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One of the fundamental aspects of genomic research is the identification of
differentially expressed (DE) genes between two conditions. In the past decade,
numerous DE analysis tools have been developed, employing various
normalization methods and statistical modelling approaches. In this article, we
introduce DElite, an R package that leverages the capabilities of four state-of-
the-art DE tools: edgeR, limma, DESeq2, and dearseq. DElite returns the outputs
of the four tools with a single command line, thus providing a simplified way for
non-expert users to perform DE analysis. Furthermore, DElite provides a
statistically combined output of the four tools, and in vitro validations support
the improved performance of these combination approaches for the detection of
DE genes in small datasets. Finally, DElite offers comprehensive and well-
documented plots and tables at each stage of the analysis, thus facilitating
result interpretation. Although DElite has been designed with the intention of
being accessible to users without extensive expertise in bioinformatics or
statistics, the underlying code is open source and structured in such a way
that it can be customized by advanced users to meet their specific requirements.
DElite is freely available for download from https://gitlab.com/soc-fogg-cro-
aviano/DElite.
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1 Introduction

One of the main goals of transcriptome analysis is to identify significant differences in
gene expression patterns between groups or conditions. Differentially expressed (DE) genes
are identified based on the extent of variation in gene expression levels between two
comparison classes and the statistical significance of this variation. In RNA-sequencing
analysis, the expression level of a transcriptomic element is quantified as the number of
sequenced fragments aligned to it. Nevertheless, the precise quantification of gene
expression and the detection of DE genes are affected by several factors besides
sequencing technology, such as gene length and nucleotide composition, sequencing
depth, isoforms, overlapping transcripts and cohort size (Zhang et al., 2014). In this
regard, the performance of the different tools in pinpointing DE genes in cohorts of small
size (e.g. in vitro experiments where the comparison classes usually consist of few replicates
per condition) is poorly defined. A number of DE analysis tools have been developed based
on different mathematical and statistical approaches, either parametric or non-parametric,
with the aim of minimizing the impact of these factors. As yet, there is no consensus on the
most appropriate approach or algorithm that may yield the most reliable results (Kvam
et al., 2012).
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Ideally, the integration of different DE tools based on different
statistics could help identify the most robust results. However, this
can be challenging for users without a strong bioinformatics
background. A number of user-friendly suites incorporating
different DE tools are available, but these essentially generate
descriptive and diagnostic plots rather than performing statistical
integration of the results (Nguyen et al., 2024; Liu et al., 2023;
Teichman et al., 2023; Sangket et al., 2022; Hunt et al., 2022; Chao
et al., 2021; Helmy et al., 2021; López-Fernández et al., 2019;
Jiménez-Jacinto et al., 2019; Ge et al., 2018; Li and Andrade,
2017; Varet et al., 2016). The statistical combination of the
output of different DE tools by P-value combination methods
besides increasing statistical power by combining the summary
statistics can allow for the detection of patterns or relationships
that may not be apparent through descriptive or diagnostic plots.

Here we present DElite, a package developed in the R
environment that returns the output of four state-of-the-art DE
tools, namely edgeR (Robinson et al., 2010), limma (Ritchie et al.,
2015), DESeq2 (Love et al., 2014), and dearseq (Gauthier et al., 2020)
with a single command line. To enhance detection capability, DElite
also provides a combined output of the four tools. Six different
statistical methods for combining p-values are implemented in
DElite. Finally, DElite produces a report that includes detailed
descriptions and explanations of each step, as well as tables and
graphs of the different stages of the analysis, thus facilitating the
interpretation of the results even for non-expert users. In this work,
the different approaches of DE analysis and their integration were
cross-examined on datasets of varying sizes. Additionally, in vitro
validations were carried out to determine their performance in
detecting DE genes in small datasets.

2 Materials and methods

2.1 DElite development

TheDElite package was developed in R v.4.1.2 and also tested with
R v.3.6.3 (R Core Team, 2022).DElitewraps in a single command line
the serial execution of edgeR (Robinson et al., 2010), limma (Ritchie
et al., 2015), DESeq2 (Love et al., 2014), and dearseq (Gauthier et al.,
2020). Data import and DE analysis follow the developer guidelines of
each tool1 (Law et al., 2016). The minimum requirements for running
DElite are the metadata table containing the comparison classes and
the quantitative data in the form of a raw count matrix. The standard
DElite workflow uses default values for filtering thresholds, but these
parameters can be customised by the user.

To filter out low-expressed genes and generate filtered counts to
be process in parallel by the four tools, DElite offers three alternative
options: the rowSums function (total sum of the counts attributed to
the gene in the entire dataset), the filterByExpr function from edgeR,

or a filter based on the gene variance parameter. Filtered counts are
then normalized using the normalization method built-in in each
tool and DE analysis is conducted. edgeR, limma, and dearseq
compute normalization factors via the calcNormFactors function
applying the TMM method. Differently, DESeq2 normalize gene
counts via the “median of ratios” method. For each normalization
strategy, DElite provides a series of plots demonstrating the effect of
the filtering and normalization phases, and it also calculates the
Cook’s Distance (Cook, 1977) for each gene in each sample to
identify potential outliers. Moreover, DElite generates a number of
descriptive plots including MultiDimensional Scaling (MDS),
Principal Component Analysis (PCA), volcano plots and
heatmaps of DE genes.

Importantly, to improve detection power, DElite combines the
results from the four tools into a unified output. Specifically, DElite
re-processes the results of edgeR, limma, DESeq2, and dearseq, by
computing the mean of the fold change values returned by each tool.
In addition, it calculates a combined p-value. The user can select
among six different p-value combination methods, namely
Lancaster’s (Lancaster, 1961), Fisher’s (Mosteller and Fisher,
1948), Stouffer’s (Stouffer et al., 1949), Wilkinson’s (Wilkinson,
1951), Bonferroni-Holm’s (Holm, 1979), Tippett’s (Wishart, 1952).
DElite also returns the intersection of the genes identified as DE by
all four tools, attributing to them the least significant p-value (Max-
P). This allows users to identify the most robust observations. The
Max-P intersection value and the results from the Lancaster’s
combination method are provided by default. Based on recent
works that suggest that the Wilcoxon rank-sum test better
controls false positives rates when dealing with large datasets (Li
et al., 2022), DElite provides also the results of this test. Adjusted
p-values (padj) are then calculated with the Benjamini–Hochberg
correction (Benjamini et al., 2001). Finally, the user can define fold-
change and adjusted p-value (padj) thresholds to filter for
differentially expressed genes. A comprehensive tutorial is
included in the tool and provided as Supplementary File S1.

2.2 DElite assessment

DElite was tested on both synthetic and real-world RNA-
sequencing datasets. Synthetic datasets were generated using the
generateSyntheticData function from the compcode R package
(v.1.30.0) (Soneson, 2014) as described by Soneson et al. (Soneson
and Delorenzi, 2013). Three distinct cohorts of different size were
generated: a small cohort consisting of three samples per condition
(mimicking a common experimental scenario of in vitro
experiments); a medium-size cohort with ten samples per
condition; a large cohort made of 100 samples per condition. For
the small and medium cohorts (both covering 12,500 genes), nine
distinct types of datasets, approximating a negative binomial
distribution, were systematically generated. For each type of
dataset, ten independent replicates were produced. Each dataset
type featured a different number, magnitude, and direction of
genes expected to be scored as DE, and presence or absence of
outliers to simulate real world data (Table 1). The large synthetic
cohort (100 samples per condition in ten independent replicates)
included 20,000 genes, 10% of which were set as DE genes. DE genes
were unevenly distributed between the two comparison classes (40%

1 https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/

doc/edgeRUsersGuide.pdf; http://bioconductor.org/packages/devel/

bioc/vignettes/DESeq2/inst/doc/DESeq2.html; https://www.

bioconductor.org/packages/devel/bioc/vignettes/dearseq/inst/doc/

dearseqUserguide.html
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upregulated in one class and 60% in the other). Single and random
outliers were introduced using the compcodeR function (Soneson,
2014). Synthetic counts (available upon request) were processed in
DElite, with features filtered using the filterByExpr function with
default parameters. Differential expression was determined using
thresholds of padj ≤0.05 and an absolute log2 fold change(|log2(FC)|) ≥ 1. For each tool and combination method, a
confusion matrix was constructed and the performance was
assessed using a range of metrics including sensitivity (true
positive rate), specificity (true negative rate), F1-score (F1, the
harmonic mean of precision and sensitivity), and Matthew’s
correlation coefficient (MCC, a measure describing the agreement
between predictions and expectations).

DElitewas also run on real-world data. To this end, we used RNA-
sequencing data of cell models of Extraskeletal Myxoid
Chondrosarcoma (EMC) (project identifier PRJNA692081 at
https://www.ncbi.nlm.nih.gov/sra). EMC is a rare tumor that may
express two different fusion transcripts, either EWSR1-NR4A3 (EN)
or TAF15-NR4A3 (TN). We recently reported that the expression of
EN or TN correlates with a differential activation of axon guidance
and semaphorin genes, in both human samples and cell lines (Brenca
et al., 2021). On these grounds, we used DElite to compare the
transcriptome of EN and TN cell lines, four biological replicates
each (raw data and results are available in Supplementary File S2). A
representative set of semaphorins (SEMA3F, 3G, 4C, 4F, 6D) was
selected to validateDE analysis results by RT-qPCR (primers are listed
in Supplementary File S3). Features with fewer than 10 total counts
(rowsums ≥10) were filtered out. Differential expression was
determined with thresholds of padj ≤0.05 and an absolute
log2 fold change (|log2(FC)|) ≥ 0.6. Total RNA extraction,
reverse transcription, and RT-qPCR were as previously described
(Brenca et al., 2021). The comparative Ct (ΔΔCt) method and the
geometric average of two housekeeping genes (GAPDH and β-actin)
were used to calculate relative gene expression.

3 Results

DElite is a novel R package that allows to perform DE analysis
based on edgeR, limma, DESeq2, and dearseq tools using a single

command line. DElite output is designed to be user-friendly and
accessible even to users without a strong bioinformatics background.
All intermediate and final DElite results, including plots and tabular
files, are stored into a dedicated directory along with a final report.
Besides listing all the steps executed, the report ofDElite illustrates and
describes in detail each step and plot of the analysis.

To improve detection capability, DElite also returns the
intersection (Max-P) and a statistically combined output of the
four algorithms. Six different p-value statistical combination
methods (Lancaster’s, Fisher’s, Stouffer’s, Wilkinson’s, Bonferroni-
Holm’s, and Tippett’s) plus the Wilcoxon rank-sum test are
implemented in DElite. The performance of these combination
methods was evaluated on synthetic datasets (Supplementary Table
S1). For each tool and combination method, a confusion matrix was
constructed and a comprehensive set of metrics was computed to
compare the performance of the different approaches (Figure 1;
Supplementary Figures S1–S4). Both individual and combined
approaches tended to perform better in terms of sensitivity,
F1 score, and MCC when datasets were characterized by a
relatively even distribution of DE genes between the two classes
(for instance, in Figure 1 compare sensitivity for dataset #4, in
which of the DE genes, 50% are upregulated and 50% are
downregulated in the test class, and sensitivity for dataset #5, in
which all the DE genes are upregulated in one class). Individual tools
and DElite combined results showed comparable specificity,
irrespective of cohort size. In medium and large cohorts, individual
tools, primarily DESeq2, edgeR and limma, showed overall superior
performance in terms of sensitivity, F1 score, and MCC, whereas
combination methods performed better than dearseq. We did not
observe the claimed improvement (Li et al., 2022) of the Wilcoxon
rank-sum test over DESeq2 and edgeR when dealing with large
datasets. Noteworthy, combination approaches demonstrated a
subtle improvement in sensitivity compared to single tools,
especially edgeR and limma, in the analysis of small datasets
(Figure 1). This suggests that when dealing with cohorts of
limited size, as is often the case in in vitro experiments, a
combination approach may be more effective for the
identification of DE genes. To address this hypothesis, DElite was
run on RNA-sequencing data of cell models mimicking the two
biological variants, EN and TN, of a rare tumor (EMC) (Brenca

TABLE 1 This table lists the nine types of synthetic datasets employed to evaluate the performance of DE approaches implemented in DElite. NB, Negative
Binomial distribution.

# Generation method # Of DE genes Upregulated genes in either class [%]

1 NB Distribution 0 0

2 NB Distribution 1,250 50

3 NB Distribution 1,250 100

4 NB Distribution 4,000 50

5 NB Distribution 4,000 100

6 NB Distribution + Single Outlier 0 0

7 NB Distribution + Single Outlier 1,250 50

8 NB Distribution + Random Outliers 0 0

9 NB Distribution + Random Outliers 1,250 50
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et al., 2021). The results of this analysis are reported in Table 2. We
focused on semaphorin genes, which have been previously reported
to have a major role in the different biology of EN and TN (Brenca
et al., 2021). With the exception of dearseq, which failed to call any

of the investigated semaphorins as DE, limma, edgeR, DESeq2, and
DElite combination approaches identified a variable number of DE
semaphorins (Figure 2). To provide orthogonal validation of these
results, a set of targets, representative of three different outcomes,

FIGURE 1
Line plots illustrating the sensitivity and specificity of the different approaches, as derived from the analysis of the three in silico-generated datasets:
small (cohort size = 3), medium (cohort size = 10) and large (cohort size = 100). Datasets are color-coded, as indicated.
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were evaluated by RT-qPCR. These included SEMA4F, which was
detected as DE exclusively by DESeq2; SEMA6D, identified as DE by
both DESeq2 and all DElite combination methods; SEMA3G,
SEMA3F, and SEMA4C, which were exclusively identified as DE
by DElite combination methods (Lancaster, Fisher, Stouffer). As
illustrated in Figure 3, the differential expression of SEMA4F,
detected exclusively by DESeq2, was not confirmed by RT-qPCR.
In contrast, all the SEMAs identified by DElite combination
methods, including the one detected also by DESeq2 (SEMA6D),
were confirmed by RT-qPCR to be expressed in a statistically
different manner by the two cell models. Taken together, these
results support the notion that the integration of diverse DE
algorithms, through the use of p-value combination methods,

may increase the sensitivity in detecting DE genes, particularly
when dealing with cohorts of small size.

4 Discussion

This study presents DElite, a R package for DE analysis that offers
user-friendly functionalities, accompanied by a detailed report. Themain
advantage of DElite is that it enables the execution of DE analysis with
four state-of-the-art tools (edgeR, limma, DEseq2, and dearseq) with just
a single command line. Moreover, DElite presents the additional
functionality of combining the results of the four algorithms in a
statistically controlled manner, unlike other packages that offer the
possibility of running different DE analysis tools, but in most cases
only generate descriptive and diagnostic plots (Supplementary Table S2)
(Nguyen et al., 2024; Liu et al., 2023; Teichman et al., 2023; Sangket et al.,
2022; Hunt et al., 2022; Chao et al., 2021; Helmy et al., 2021; López-
Fernández et al., 2019; Jiménez-Jacinto et al., 2019; Ge et al., 2018; Li and
Andrade, 2017; Varet et al., 2016). To our knowledge, only
ExpressAnalystR and RCPA provide a statistically combined output
of the implemented tools. ExpressAnalystR relies on two p-value
combination methods, whilst RCPA on six. Nevertheless, unlike
DElite, which can be launched with a single command line, these
tools require multiple command inputs, do not provide a final
analysis report, and use only parametric approaches (DESeq2, edgeR,
limma). As observed on both synthetic and real-world data, DElite
statistical combination methods appear to improve sensitivity over
individual tools, particularly when dealing with small datasets.

The current version ofDElite is based on the four DE algorithms
that represent the today’s state-of-the-art for bulk RNA-sequencing
data analysis. However, we are committed to further improving it by

TABLE 2 DE analysis in TN vs. EN cell models (padj ≤0.05, |log (FC)| ≥ 0.6).
The number of upregulated (UP) and downregulated (DOWN) genes are
indicated.

UP DOWN

Individual tool dearseq 0 0

edgeR 460 426

DESeq2 813 1,571

Limma 501 388

Combination method Lancaster 2,620 4,398

Fisher 2,772 5,027

Stouffer 3,080 6,617

Tippett 589 698

Bonferroni 588 696

Wilkinson 589 696

Max-P 0 0

FIGURE 2
The heatmap depicts the DE of 11 semaphorin genes in TN vs. EN
cell models. Asterisks indicate the instances where differential
expression was |log2(FC)| ≥ 0.6 and padj ≤0.05.

FIGURE 3
Histograms depicting the normalized relative expression levels of
the indicated semaphorin genes as evaluated by RT-qPCR in EN
(black) and TN (grey) cells. Statistical significance is as follows: *, p ≤
0.05; **, p ≤ 0.01; ***, p ≤ 0.00001.
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integrating additional tools as well as pipelines for single-cell RNA-
sequencing data analysis.
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SUPPLEMENTARY FIGURE S1
Confusion matrices reporting true positives, false positives, false negatives,
and true negatives computed from the results of the different DE tools and
combination methods implemented in DElite applied to small (A) and
medium (B) size datasets. A gradient color scale, from best (green) to worst
(red), is used. Numbers within each cell represent the sum of the output of
ten independent replicates.

SUPPLEMENTARY FIGURE S2
Line plots illustrating the false negative rate and false positive rate of the
different approaches, as derived from the analysis of the three in silico-
generated datasets: small (cohort size = 3), medium (cohort size = 10) and
large (cohort size = 100). Datasets are color-coded, as indicated.

SUPPLEMENTARY FIGURE S3
Line plots illustrating the F1-score and Matthews’s Correlation Coefficient of
the different approaches, as derived from the analysis of the three in silico-
generated datasets: small (cohort size = 3), medium (cohort size = 10) and
large (cohort size = 100). Datasets are color-coded, as indicated.

SUPPLEMENTARY FIGURE S4
Line plots illustrating the accuracy and balanced accuracy of the different
approaches, as derived from the analysis of the three in silico-generated
datasets: small (cohort size = 3), medium (cohort size = 10) and large
(cohort size = 100). Datasets are color-coded, as indicated.
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