in
UniprotKB-pro.

Subsequently, we investigated how the choice of the training
negatives impacted PSPI accuracy.

Two PSPI models were trained with SPs from pro-6318 as
positives and employed either permuted SPs from pro-6318 or
one set of microRNA negatives as negatives, instead of the
combined set used in the original model. When we tested these
models on the same dataset, the model showed near constant
performance at identifying the positives but varied greatly with
the negatives when the training and testing sources differed. For
example, specificity drastically differed when using permuted SPs as
negatives during training and microRNA negatives during testing,
and vice versa. This discrepancy in specificity suggests distinct

characteristics between permuted and microRNA negatives.
Hence, utilizing combined negatives in the original PSPI model
yielded improved performance. Comparing results in Tables 1, 2
shows employing both negative data sources in training enhanced
the model’s ability to correctly label negative data (specificity: 0.978)
without compromising its capacity to label positive data
(sensitivity: 0.935).

3.2 PSPI had superior performance to three
existing tools

We evaluated the original PSPI model with csORF-Finder,
MiPepid, and DeepCPP on the three independent testing datasets
(Figure 2). These comparing tools were all used for eukaryotic SP
identification. We chose them because they are specifically designed
for SP identification. Moreover, the existing few tools for prokaryotic
SP identification cannot be applied to the short testing sequences we
had or are inaccessible.

PSPI had superior performance to these tools in almost every
metric we compared (Figure 2). For instance, when tested on the
UniprotKB-pro testing dataset, PSPI had a precision of 0.936, a
sensitivity or recall of 0.935, a specificity of 0.978, an AUROC of
0.989, and an AUPR of 0.979, while the three existing tools had the
best precision of 0.663 (DeepCPP), the best sensitivity of 0.988
(MiPepid), the best specificity of 0.908 (DeepCPP), the best AUROC
of 0.805 (csORF-Finder), and the best AUPR of 0.646 (DeepCPP).
Since the three tools were designed for eukaryotic SP identification,
it would be fair to compare them on the UniprotKB-euk testing
dataset. Again, PSPI consistently performed much better than the

TABLE 1 The performance of PSPI on three testing datasets.

PSPI Dataset Precision Sensitivity Specificity F1 AUROC AUPR

Original PSPI UniprotKB-pro 0.936 0.935 0.978 0.936 0.989 0.979

UniprotKB-euk 0.876 0.416 0.955 0.564 0.762 0.770

microbiome-hs 0.832 0.922 0.906 0.875 0.970 0.956

PSPI from eukaryotic data UniprotKB-pro 0.917 0.793 0.965 0.850 0.961 0.939

UniprotKB-euk 0.868 0.867 0.933 0.868 0.954 0.942

microbiome-hs 0.843 0.934 0.921 0.839 0.947 0.923

Final PSPI model UniprotKB-pro 0.959 0.947 0.986 0.953 0.994 0.988

UniprotKB-euk 0.931 0.478 0.973 0.631 0.852 0.849

microbiome-hs 0.891 0.938 0.942 0.914 0.982 0.972

TABLE 2 Average scores when the model is trained using only one type of negative data.

Training negatives Testing negatives Precision Sensitivity Specificity F1 AUROC AUPR

Permutation Permutation 0.965 0.952 0.942 0.959 0.987 0.992

Permutation microRNA 0.677 0.952 0.728 0.792 0.937 0.905

microRNA microRNA 0.976 0.976 0.986 0.976 0.996 0.994

microRNA Permutation 0.783 0.976 0.551 0.869 0.929 0.959
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three tools in every metric except the sensitivity and F1 scores.
Because PSPI had a better AUPR and AUROC on the UniprotKB-
euk testing dataset, it could have better sensitivity, specificity, and
F1 score than other tools when using different cutoffs instead of the
default one for prokaryotic SPs.

As pointed out above, PSPI did not perform as well on
eukaryotic SPs as on prokaryotic SPs (Table 1). This was likely
because PSPI was trained on the prokaryotic SPs. To see whether
PSPI would perform better on eukaryotic SPs if it was trained on
them, we trained another PSPI model using the UniprotKB-euk
dataset. We set aside one-third of all positives and negatives for
training the new PSPI model and set the remaining two-thirds for
testing. We found that the performance of the new PSPI model
significantly improved on the eukaryotic SPs (Table 3), with much
better performance than the three tools in every metric except the
sensitivity. The sensitivity for eukaryotic sequences (0.867) became
comparable to the other three tools, losing only to MiPepid
(0.955).While its performance on prokaryotic SPs was not as
good as the original PSPI model on prokaryotic SPs, it has
comparable AUPR and AUROC, suggesting that the eukaryotic
SPs have certain unique unknown features different from the
prokaryotic SPs.

We also compared the runtime of the original PSPI model,
csORF-Finder, MiPepid, and DeepCPP on two datasets with

3,500 and 6,500 sequences, respectively. We did not include the
time it took to build the PSPI model from scratch when wemeasured
the running time of PSPI. All tests were done on an Acer x86_
64 laptop using an Intel® Core™ i3-8130U 2.2 GHz processor with
four cores. The laptop was equipped with 16 GB of random access
memory. PSPI took roughly 450–500 s to build the model. However,
it took only 9.30 and 16.02 s to process 3,500 and 6,500 sequences,
respectively. This is better than all other tools since the best of the
three tools, MiPepid, took 18.93 s and 39 s, respectively. Through
additional testing, we also noticed that the running time of PSPI
increases linearly with respect to the number of input sequences.

3.3 Gapped (n, k)-mers enhanced the
performance of PSPI

Previous studies have highlighted the significance of gapped
motifs in SP predictions (Zhang et al., 2021). It is also suggested that
many SPs may not have tertiary structures (Neidigh et al., 2002;
Kubatova et al., 2020). We thus hypothesize that SPs are likely to
contain short linear motifs such as the (n, k)-mers (Van Roey et al.,
2014). Short linear motifs often exist in unstructured protein regions
and are usually responsible for signaling. The actual AA sequence
rather than the structure determines the function of these motifs.

FIGURE 2
The Comparison of PSPI, csORF-finder, MiPepid, and DeepCPP on three testing datasets. (A) UniprotKB-pro; (B) UniprotKB-euk; and (C)
microbiome-hs.

TABLE 3 AUROC and AUPR of the PSPI models with various (n, k)-mers.

Dataset Baseline 1mers Dimers Trimers Tetramer All

AUROC UniprotKB-pro 0.989 0.989 0.994 0.991 0.990 0.993

UniprotKB-euk 0.762 0.765 0.852 0.823 0.814 0.80

microbiome-hs 0.970 0.978 0.982 0.976 0.969 0.979

AUPR UniprotKB-pro 0.979 0.978 0.988 0.985 0.982 0.988

UniprotKB-euk 0.769 0.771 0.849 0.820 0.814 0.816

microbiome-hs 0.956 0.953 0.972 0.963 0.955 0.970
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We investigated how different gapped (n, k)-mers would affect
the performance of PSPI. Recall that the original PSPI was trained on
the pro-6318 training dataset, with each input sequence represented
by a binary vector of 2000 dimensions. To utilize gapped (n, k)-mers,
we trained PSPI on the same pro-6318 training dataset, with each
input sequence represented by a vector of 2000+9k (k > 2) or 2000 +
20k (k ≤ 2) dimensions (Material and Methods).

We studied how the AUROC and AUPR of the trained PSPI
model changed with different (n, k)-mers when it was tested on
the UniprotKB-pro and microbiome-hs datasets. We considered
n in [3,10], the typical range of short linear motifs. We only
considered k = 2 to 4, because of the limited number of SPs in the
training dataset. The AUROC and AUPR had their largest or
close-to-the-largest values for different k when n = 4. For
instance, on the UnitprotKB-pro testing dataset, when k = 2,
the PSPI model using (4, 2)-mers would give us the second largest
AUROC (0.9967) and AUPR (0.9972), which was only barely less
than the largest AUROC (0.9968) and AUPR (0.9973) when n = 5.
When k = 3, the PSPI model using (4, 3)-mers would have the
largest AUROC (0.9959) and AUPR (0.9965). We thus
fixed n = 4.

We then studied how the AUROC and AUPR of the trained
PSPI model changed with different (4, k)-mers when tested on all
three testing datasets. Our baseline model used only a 2000-
dimension binary vector representation of an input sequence. We
compared the baseline model with the PSPI models trained with the
addition of 1-mers (the frequency of 20 AA), (4, 2)-mers (dimers),
(4, 3)-mers (trimers), (4, 4)-mers (tetramer), or all of them together
(Table 3). We observed that improvements in correctly identifying
SPs on the UniprotKB-pro testing dataset were minimal. However,
there were noticeable improvements in identifying the microbiome-
hs dataset and great improvements in the UniprotKB-euk dataset.
The different degrees of improvement on different testing datasets
are likely due to the different improvement space on these datasets,
with much more space to improve on the UniprotKB-euk testing
dataset. This analysis also implied that there are subtle signals like (n,
k)-mers in SPs. In all cases, the model trained with (4, 2)-mers
always performed best (Tables 1, 3).

Due to these findings, we decided our final version of PSPI
would use a 2000-dimension binary vector and a 400-dimension
count vector to represent the AA sequence and (4, 2)-mer count
respectively.

4 Discussion

We developed PSPI, a tool utilizing LSTM to predict SPs in
prokaryotes. We demonstrated its superior performance over
existing tools in both accuracy and speed, particularly in
identifying prokaryotic SPs. We also showed that with proper
training on eukaryotic SPs, PSPI can effectively predict SPs in
eukaryotes.

Incorporating the (n, k)-mer feature to represent input
sequences improves the model performance. (n, k)-mers are
modified k-mers, which allow a flexible number of gaps inside
them. They help to represent the relative order of AA without
the exponential growth burden of the parameters that would happen
with regular k-mers. In our study, we found that the incorporation of

(4, 2)-mers improved the PSPI performance most. (4, 2)-mers may
represent undiscovered signals in SPs, which warrant further
investigation.

Notably, the distinction between identifying coding sORFs and
SPs influenced tool performance.

All tools we compared are intended to identify coding sORFs
whereas PSPI is meant to identify SPs. Because of this difference,
other tools all did better than themselves when the negatives were
microRNAs than when the negatives were permuted SPs. Certain
parameters these tools used, such as 3-mer or 4-mer counts, may not
be nearly as capable of distinguishing coding from non-coding
sORFs when the number of nucleotides in a sequence is
multiples of three. It also explains why these tools had high
accuracy in their original testing on sORFs while not having even
close accuracy here on the SP sequences.

Interestingly, we observed that the trained PSPI model using
eukaryotic SPs was still capable of identifying prokaryotic SPs
(Table 1). The eukaryote-trained model had a noticeably low
sensitivity score when identifying sequences in UniprotKB-pro
(0.793), but it still maintained a high AUROC and AUPR
(0.961 and 0.939), which implied that it was the high
threshold score rather than the model itself that caused it to
be unable to identify prokaryotic SPs. This may also indicate
common traits between prokaryotic and eukaryotic SPs albeit
with differences.

In the future, several directions may be explored to improve the
accuracy of SP identification further. First, one may want to have
better negative datasets to predict SPs. Our research showed that the
negatives greatly affect the prediction accuracy. More representative
negatives obtained in the future may produce better models. Second,
we should systematically identify short linear motifs in SPs. Our
research suggested that short linear motifs may exist in SPs.
However, the identification of these short linear motifs is still
challenging. Existing tools are often designed for a specific
genome, not a mixture of genomes. Moreover, their accuracy is
insufficient to prevent the high false positive rate in predictions.
Finally, one may study the difference between eukaryotic and
prokaryotic SPs. Our study implied the difference between them,
but had no clue what exactly the difference is. Addressing these
problems may lead to more accurate prediction of SPs and a better
understanding of their functions.
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