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Background:High heterogeneity is an essential feature of malignant tumors. This
study aims to reveal the drivers of hepatocellular carcinoma heterogeneity for
prognostic stratification and to guide individualized treatment.

Methods: Omics data and clinical data for two HCC cohorts were derived from
the Cancer Genome Atlas (TCGA) and the International Cancer Genome Atlas
(ICGC), respectively. CNV data and methylation data were downloaded from the
GSCA database. GSVA was used to estimate the transcriptional activity of KEGG
pathways, and consensus clustering was used to categorize the HCC samples.
The pRRophetic package was used to predict the sensitivity of samples to
anticancer drugs. TIMER, MCPcounter, quanTIseq, and TIDE algorithms were
used to assess the components of TME. LASSO and COX analyses were used to
establish a prognostic gene signature. The biological role played by genes in HCC
cells was confirmed by in vitro experiments.

Results: We classified HCC tissues into two categories based on the activity of
prognostic pathways. Among them, the transcriptional profile of cluster A HCC is
similar to that of normal tissue, dominated by cancer-suppressive metabolic
pathways, and has a better prognosis. In contrast, cluster B HCC is dominated by
high proliferative activity and has significant genetic heterogeneity. Meanwhile,
cluster B HCC is often poorly differentiated, has a high rate of serum AFP
positivity, is prone to microvascular invasion, and has shorter overall survival.
In addition, we found that mutations, copy number variations, and aberrant
methylation were also crucial drivers of the differences in heterogeneity
between the two HCC subtypes. Meanwhile, the TME of the two HCC
subtypes is also significantly different, which offers the possibility of precision
immunotherapy for HCC patients. Finally, based on the prognostic value of
molecular subtypes, we developed a gene signature that could accurately
predict patients’ OS. The riskscore quantified by the signature could evaluate
the heterogeneity of HCC and guide clinical treatment. Finally, we confirmed
through in vitro experiments that RFPL4B could promote the progression
of Huh7 cells.
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Conclusion: The molecular subtypes we identified effectively exposed the
heterogeneity of HCC, which is important for discovering new effective
therapeutic targets.
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1 Introduction

Hepatocellular carcinoma is the most common type of malignancy
of the liver, accounting for about 85%–90% of all cases (Sartorius et al.,
2015). The regions with the highest incidence andmortality of HCC are
East Asia and Africa, where chronic HBV infection and AFB1 exposure
are the major risk factors (McGlynn et al., 2015). In fact, cirrhosis from
any etiology is the strongest risk factor for HCC, which also includes
chronic alcohol consumption, diabetes, or obesity-related non-alcoholic
steatohepatitis, and infection by HCV, etc (Marrero et al., 2018).
Currently, the choice of optimal treatment strategy for HCC is
based on the tumor stage. For early-stage HCC, ablation and
surgery are the main treatment modalities. For intermediate and
advanced HCC, chemoembolization and systemic therapy are
preferred. In recent years, great breakthroughs have been made in
systemic therapy as a focus of research. In particular, the use of multi-
kinase inhibitors, anti-angiogenic drugs and immune checkpoint
inhibitors has led to improvements in the prognosis of patients with
HCC. However, HCC remains one of the worst humanmalignancies in
terms of clinical outcome, with a median OS of less than 2 years for
patients with advanced stage (Llovet et al., 2021).

The high heterogeneity, including genetic and immunological
heterogeneity, is one of the main reasons for the poor treatment
response of HCC (Kelley, 2015; Sia et al., 2017). Therefore, it is of
paramount importance to deeply characterize the tumor and
implement precise and personalized treatment. Since the 21st
century, the development of high-throughput sequencing
technologies has made it possible to analyze the transcriptome
and genome of a species in a detailed and holistic manner. At
the beginning of the 21st century, many studies of high-throughput
data from HCC samples have provided us with a better
understanding of HCC (Boyault et al., 2007; Hoshida et al., 2009;
Lee et al., 2004; Chiang et al., 2008). The later TCGA, ICGC, and
CPTAC projects were more comprehensive and in-depth studies of
genomic heterogeneity in HCC from a multi-omics perspective
(Cancer Genome Atlas Research Network, 2017; Zhang et al.,
2019; Gao et al., 2019). Unsurprisingly, many of the molecular
features of HCC have gradually been uncovered, and these features
also divide HCC into twomain subclasses: the proliferation class and
the non-proliferation class. These two subclasses of HCC differ
significantly in many ways, including aetiology, molecular
characteristics, prognosis, clinical indicators, and so on (Llovet
et al., 2021). Unfortunately, these findings have not yet been
successfully applied in clinical practice, making it still difficult to
achieve precision and personalization in the systemic treatment of
HCC. In fact, the functional pathways and molecular networks
behind HCC are complex. Previous studies mainly focused on a
few typical pathways, so there is still a long way to go to fully dissect
the heterogeneity of HCC.

In this study, we first screened for prognosis-related pathways by
GSVA and classified all HCC samples into two subclasses based on
the activity of these pathways. One of the two subclasses is
characterized by high metabolic activity similar to that of normal
samples and is referred to as the metabolic-dominant subtype, which
has a relatively better prognosis. In contrast, the gene expression
profile of another subtype differs considerably from that of non-
cancerous tissues and is mainly characterized by higher activity of
pathways such as the cell cycle and genetic information processing,
and lower activity of those metabolic pathways associated with good
prognosis. We refer to this type of HCC, which has a relatively worse
prognosis, as the proliferation-dominant subtype. Then, we
compared the clinicopathological and genomic characteristics of
the two subtypes of HCC and predicted their response to anti-cancer
drug therapy. Finally, we constructed a gene risk scoring system to
predict molecular subtypes, overall survival, and drug sensitivity.
Our findings were highly consistent across two large sample HCC
cohorts and the conclusion of this study may have potential
guidance for the personalized treatment of HCC.

2 Materials and methods

The flowchart of this study is shown in Figure 1.

2.1 Dataset sources and preprocessing

RNA-seq data, clinical data, and somatic mutation data from
two HCC cohorts were analyzed in this study. The TCGA cohort
(normal n = 50, HCC n = 374) was downloaded from the GDC Data
Portal (https://portal.gdc.cancer.gov/). The ICGC cohort (normal
n = 202, HCC n = 243) was downloaded from the ICGC Data Portal
(https://dcc.icgc.org/). TPM values were used as normalized gene
expression for subsequent analysis.

2.2 Identification of HCC subclasses

Based on the gene expression data, gene set variation analysis
was performed using the GSVA package to obtain the activity of
186 KEGG pathways for each HCC sample (Hanzelmann et al.,
2013). The annotation file (c2.cp.kegg.v7.5.1.symbols.gmt) was
downloaded from the MSigDB (http://www.gsea-msigdb.org/gsea/
downloads.jsp). The categories for each pathway were obtained from
the KEGG PATHWAY Database (https://www.kegg.jp/kegg/
pathway.html). Univariate COX regression analysis was used to
screen prognosis-related KEGG pathways. Then, consensus
clustering was performed to identify prognostic subclasses of

Frontiers in Genetics frontiersin.org02

Jin et al. 10.3389/fgene.2024.1441189

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1441189


HCC samples based on the ES of pathways with prognostic value.
The ConsensuClusterPlus package was applied to determine the
most stable clustering (Wilkerson and Hayes, 2010). Principal
component analysis (PCA) between the two subclasses was
performed using the ggplot2 package and the ES of pathways was
visualized using the pheatmap package.

2.3 Comparison of genomic features of HCC
subclasses

Somatic mutation data (MAF file) was visualized by maftools
package (Mayakonda et al., 2018). The TMB for each HCC sample
was calculated from the somatic mutation data. CNV data and
methylation data of TCGA cohort were downloaded from GSCA
database (http://bioinfo.life.hust.edu.cn/GSCA/#/) (Liu et al., 2018).
The CNV data was processed through GISTIC2.0 method (Mermel
et al., 2011). As for the methylation data, GSCA screened for the
CpG site most negatively correlated with the corresponding gene
expression for subsequent analysis. In our study, to ensure
significant differences and pathway enrichment, we considered
CpG sites with |Δ mean β-value| >0.1 and FDR < 0.05 as
methylation variable positions. Subsequently, KEGG enrichment
analysis was performed to explore the pathways enriched by genes

with differential copy number or methylation level between two
HCC subclasses.

2.4 Construction and validation of the
subclass-related prognostic
mRNA signature

First, differentially expressed mRNAs (DEmRNAs) between the
two prognostic subclasses were identified by the limma package. The
threshold for screening was set at |log2 Fold Change| > 1 and FDR <
0.05. Then, univariate Cox regression analysis was performed using
the survival package to assess the prognostic value of mRNAs and
the threshold was set at P < 0.001. Next, LASSO regression was used
to reduce the dimensionality of prognosis-related differentially
expressed mRNAs by using glmnet package. Finally, multivariable
Cox regression analysis was used to select the candidate mRNAs and
establish an optimal prognostic signature, the riskscore. The
riskscore was calculated as follows: riskscore = Σexpi * coefi. In
the TCGA cohort, we included age, gender, tumor stage and tumor
grade as confounding factors for the subsequent analysis. Therefore,
we here excluded the patients who lacked complete clinical
information on all four of above. In addition, the entire
TCGA cohort was randomly divided into training (n = 171) and

FIGURE 1
The flowchart of the present study.
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testing (n = 171) cohorts and the former was used to construct the
signature. The testing cohort and the ICGC cohort were used to
validate the signature. In each cohort, all patients were also divided
into high-risk and low-risk groups based on the median value of the
riskscores. The predictive performance of the riskscore was
evaluated by time-dependent ROC curves.

2.5 Development and validation of a
clinical nomogram

In the training cohort, the clinical characteristics and riskscore were
used to develop a nomogram using the rms package based on the
independent prognostic factors from the result of the multivariable Cox
regression analysis. The predictive performance of the nomogram was
evaluated by time-dependent ROC curves, calibration curves and
C-index in the training cohort and two validation cohorts.

2.6 Prediction of sensitivity of HCC samples
to anti-cancer drugs

In this study, we predicted the sensitivity of HCC samples to
anti-cancer drugs. The 50% inhibitory concentration (IC50) was
used as an indicator of sensitivity. Based on the gene expression data,
the estimated IC50 of cancer samples to drugs was quantified by the
pRRophetic package (Geeleher et al., 2014). The version of the data
used for the analysis was CGP2016, which contains a total of
251 anti-cancer drugs.

2.7 Assessment of the TME in HCC samples

A previous study conducted an extensive immunogenomic
analysis of over 10,000 tumor samples in the TCGA and
identified six immune subtypes span cancer tissue types
(Thorsson et al., 2019). Here, we first compared the distribution
of HCC samples in the TCGA cohort between cancer immune
subtypes and our prognostic HCC subclasses. Then, we used three
independent methods, TIMER (Li et al., 2016), MCPcounter (Becht
et al., 2016) and quanTIseq (Finotello et al., 2019), to predict the
abundance of different immune cell types in HCC tissues. The
analysis was performed with the IOBR package (Zeng et al., 2021).
Finally, we used the TIDE (Jiang et al., 2018) algorithm and
ImmuCellAI (Miao et al., 2020) algorithm to predict the response
of HCC tissues to immunotherapy.

2.8 Identification of pathways associated
with riskscore

We used gene set enrichment analysis (GSEA) (Subramanian
et al., 2005) to identify the KEGG pathways that were closely
associated with the riskscore based on the gene expression array.
The analysis was performed using GSEA software V4.2.1 (http://
www.gsea-msigdb.org/gsea/index.jsp). The annotation file (c2.cp.
kegg.v7.5.1.symbols.gmt) was used as the reference and the
permutation number was set to 1,000. Pathways with FDR < 0.

5 and normalized enrichment score (NES) > 1.5 were considered to
be significantly enriched.

2.9 Collection of the clinical specimens

The clinical specimens involved in this study were obtained from
HCC patients who underwent hepatectomy at Liaoning Cancer
Hospital. All patients had been pathologically confirmed and
diagnosed with HCC. Cancer tissues and matched paracancerous
tissue were frozen immediately in liquid nitrogen after resection and
then stored at −80°C prior to use. The study was approved by the
Ethics Committee of the Liaoning Cancer Hospital and conducted
following the Declaration of Helsinki.

2.10 Cell culture and transfection

Human HCC-derived Huh7 cell was obtained from the
American Type Culture Collection (ATCC). Cells were cultured
with DMEM (Gibco, Life Technologies, USA) with 10% FBS (Gibco,
Life Technologies, United States) and 1% Penicillin-Streptomycin at
37°C in a humidified incubator with5% CO2 atmosphere.

In vitro growing cell lines were treated with small interfering
RNA (siRNA) against RFPL4B (Sangon Biotech, China) genes and
si-NC (Sangon Biotech, China), according to the manufacturer’s
recommendations, and incubated for 24 and 48 h. The siRNA
sequences are listed in Supplementary Table S1.

2.11 Real-time quantitative PCR

Primers for human RFPL4B and GAPDH genes were purchased
from Sangon Biotech (Shanghai, China), and the sequences were
listed in Supplementary Table S2. PCR reactions were performed
with 100 ng of cDNA, using a Rotor-Gene®-Q real-time PCR cycler
(Roche LightCycler 96) and TaqMan Universal PCR Master Mix
(Applied Biosystems). Cycling conditions were: 10 min of
denaturation at 95°C and 40 cycles at 95°C for 15 s and at 60°C
for 1 min. The relative transcription levels of the genes were
calculated using the delta-delta-Ct (ΔΔCT) method (expressed as
2−ΔΔCT) and normalized to GAPDH as an endogenous control.

2.12 Cell viability analysis

To assess cell viability, Huh7 cell lines were plated at the
concentration of 2.0 × 103/well in 96-well plates, allowed to
attach and adjust for the next 12 h and grown for the additional
24 and 48 h. The viability was assessed at these three time points - 0,
24, and 48 h with the cck-8 (MCE, USA) by measuring the
absorbance at 450 nm after 1 h of incubation.

2.13 Migration and invasion assays

Transwell 1-10 × 104 cells were plated in the upper chambers
with Matrigel coated to estimate tumor invasion, and the
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chambers without Matrigel were used to assess tumor cell
migration. In a 24-well plate, the upper wells were added with
200 μL serum-free medium, and the lower wells were added with
800 μL medium containing 10% FBS. The cells were incubated for
24–48 h. After Huh7 cells were completely attached to the wall,
si-NC or si-RFPL4B was transfected with a final concentration of
100 nM. At the observation time point, the cells were cleared
from the surface of the upper chambers’membrane with a cotton
swab. The invasive/migratory cells were fixed with 4%
paraformaldehyde and stained by 0.1% crystal violet. The
quantity of cells was calculated in 5 different areas under a
microscope.

2.14 Wound healing migration assay

After Huh7 cells were completely attached, si-RFPL4B was
transfected with a final concentration of 100 nM. After the cells
were attached to the wall, the cells were scribed with a 200 μL tip, and
the horizontal and vertical lines were scribed three times in each
well. Make sure the force is uniform and the tip of the gun is
perpendicular. Wash out the detached cells with preheated PBS, add
2 mL of culture medium (0%–3% FBS) into each well and continue
to incubate. Record at 0 and 48 h respectively, and take pictures of
the scratches. ImageJ software was used to measure the area of cell
scratches, and the wound healing rate was used to reflect the cell
migration ability.

2.15 Flow cytometry

Resuspend 1 × 106 cells, centrifuge at 1,000 g for 5 min, discard
supernatant, add Annexin-V/PI conjugate to gently resuspend cells,
incubate at room temperature away from light for 20 min, followed
by placing in an ice bath. Followed by flow cytometry. Propidium
iodide has excitation (535 nm) and emission (595 nm) wavelengths
and was detected using the PE channel. Similarly, Annexin-V has
excitation (485 nm) and emission (535 nm) wavelengths, and its
fluorescence was detected using the FITC channel. The data were
analyzed using FACSDiva Version 6.1.3.

2.16 Statistical analysis

All statistical analyses were performed using R software (V4.1.2).
Comparisons between groups were presented via Wilcoxon rank-
sum test, Kruskal-Wallis test and ANOVA test. The diagnostic value
of variables was evaluated by ROC curves. The correlation between
variables was measured by Spearman correlation test and Chi-
Squared test. K-M method and log-rank test were utilized to
compare survival differences between groups of patients.
Univariate COX regression was used to assess the prognostic
value of continuous variables and multivariate COX regression
was used to perform independent prognostic analysis and to
construct prognostic models. The optimal model was identified
based on the Akaike information criterion (AIC). P-value <
0.05 was considered statistically significant unless
otherwise specified.

3 Results

3.1 HCC samples were divided into two
prognosis-related molecular subclasses

First, based on the GSVA scores, we evaluated the prognostic
value of KEGG pathways. As shown in Figure 2A, a total of 26 risk
pathways and 15 protective pathways showed prognostic value in
both the TCGA and ICGC cohorts (Supplementary Table S3). The
results in Figure 2B showed that there were consistent correlations
between these pathways in both two cohorts. Moreover, the risk
pathways were mostly related to genetic information processing and
cellular processes, while the protective pathways were mostly related
to metabolism. Thus, the molecular characteristics of HCC appeared
to be used to predict prognosis. Next, we used consensus clustering
to categorize the HCC samples based on the activity of prognosis-
related pathways. As shown in Figure 2C, all HCC samples in TCGA
cohort could be readily divided into two subclasses named cluster A
and cluster B. The results of PCA and heatmap also revealed
significant differences in transcriptional patterns between the two
subclasses (Figures 2D, E). As expected, the OS in patients with
cluster A was longer than that in patients with cluster B (Figure 2F).
And the clustering results were verified in ICGC cohort (Figures
2G–J). Interestingly, the transcriptional profile of cluster A was
similar to that of normal tissue, whereas cluster B was significantly
different from normal tissue (Supplementary Figure S1). Then, we
compared the differences in clinicopathological parameters between
two subclasses. The results showed that, compared to cluster A,
cluster B has the following characteristics: poorer tumor
differentiation, more advanced stage, younger age, more female
patients, more prone to vascular invasion and higher serum AFP
levels (Supplementary Figure S2). Finally, we conductedmultivariate
Cox regression analysis and found that our clustering could also be
used independently of clinicopathological parameters as an
independent risk factor for OS in HCC patients (Figures 2K, L).

3.2 Distinct genomic profiles existed
between two HCC subclasses

First, we compared the transcriptional expression of three most
commonly used biomarkers of HCC (MKI67, AFP, and GPC3), all
of which are thought to be associated with poor prognosis. As
expected, their expression was higher in HCC tissues than in normal
tissues and was also higher in cluster B than in cluster A (Figure 3A).
Next, we analyzed the mutation frequency of the top fifteen genes
with the highest mutation frequency in each HCC cohort. In TCGA
cohort, there are different mutational profiles between two HCC
subclasses (Supplementary Figure S3A). In detail, compared to
cluster A, cluster B had higher mutation frequencies of TP53 and
LRP1B, and lower mutation frequencies of CTNNB1, ALB and
APOB. While differences in mutation frequencies of TP53,
CTNNB1 and ALB were also present in the ICGC cohort
(Figure 3B). However, there was no significant difference in TMB
between two HCC subclasses (Supplementary Figure S3B). Then, we
analyzed the CNV data of HCC samples in TCGA cohort. As shown
in Figure 3C, cluster B had a higher frequency of CNV. In cluster B,
4,303 genes had increased amplification and deletion rates, and
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616 genes had decreased amplification and increased deletion rates.
Interestingly, we did not identify any geneswith decreased deletion rates
in cluster B compared to cluster A. We used the bonferroni method to
adjust P-value and thus screened for genes with significantly different
CNV frequencies between the two HCC subclasses and a significant
positive correlation (r > 0.3) between CNV and gene expression. As a
result, 992 genes with an increased frequency of deletion in cluster B
were identified and enrichment analysis for these genes showed that
they were closely associated with metabolic pathways. This suggested
that the low activity ofmetabolic pathways in cluster Bwas related to the
deletion in copy numbers of metabolism-related genes. However, after
adjusting the P-value, we did not identify any genes with significantly
different amplification frequencies between the two subclasses. Finally,
we used a similar approach to analyse the potential effect of DNA
methylation levels on the activity of pathways in HCC. The results in
Figures 3D–F showed that high activity of cell cycle and low activity of
metabolic pathways in cluster B might be due in part to regulation by
DNA methylation.

3.3 Differences in drug sensitivity between
two HCC subclasses

To further utilize our clustering to guide the clinical precision
medicine for HCC, we analyzed the differences in anti-cancer drug
sensitivity between the two subclasses. Here, we selected several drugs
that are commonly chosen in anti-cancer treatment, including
sorafenib, which has long been the first-line treatment option for
unresectable HCC. Depending on the therapeutic mechanism of the
drugs, they can be divided into three main categories: multi-tyrosine
kinase inhibitors (TKIs), nucleic acid metabolism inhibitors (including
5-fluorouracil, gemcitabine, bleomycin, and doxorubicin) and cell
proliferation inhibitors (including paclitaxel, vinorelbine, and
etoposide). The results in Figure 4A showed that cluster B was more
sensitive to nucleic acid metabolism inhibitors and cell proliferation
inhibitors, all of which are chemotherapeutic agents. The above
conclusion was consistent with the transcriptional profile of cluster
B. As for the TKIs, cluster B was more sensitive to sorafenib, sunitinib

FIGURE 2
Identification of HCC molecular subtypes. (A) Identification of prognosis-related pathways in HCC; (B) Correlation between the activity of
prognosis-related pathways; (C, D)Classification of HCC samples according to pathway activity; (E)Heatmap of pathway activity in eachHCC subtype; (F)
Significant differences in OS in patients with different HCC subtypes; (G–J) Validation of HCC classification in the ICGC cohort; (K, L)Molecular subtype
as a prognostic risk factor for OS in HCC patients.
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and tivozanib, while the opposite was true for erlotinib, lapatinib,
gefitinib and axitinib. Furthermore, the above differences were also
verified in the ICGC cohort (Figure 4B). Thus, our clustering has the
potential to guide the clinical precision medicine for HCC.

3.4 Differences in TME between two HCC
subclasses

Given the critical nature of TME for cancer development and
progression, we also compared the differences in TME between two
HCC subclasses. The results in Figure 5A showed a correlation between
our clustering and the cancer immune subtype. In detail, the C1 and
C2 immune subtypes with high proliferation activity and high
heterogeneity mostly belonged to cluster B, the C3 immune subtype
with low proliferation activity and low heterogeneity was mostly cluster
A, and the C4 immune subtype withmoderate proliferation activity and
moderate heterogeneity was independent of our clustering. In addition,
the results of three independent immune cell infiltration prediction
algorithms all showed differences in the abundance ofmultiple immune
cell types between two HCC subclasses (Figures 5B–D). Although the
prediction results of quanTIseq algorithm for NK cells differed from the
other two algorithms, there appeared to be a higher level of immune cell
abundance in cluster B. Also, the expression of six common immune
checkpoint genes in cluster B was higher than in cluster A (Figure 5E).

This led us to wonder if cluster B was more likely to benefit from
immune checkpoint inhibitor therapy. However, cluster B had a higher
median TIDE score, meaning it was less responsive to ICI treatment
(Figure 5F). The potential reason for this might be that immune cells in
cluster B tissues were unable to successfully infiltrate the tumor and
were thus excluded from the cancerous tissues (Figure 5G). Meanwhile,
the results of ImmuCell AI algorithm also reaffirmed that cluster B may
respond less well to ICI treatment (Figure 5H).

3.5 Our clustering correlated with previous
HCC molecular subtypes

To further assess the molecular characteristics of our clustering, we
first compared our clustering with several previously reported HCC
molecular subclasses. As shown in Figure 6A, our clustering was
correlated with several previous HCC molecular subtypes, including
HCC molecular subclass, TCGA icluster, Lee’s classification, Boyault’s
classification, Chiang’s classification, Hoshida’s classification, RPPA
cluster, miRNA cluster, hypermethylation cluster, mRNA cluster,
DNA copy cluster, and paradigm cluster. In addition, our clustering
was independent of the hypomethylation cluster.

In order to better visualize the differences in molecular
characteristics between two HCC subclasses, we then summarised
the findings of the clustering study according to the levels of

FIGURE 3
Differences in genomic characterization between two HCC subtypes. (A) Differences in marker gene expression in different HCC subtypes; (B)
Differences in the frequency of mutations in different HCC subtypes; (C)Differences in CNVs between two HCC subtypes and pathways driven by CNVs;
(D) Volcano plot of differentially methylated genes between two HCC subtypes; (E) Venn diagram of differentially methylated genes; (F) Pathways driven
by differential DNA methylation. (ns, no statistical signifcance, *P < 0.05, **P < 0.01, and ***P < 0.001).
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evidence, which were categorized as low, medium, or high based on
the type of conclusion (predictive or retrospective), significance of
differences, and generalizability. The differences in molecular
characteristics are summarised in Figure 6B.

3.6 Construction and validation of a
subtype-related prognostic mRNA signature

Given that our clustering allowed for an initial assessment of a
patient’s prognosis, we now intend to construct a scoring system that
will allow for a more accurate and personalised prediction of each
patient’s overall survival.

First, we identified a total of 1,656 DEmRNAs between the
two HCC molecular subclasses using |log2 Fold Change| >
1 and FDR < 0.05 as the threshold. The volcano plot for
differential expression analysis is shown in Figure 7A. Next,
univariate Cox regression analysis was used to screen
prognosis-related DEmRNAs with a threshold of P < 0.001.
Then, LASSO and multivariate Cox regression analysis for
prognosis-related DEmRNAs were performed to select the
optimum prognostic mRNA signature. The flowchart of the
signature construction is shown in Figure 7B. The result of
LASSO regression was shown in Figure 7C and the coefficients
of each variable screened by multivariate Cox analysis were
shown in Figure 7D. In the TCGA training set, the heatmap and

FIGURE 4
Differences in drug sensitivity between two HCC subclasses. (A) Results in the TCGA cohort; (B) Results in the ICGC cohort.
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the riskplot showed higher expression of five mRNAs and more
deaths in the high-risk group, respectively (Figure 7E). As
expected, patients in the high-risk group had significantly
worse OS than those in the low-risk group (Figure 7F). In
time-dependent ROC curves, the AUC for predicting OS was
0.829 at 1 year, 0.734 at 2 years, 0.746 at 3 years, and 0.78 at
5 years (Figure 7G). Finally, we validated the signature’s
performance in the testing cohort, the entire TGCA cohort,
and the external validation (ICGC) cohort (Figures 7H–P). The
results suggested that our signature could serve as a useful
survival predictor.

3.7 Riskscore was correlated with
clinicopathological parameters

First, we analysed the correlation between riskscore and molecular
subclasses.We found that themajority of patients in the high-risk group
were in cluster B and a small proportion in cluster A, while the opposite
was true for the low-risk group (Supplementary Figure S4A).
Furthermore, cluster B HCC did have higher riskscores than cluster
A HCC (Supplementary Figure S4B). The AUC of 0.899 in the ROC
curve meant that the riskscore was an accurate predictor of molecular
subclasses (Supplementary Figure S4C). Then, we analysed the

FIGURE 5
Differences in tumor immune microenvironment between two HCC subtypes. (A) Association of HCC classification with tumor immune subtypes;
(B–D) Differences in the abundance of various immune cell types between two HCC subtypes assessed using TIMER, MCPcounter and quanTIseq
algorithms; (E) Differences in immune checkpoint gene expression between two HCC subtypes; (F) Differences in TIDE score between two HCC
subtypes; (G) Differences in dysfunction score and exclusion score calculated by the TIDE algorithm between the two HCC subtypes; (H)
Differences in response score calculated by the ImmuCell AI algorithm between the two HCC subtypes. (ns, no statistical signifcance, *P < 0.05, **P <
0.01, and ***P < 0.001).
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correlation between riskscore and two common clinial parameters,
tumor stage and tumor grade. Unsurprisingly, HCC tissues with later
stage or higher grade had higher riskscores (Supplementary Figures S4D,
E). The above findings were also verified in the ICGC cohort
(Supplementary Figures S4F–I). Finally, we analysed the correlation
between riskscore and two marker genes for HCC, MKI67 and GPC3.
As shown in Supplementary Figure S4J, in the TCGA cohort, the
riskscore was positively correlated with MKI67 expression (r = 0.74)
and GPC3 expression (r = 0.30). The results in ICGC cohort (r = 0.80,
0.28 respectively) were consistent with TCGA cohort
(Supplementary Figure S4K).

3.8 Development and validation of a
comprehensive nomogram

To more accurately assess the prognosis of HCC patients, we
plan to integrate crucial prognostic factors to construct a nomogram
that allows us to predict the survival rates of HCC patients at
different time points. First, we included the four most commonly
used clinical characteristics (clinical grade, tumor stage, gender and
age) with the riskscore in multivariate COX analysis. In the result of
TCGA training cohort, riskscore and tumor stage were independent
prognostic factors for OS (Figure 8A). Then, we developed a clinical
nomogram based on the two variables mentioned above (Figure 8B).
Using this nomogram, we were able to calculate an total point based
on HCC patient’s clinical stage and riskscore to predict patient’s 1-
year, 3-year, and 5-year survival rates. We trisected the patients
according to their total points and compared the differences in OS
between the three groups. Unsurprisingly, patients scoring in the top
third had the worst prognosis, and those scoring in the bottom third
had the best prognosis (Figure 8C). The results of the time-
dependent ROC curves (Figure 8D) and C-index (Figure 8E)
showed that the nomogram had better predictive performance
than riskscore and clinical stage. The calibration curves showed
the predictions were almost identical to the actual observations

(Figure 8F). Finally, we verified the above conclusions in TCGA
testing cohort and ICGC cohort and the results showed that the
predictive performance of the nomogram was more robust than the
riskscore (Supplementary Figures S5A–H).

3.9 Pathways associated with riskscore and
therapeutic implications of riskscore in HCC

First, we performed GSEA to identify the KEGG pathways
associated with the riskscore. In the TCGA cohort, the top 5
(ranked by NES) pathways positively correlated with riskscore were
cell cycle, oocyte meiosis, RNA degradation, spliceosome and
pyrimidine metabolism. The top 5 pathways negatively correlated
with riskscore were primary bile acid biosynthesis, complement and
coagulation cascades, fatty acid metabolism, drug metabolism
cytochrome P450 and valine leucine and isoleucine degradation
(Figure 9A). The enrichment results of the above 10 pathways in
the ICGC cohort are shown in Figure 9B. Then, we analysed the
correlation between theGSVA score for significantly enriched pathways
and the riskscore. As shown in Figures 9C, D, in both cohorts, the
GSVA scores for these pathways were all significantly associated with
riskscore. Notably, all nine pathways, except valine leucine and
isoleucine degradation, were prognosis-related pathways. This
suggested that they may be the main factors through which
riskscore affect patient prognosis. Finally, we assessed the value of
riskscore in guiding anti-cancer drug therapy for HCC. As expected, the
riskscore did correlate with sensitivity tomultiple drugs (Figure 9E), and
this result was consistent with previous results for our clustering.

3.10 Knockdown of RFPL4B represses tumor
progression of Huh7 cells

Since RFPL4B has rarely been studied in cancer, we intend to
further explore its biological function in HCC. First, we confirmed the

FIGURE 6
Summary of the characteristics of the two HCC subtypes. (A) Association between our HCC classification and molecular subtypes documented in
previous studies; (B) Level of evidence for molecular characterization of two HCC subtypes.
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up-regulation of RFPL4B in HCC tissues (Figure 10A), and this
difference was also validated in an independent cohort from our
center (Figures 10B, C). Next, we analyzed the expression levels of
RFPL4B in different liver cancer cell lines through the CCLE database
and found that RFPL4B was expressed at the highest level in the
Huh7 cell line (Figure 10D). Combined with the existing conditions in
our laboratory, we selected the Huh7 cell line for subsequent in vitro
experiments. Then, we successfully knockdown the mRNA expression
level of RFPL4B (Figure 10E), and the CCK-8 assay revealed that the
knockdown of RFPL4B significantly inhibited cell growth (Figure 10F).
Meanwhile, transwell and wound healing assays confirmed that
knockdown of RFPL4B significantly inhibited the invasion and
migration of Huh7 cells (Figures 10G, H). Finally, flow cytometry
results showed increased cellular apoptosis rates in Huh7 cells after
knocking down RFPL4B (Figure 10I).

Taken together, the above results show that knockdown of
RFPL4B could repress tumor progression of Huh7 cells.

4 Discussion

Exposing the heterogeneity and establishing the molecular
classification of cancer tissues is the key to achieving precise and
individualised cancer treatment, and this has been demonstrated in a
variety of cancer types, one of the best examples being breast cancer
(Loibl et al., 2021). In HCC, the choice of treatment modality
remains based on clinical staging, which is the basic treatment
strategy for most solid tumors. The difference is that there are
more treatment options available for HCC and the uniqueness of
organ function has led to the inclusion of liver function in the

FIGURE 7
Construction and validation of a prognostic gene signature. (A) Volcano plot of differentially expressed genes between two HCC subtypes; (B)
Flowchart for gene signature construction; (C) Cross-validation for turning parameter selection via minimum criteria in the LASSO regression model; (D)
The coefficients of each gene screened bymultivariate Cox analysis; (E)Heatmap of gene expression in different risk groups, distribution of riskscore, and
distribution of patient mortality status; (F) Differences in OS for patients in different risk groups; (G) Time-dependent ROC curves for riskscore to
predict OS; (H–P) Validation of the riskscore in multiple cohorts.
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clinical staging criteria. However, the diversity of treatment options
indirectly reflects the difficulty of treatment and still does not change
the fact that HCC is one of the most malignant malignancies with
the highest recurrence rate and the worst prognosis (Llovet
et al., 2021).

Systemic therapy is an important way to reduce tumor recurrence
and prolong survival after surgery and is themain treatment for patients
in the progressive stage. However, the efficacy in HCC remains
unsatisfactory (Llovet et al., 2021). Some molecular features of HCC
have been previously identified (Sia et al., 2017; Boyault et al., 2007;
Hoshida et al., 2009; Lee et al., 2004; Chiang et al., 2008; Cancer Genome
Atlas Research Network, 2017; Gao et al., 2019), but these molecular
classifications are still insufficient to fully reveal the heterogeneity of
tumor tissues and thus identify effective therapeutic targets, which is an
important reason for the low efficiency of systemic therapy for HCC. In
this study, we identified two novel molecular subtypes of HCC based on
the transcriptional activity of pathways with prognostic significance.
Through a comprehensivemulti-omics analysis, we explored the drivers
of tumor heterogeneity between subtypes and assessed the potential of
this classification to guide the choice of therapeutic agents.
Furthermore, a robust scoring system was also constructed to
predict the overall survival of HCC patients.

As revealed by the GSVA, metabolism, cellular processes, and
genetic information processing may be crucial genomic features that
influence clinical outcomes in HCC patients. In cellular processes,
there is no doubt that the cell cycle is one of the most critical. As a
marker of malignancy, its significant activation also dominates the
pivotal characteristics of proliferation HCC, and becomes a topic
that has been repeatedly mentioned in recent years (Llovet et al.,
2021). Metabolic reprogramming is now also considered to be a
hallmark of cancer cells. Cancer cells must reprogram their
metabolic state at each step of cancer progression, thereby
supporting cancer growth and metastasis (Ohshima and Morii,
2021). Recent pan-cancer studies have shown that the metabolic
expression characteristics of cancer are closely related to patient
prognosis and sensitivity to drugs (Peng et al., 2018; Sinkala et al.,
2019). In HCC, a previous study based on the non-proliferation
subclass, identified twometabolic subclasses, the pericortical and the
perivenous, which expressed negatively correlated gene networks
(Desert et al., 2017). This demonstrated the relative independence of
metabolic features from the traditional classification of HCC. As for
the genetic information processing, their abnormal activation
implies a poor prognosis for HCC. These pathways are mainly
involved in transcriptional regulation, DNA replication, and DNA

FIGURE 8
Development and validation of a comprehensive nomogram. (A) Multivariate Cox analysis of riskscore and clinical factors; (B) Development of a
nomogram based on riskscore and tumor stage; (C) K-M analysis for OS of HCC patients stratified by nomogram points; (D) Time-dependent ROC curves
for 1-, 3-, and 5-year OS; (E) C-index of prognostic indicators predicting OS; (F) The calibration curves for the nomogram.
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damage repair, which are inextricably linked to the occurrence and
progression of cancer (Carbone et al., 2020; Jeggo et al., 2016;
Gaillard et al., 2015; Modrich, 1994). It is well known that the
DNA damage repair process occurs simultaneously with cell cycle
arrest. However, we found that the transcriptional expression
characteristics of both seem to be positively correlated in HCC.
Limited by how GSVA works, it is unclear what cause-and-effect
relationship is hidden behind this, and whether this pattern also
exists in other cancer types or normal tissue cells. Perhaps, it is
necessary to conduct an in-depth experimental exploration based on
this issue in the future. However, it is undeniable that two novel
HCC subtypes were identified. One subtype has a transcriptional
pattern close to that of normal hepatocytes, and a higher metabolic
pathway activity dominates a better prognosis. The other subtype
was characterized by significant enrichment in DNA damage repair
and cell cycle, and low activity of many metabolic pathways,
resulting in higher heterogeneity and poorer survival.

The genomic features of these two subclasses also provide
clues to their heterogeneity. It is currently believed that mutated
TP53 loses its original regulatory functions, which are mainly
focused on cell cycle and DNA repair (Vaddavalli and
Schumacher, 2022). Activation of the Wnt/β-catenin pathway
by mutant CTNNB1 plays a crucial role in regulating liver
metabolism (Zucman-Rossi et al., 2015; Rebouissou and
Nault, 2020). This type of HCC has a unique type of
metabolic pattern (Senni et al., 2019; Rebouissou et al., 2016;
Calderaro et al., 2017). Therefore, TP53 mutations and
CTNNB1 mutations are essential drivers of HCC
heterogeneity. In addition, we identified a higher frequency of
ALB mutations in cluster A. Although the biological significance
of this alteration is not yet clear, previous studies have speculated
its close association with metabolic reprogramming in the
progression of HCC (Cancer Genome Atlas Research
Network, 2017). Chromosome stability is also a significant

FIGURE 9
Association of riskscorewith tumor heterogeneity and drug sensitivity. (A) Top 5 pathways correlatedwith riskscore screened byGSEA; (B) Validation
of GSEA results in the ICGC cohort; (C, D) Correlation of riskscore with GSVA scores of pathways; (E) Correlation of riskscore with drug sensitivity
(estimated IC50).
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FIGURE 10
Knockdown of RFPL4B represses tumor progression of Huh7 cells. (A–C) Differences in the expression of RFPL4B in HCC tissues and non-
cancerous tissues; (D) Expression levels of RFPL4B in different liver cancer cell lines in the CCLE database; (E) qPCR confirmed the knockdown of RFPL4B
expression; (F)CCK-8 assay; (G) Transwell assay; (H)Wound healing assay; (I)Measurement of cell apoptosis by flow cytometry. (*P < 0.05, **P <0.01, and
***P < 0.001).
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difference between proliferation class and non-proliferation class
(Llovet et al., 2021). As expected, we found that cluster B had a
higher frequency of CNV. More importantly, through further
rigorous screening, we found that deletion of metabolism-related
genes leading to down-regulation of their transcript levels was
another driving factor for the absence of metabolic activity in
cluster B HCC. The third driver of HCC heterogeneity in our
study originated from the analysis of epigenetic data. The
methylation levels of genes related to cell cycle and
metabolism also indirectly regulate the transcriptional
profile of HCC.

Over 90% of HCC cases occur in the setting of chronic liver
disease. Cirrhosis from any aetiology is the most decisive risk factor
for HCC (Marrero et al., 2018; European Association for the Study of
the Liver, 2018). Major risk factors for HCC include chronic alcohol
consumption, diabetes or obesity-related NASH, and infection with
HBV or HCV. The proliferation subclass is more common in HBV-
related HCC, whereas non-proliferation subclass is more prevalent
in alcohol-related HCC and HCV-associated HCC (Llovet et al.,
2021). However, the twoHCC subclasses we identified do not appear
to differ significantly in aetiology, at least not in relation to HBV and
HCV infection and alcohol consumption. This begs the question of
whether there are other etiologies driving this heterogeneity in HCC.
Unfortunately, there is a lack of etiologic data for in-depth study. As
for clinicopathological parameters, we found that cluster B HCCwas
more poorly differentiated, with patients having higher serum AFP
levels and a higher frequency of vascular invasion. This is similar to
the traditional HCC classification (Llovet et al., 2021). We also
observed higher mRNA and protein expression levels of ki67 and
GPC3 in cluster B, which again demonstrates the distinct malignant
features of this HCC subtype.

It can be seen that our classifier is both consistent and different
from the multiple HCC classification criteria that have been
established previously. This suggests that the molecular features
of HCC are initially understood, but there are still potential drivers
of heterogeneity that remain unexplored. Fortunately, we found that
the inherent heterogeneity of HCC can be a potential target for
treatment. For example, cluster B HCC was more sensitive to
sorafenib, 5-FU, paclitaxel and doxorubicin, as we predicted.
These drugs are also the current clinical options for the
treatment of HCC. However, because sensitivity data for some
newly approved first-line therapeutic agents are not yet available,
such as lenvatinib, bevacizumab, etc., we could not assess the
response of different subclasses of HCC to these agents.
Therefore, in the future, it will be necessary to routinely apply
high-throughput techniques in clinical studies to validate the value
of our classifier for the treatment of HCC. In addition, to further
improve the clinical value of our classifier, we developed a robust
risk scoring system consisting of weighted expression levels of
5 genes (RFPL4B, SBK3, MEX3A, STMN1, and HAVCR1). With
this system, we can predict the overall survival of patients, determine
the molecular subtype of HCC tissues, and predict the response of
tissues to drug therapy. Moreover, the combination of risk score and
clinical stage further improves the predictive accuracy of
patient prognosis.

The results of the enrichment analysis showed that the riskscore
was closely related to the differential pathways between the two
HCC subclasses we identified. Therefore, it can be inferred that the

above five genes may play crucial roles in HCC. Previous studies
have shown that MEX3A and HAVCR1 were associated with
hypoxia and immunity and may serve as potential prognostic
markers for HCC (Ding et al., 2022; Hu et al., 2020; Wang et al.,
2022) More importantly, the expression of HAVCR1, a gene related
to fatty acid metabolism, can promote the proliferation, motility,
and invasion of HCC cells (Zhu et al., 2022), which is consistent with
the findings of our study. As for STMN1, as an oncogene, its role in
HCC has been progressively confirmed. Its encoded protein,
stathmin 1, was found to be upregulated in HCC and associated
with cancer cell proliferation (Li et al., 2005), polyploidy and tumor-
cell invasion (Hsieh et al., 2010). STMN1 expression was positively
correlated with the expression of cell cycle-related genes, and high
STMN1 expression also implied that HCC tissues are more poorly
differentiated and patients are prone to early recurrence and
microvascular invasion (Hsieh et al., 2010; Wang and Yang,
2021; Xiao et al., 2022; Cai et al., 2022). In addition, the role of
STMN1 in DNA damage repair has also been shown to be
prognostically relevant (Huo et al., 2022). Since STMN1 plays a
critical role in HCC, more and more studies focusing on the
molecular mechanisms behind it have been conducted. Currently,
miR-223, miR-101, KPNA2 and E2F1 have been identified as
regulators of STMN1 in HCC (Wong et al., 2008; Wang et al.,
2014; Xu et al., 2013; Zheng et al., 2015; Drucker et al., 2019; Chen
et al., 2013). On the therapeutic side, STMN1 has also demonstrated
potential as an effective therapeutic target (Wang and Yang, 2021;
Xu et al., 2013; Zheng et al., 2015; Chen et al., 2013; Wang et al.,
2009; Zhou et al., 2011; Ghasemi et al., 2013; Tseng et al., 2016).
Consistent with our prediction, gene silencing of STMN1 by RNAi
showed a distinct synergistic effect in the combined treatment with
nab-paclitaxel (Zhou et al., 2011). In addition, in breast cancer cells,
stathmin is overexpressed in the presence of p53mutation, and wild-
type p53 can repress stathmin transcription. Moreover, the
inhibition of stathmin significantly reduces the proliferation,
viability, and clonogenicity of mutant p53 cells, restores cell cycle
regulation, activates apoptosis, and recovers specific wild-type
functions in cancer cells harboring mutant p53 (Alli et al., 2007).
Thus, there has been substantial evidence to support our findings,
which leads us to believe strongly that STMN1 may be another key
driver of HCC heterogeneity. As for RFPL4B and SBK3, their roles in
HCC are not yet clear. In our study, we confirmed by in vitro
experiments that the knockdown of RFPL4B could repress tumor
progression of Huh7 cells. There is no doubt that comprehensive
studies of these five genes will significantly enhance our
understanding of HCC.

However, it is essential to note that this study has the
following limitations. First, this study only included two HCC
cohorts with a limited sample size. There is a need to expand the
sample size for further validation of the study’s findings, and the
clinical implications of this study need to be evaluated in practice.
Next, results such as immune cell abundance and drug sensitivity
are based only on algorithmic predictions, which have a low level
of evidence and require validation by in vivo and in vitro
experiments. Then, this study dealt only with the
transcriptional level. Differences in heterogeneity should be
subsequently assessed at the protein level. Finally, the effect of
RFPL4B on HCC needs to be confirmed in more types of HCC
cell lines or even in animal experiments.
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5 Conclusion

We identified two heterogeneous subtypes of HCC, the
metabolism-dominant and proliferation-dominant types. These
two HCC subtypes have different clinical features, genomic
drivers, therapeutic susceptibility and immune
microenvironment. Meanwhile, we constructed a gene
signature to predict molecular subtypes, overall survival, and
drug sensitivity. Our findings are beneficial in exposing the
causes of HCC heterogeneity and exploring new
therapeutic targets.
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