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Introduction: With the advancement of high-throughput studies, an increasing
wealth of high-dimensional multi-omics data is being collected from the same
patient cohort. However, leveraging this multi-omics data to predict survival
outcomes poses a significant challenge due to its complex structure.

Methods: In this article, we present a novel approach, the Adaptive Sparse Multi-
Block Partial Least Squares (asmbPLS) Regression model, which introduces a
dynamic assignment of penalty factors to distinct blocks within various PLS
components, facilitating effective feature selection and prediction.

Results: We compared the proposed method with several state-of-the-art
algorithms encompassing prediction performance, feature selection and
computation efficiency. We conducted comprehensive evaluations using both
simulated data with various scenarios and a real dataset from the melanoma
patients to validate the effectiveness and efficiency of the asmbPLS method.
Additionally, we applied the lung squamous cell carcinoma (LUSC) dataset from
The Cancer Genome Atlas (TCGA) to further assess the feature selection
capability of asmbPLS.

Discussion: The inherent nature of asmbPLS imparts it with higher sensitivity in
feature selection compared to other methods. Furthermore, an R package called
asmbPLS implementing this method is made publicly available.
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1 Introduction

The high-throughput technology has experienced a tremendous improvement, yielding
the rapid and cost-effective generation of extensive omics data. This extensive data spans
multiple platforms, such as genomics, transcriptomics, epigenomics, proteomics,
microbiomics, and metabolomics (Hasin et al., 2017). This collectively enriches our
understanding of the molecular mechanism behind different diseases. For instance,
molecular phenotyping utilizing genomics and epigenomics data is poised to facilitate
timely and accurate disease diagnosis and prediction, thereby enhancing the accuracy of
prognostic assessments and the discernment of disease progression (Bell, 2004). Numerous
studies have consistently demonstrated that genomic risks play a significant role in the
development and progression and finally the patient survival of various types of diseases.
Genomic factors can contribute substantially to a range of health conditions including but
not limited to Alzheimer’s disease (Kamboh, 2022), congenital heart disease (Morton et al.,
2022), and even certain types of cancers (Duijf et al., 2019; Wadowska et al., 2020; Haffner
et al., 2021). In addition, microbiome-derived metabolites have been identified as
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biomarkers contributing to a wide range of diseases such as
inflammatory bowel disease (Wlodarska et al., 2017), colorectal
cancer (Louis et al., 2014), type II diabetes (Patterson et al.,
2016), asthma (Lee-Sarwar et al., 2020; Chen and Blaser, 2007),
as well as obesity (Ejtahed et al., 2020).

In the past decade, many bioinformatics tools have been
developed to enable the analysis of individual omics data
(Blekherman et al., 2011; Roumpeka et al., 2017; Calderón-
González et al., 2016). As high-throughput studies advance,
acquiring multiple types of omics data for the same patient
becomes achievable. Hence, researchers have increasingly shifted
their focus from single-omics analysis to multi-omics analysis. In
multi-omics analysis, datasets are organized into blocks, with each
block representing variables from a particular type of omics data
observed across a cohort of individuals. Usually, multi-omics data
has several important characteristics: 1) high dimensionality: the
number of features typically vastly outnumbers the sample size; 2)
sparsity: some features are detectable only in a minority of samples;
3) Collinearity: the features across different blocks are not
independent. In addition, variables from different blocks can
have different numbers of features and their structures.
Therefore, integrating diverse omics datasets from various
platforms and technologies while ensuring data quality is a
complex yet an essential task. Integrating multi-omics data is
particularly significant, as each type of omics data can offer
distinct insights, allowing for a comprehensive and systematic
understanding of the complex relationship between the omics
data and the host. Moreover, leveraging multi-omics data
provides an opportunity to develop prediction models with high
accuracy, empowering us to make informed predictions about
various phenotypic outcomes, such as patients’ survival time
(Yang et al., 2022; Ribeiro et al., 2022; Lin et al., 2022).
Predicting patient survival using multi-omics data can greatly aid
healthcare professionals in crafting precise treatment strategies, thus
becoming a cornerstone of personalized medicine. By pinpointing
patients at higher risk of unfavorable outcomes, clinicians can
customize interventions and therapies to enhance patient survival
rates. This tailored approach maximizes the efficacy of treatments,
ultimately improving patient care and prognosis. Furthermore,
when dealing with a substantial number of features in each
block, deciphering their collective contribution to the process can
prove challenging. Thus, performing feature selection and
dimension reduction becomes essential to pinpoint the most
pertinent and predictive features within each block. This
approach streamlines analysis, enhancing the interpretability and
effectiveness of multi-omics data in predicting outcomes accurately.

To date, there exists a wealth of literature for dimension
reduction and feature selection methods and some of them were
successfully applied to this context. For example, suitable feature
selection methods include Sparse Group Lasso (SGL) (Simon et al.,
2013), which incorporates a convex combination of the standard
Lasso penalty and the group-Lasso penalty (Yuan and Lin, 2006).
Integrative Lasso with Penalty Factors (IPF-Lasso), an extension of
standard Lasso, accounts for group structure by assigning different
penalty factors to different blocks for feature selection and
prediction (Boulesteix et al., 2017). Priority-Lasso (Klau et al.,
2018) is another Lasso-based method that incorporates different
groups of variables by defining a priority order for them.

Additionally, Random Forest (Breiman, 2001), a powerful
prediction algorithm, is known for capturing complex
dependency patterns between predictors and outcome. An
extension of Random Forest, called Block Forest (Hornung and
Wright, 2019), has been developed for the consideration of the
group structure in the data.

On the other hand, Partial least squares (PLS) regression (Geladi
and Kowalski, 1986) has been used for dimension reduction and
prediction using high-dimensional data. Unlike traditional linear
regression, PLS is a statistical technique crafted to address scenarios
featuring high-dimensional and correlated predictors within
regression models. It accomplishes this by constructing latent
variables, which are linear combinations of the original
predictors. These latent variables aim to capture the maximum
covariances between the predictors and the response variable,
thus facilitating more effective modeling despite high
dimensionality and correlation among predictors. Multi-block
Partial Least Squares (mbPLS) (Wangen and Kowalski, 1989;
Wold, 1987), initially developed for chemical systems, can be
adapted for outcome prediction using multi-omics data due to
the shared group structure between the multi-omics data.
Furthermore, sparse mbPLS (smbPLS) (Li et al., 2012) has been
developed to apply in the bioinformatics field due to the sparse
nature of the data. However, smbPLS algorithm utilizes fixed penalty
factors for different blocks regardless of the PLS components. This
may not guarantee the optimal prediction performance. In addition,
an inappropriate penalty factor may lead to the exclusion of
important features from some specific blocks. This limitation
hampers both biomarker identification and outcome prediction.
Driven by these considerations, we introduce a novel multi-omics
prediction model called adaptive sparse multi-block partial least
squares (asmbPLS). This innovative framework involves the
assignment of distinct penalty factors to the blocks across
different PLS components by utilizing the specific quantile of
feature weights as the penalty factor. This approach guarantees
consistent access to insights regarding the relative significance of
features within each respective block. The objective of the proposed
method is to identify the subset of features most strongly associated
with the outcome and subsequently predict the outcome using these
selected features. Moreover, employing the quantile of feature
weights as the penalty factor will enhance the interpretability of
the results, making them more straightforward to understand and
apply in practice. Several methodologies have emerged for
predicting phenotypic features like patient survival and the onset
time of severe illness. Many of these methods leverage the Cox
model (Team RC, 2013; Chung and Kang, 2019; Spencer et al.,
2021), whose efficacy hinges on the proportional hazard
assumption. When the proportional hazard assumption is
breached, an alternative to the Cox model is the accelerated
failure time (AFT) model. In the AFT model, if T represents the
time to a specific event, one can fit a linear regression to model a
transformed variable Y � log(T) on a set of covariates X1, . . . , Xp.
Where p≫ n. In this paper, we implemented asmbPLS regression
method to predict the log-transformed survival time. To address
censoring in the survival outcome, we utilized mean imputation
(Datta, 2005) for the right-censored data. The validity of this method
is confirmed through rigorous testing on both simulated and real
data. The study’s framework is illustrated in Figure 1. Importantly,
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this method can be seamlessly applied to various types of omics data,
with preprocessing tailored to the specific characteristics of each
data type such as normalization. It’s worth highlighting that the
outcome variable employed in this method is not restricted solely to
survival time; rather, it can accommodate any continuous outcome
variable. An R package named asmbPLS, which implements this
method, has been made publicly accessible on GitHub (https://
github.com/RunzhiZ/asmbPLS).

2 Materials and methods

2.1 Right censored data imputation

In survival analysis, censoring occurs when the time-to-event
information for a subject is incomplete. Among various types of
censoring, right-censoring is the most prevalent. For instance, right-
censoring occurs when a patient is lost to follow-up before
experiencing the event of interest. Let Tt

i and Tc
i denote the true

survival time and censored time for i th subject (i = 1, . . ., n),
respectively. Then the observed survival time and the event indicator
are defined as Ti � min(Tt

i , T
c
i ) and δi � I(Tt

i ≤Tc
i ), respectively.

And observed data for i th subject can be presented by (Ti, δi), where
subjects with δi � 1 and with δi � 0 are called observed and
unobserved subjects, respectively. In the AFT model, we consider
fitting asmbPLS regression model of Yi � log(Ti) on X1

i1, . . . , X
b
ip,

whereXb
ip is the pth feature of a specific omics data in block b for ith

sample. Since the Tt
i are not available for the individuals with δi � 0,

the general prediction method will not apply. Furthermore,
disregarding censored subjects can introduce bias into
predictions, while reducing the sample size leads to a loss of
statistical power. To handle this, we propose to replace Yi by ~Yi

such that (i) it has approximately the same mean function as Yi and
(ii) it is computable from the observed data. In this study, mean
imputation (Datta, 2005) is used to this end.

Under this scheme, we keep observed Yi intact but replace
unobserved Yi by its expected value Y*

i given that the true survival
time Tt

i was larger than the censoring time Tc
i . Let S(t) denotes the

survival function, the Y*
i can be estimated from the Kaplan-Meier

curve of the survival function: Y*
i �

∑
t>Tc

i

log(t)ΔŜ(t)

Ŝ(Tc
i )

, where Ŝ is the

Kaplan-Meier estimator of the survival time, and ΔŜ(t) is the jump

size of Ŝ at time t. Note that we need to treat the largest observation
as a true failure for this calculation since it is necessary to make a tail
correction if the largest observation tmax corresponds to a censored

event. In summary, we let ~Yi � Yi for observed survival time, and
~Yi � Y*

i for unobserved survival time for the ith sample instead.

2.2 Adaptive sparse multi-block
PLS algorithm

In mbPLS regression, the input matrix including B blocks
(different omics data blocks) X � [X1, . . . ,Xb, . . . ,XB] and block
Y be the predictor matrix and outcome vector respectively on the
same n samples. mbPLS regression reduces the dimension of each
block by forming partial least squares components and regressing on
those components. For the jth PLS (j = 1, 2, . . .) component,
dimension reduction is implemented by taking a linear
combination of the variables to obtain the block score tbj � Xbωb

j

(mXb ) 12
(b � 1, . . . , B) for each block, whereωb

j represents the weights for the
Xb block variables, indicating howmuch each variable contributes to
the construction of the latent variable tbj, which is obtained via the
algorithm. Here, mb is the number of variables in Xb block used for
block scaling. After calculating tbj for each block, we combine all
block scores in a new matrix Tj � [t1j . . . tbj . . . tBj ], which includes
information from different blocks. Then, dimension reduction is
conducted again by taking a linear combination of the different
block scores to obtain the super score tsuperj � Tjω

super
j , where ωsuper

j

FIGURE 1
The overview of the study. (A) Both simulated and real data are used; (B) Cross validation is used for parameter tuning for different models. asmbPLS
models and other competitive models with the optimal parameters settings are fitted; (C) Results comparison in terms of feature selection, prediction,
and computation efficiency.
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is obtained from algorithm and represents the weights for each
block. Similarly, uj is a summary vector of Y , i.e. uj � Yqj (qj being
the Y weight for jth PLS component). The goal of the mbPLS
algorithm is to find the parameters that maximize the covariance
between two summary vectors, i.e. tsuperj and uj. Therefore, the
problem is formally expressed as follows:

max cov(tsuperj , uj) with tbj � Xbωb
j

(mb) 12
,

Tj � [t1j . . . tbj . . . tBj ], tsuperj � Tjω
super
j , and uj � Yqj, subject to

||ωb
j || � ||ωsuper

j || � 1.
Once all the parameters are estimated for the first PLS

component, X and Y are deflated and then the deflated X and Y
are used for the calculation of the second PLS component and so on.

Furthermore, smbPLS (Li et al., 2012), a sparse version of the
mbPLS, can be achieved by adding an L1 penalty on each weight
vector ωb

j . In other words, the feature selection procedure is
implemented on each ωb

j , and the weights of unimportant
variables will shrink to zero. In smbPLS algorithm, penalty factor
λb is fixed for all the PLS components in block b.

Unlike smbPLS, asmbPLS allows different penalty factors λbj for
j th PLS component of block b by selecting the specific quantile of
block weights as the penalty factor. Specifically, each step of the
asmbPLS algorithm is listed in Table 1. In this algorithm, quantile is
the function to obtain the corresponding quantile of the absolute
weight, and sparse is the soft thresholding function sparse(x, λ) �
sign(x)(|x| − λ)+ that is used to optimize the objective function with
lasso penalties. Using the quantile function, we can always find the
reasonable λbj that helps us to retain the most relevant variables in a

data driven manner. By integrating these two functions, our
objective is to determine the optimal quantile for each Partial
Least Squares (PLS) component within each block, thereby
maximizing the predictive performance of the proposed method.
This approach not only enhances prediction accuracy but also
simplifies the interpretation of the retained variables. After the
model fitting, the parameters ωb

j , ω
super
j , and qj could be saved

for the prediction when we have the new dataXnew . Specifically,ωb
j is

used to calculate the corresponding tbj for each block in the new data.
And then ωsuper

j is used for calculating the tsuperj with these calculated
tbj . After that, tsuperj qj

⊤ is calculated, which could be used as our
prediction based on the first PLS component. If we want to use more
PLS components, pbj is calculated for obtaining the deflated Xnew ,
which could be further used for calculating tsuperj qj

⊤ for the second
PLS component, and so on. After the tsuperj qj

⊤ for all the PLS
components are calculated, they can be combined for obtaining
the predicted Y . Note that the same mean and standard deviation
derived from our data scaling onX and Y will also be used for scaling
the new X and predicting Y .

2.3 Parameter tuning and model selection

We let the block size B = 2 and the number of PLS components =
5 here for instance. The cross validation (CV) is used to tune the
quantile combination for different PLS components in different
blocks. Tuning these parameters is equivalent to choosing the
“degree of sparsity”, i.e. the number of non-zero weights for each
PLS component in each block. The chosen quantile combination is
the one resulted the best prediction. The CV procedure is presented
in Table 2.

The selection of folds for the CV, K and the number of quantile
combinations will largely impact the computational efficiency. We
choose K to be 5 in our study, which is large enough for parameter
tuning. The selection of the quantiles for each block should be based
on prior knowledge of the corresponding omics data. For example,
assuming only a small proportion of features are relevant, then a
higher quantile should be considered to retain fewer features.

With the information from the CV, we can determine the
number of PLS components used for prediction also. Usually, the
optimal number of PLS components is the one that corresponds to
the lowest mean squared error (MSE) in CV. However, due to the
over-fitting issue, we allow the selection of fewer components if the
decrease of MSE is minimal when one more component is included.
The strategy for selecting the number of PLS components is
summarized: 1) Let the initial number of components be comp =
1; 2) Check whether including one more component decreases the
MSE by 5%, i.e.MSEcomp+1 ≤MSEcomp × 0.95; 3) If so, then we go to
the next PLS component (comp) i.e. comp = comp + 1 and back to
step 2), otherwise, let comp be the selected number of components.

2.4 Technicalities and implementation

All the implementations were conducted using R 4.1.0 (Team
RC, 2013) in the “HiperGator 3.0” high-performance computing
cluster, which includes 70,320 cores with 8 GB of RAM on average
for each core, at the University of Florida. We compared the

TABLE 1 Pseudocode for the asmbPLS algorithm.

(1) Transform, center, and scale data X � [X1 , . . . , Xb, . . . , XB] and Y.

(2) For jth PLS component (j = 1, 2, . . .),

2.1 Take uj � Y

2.2 Loop until convergency of tsuperj

2.2.1 ωb
j � Xb⊤uj

ujTuj
(obtain Xb block variable weight)

2.2.2 λbj � quantile(|ωb
j |, percent) (obtain penalty factor for block b)

2.2.3 ωb
j � sparse(ωb

j , λ
b
j) (variable selection based on soft thresholding function)

2.2.4 Normalize ωb
j to ||ωb

j || � 1 (block variable weight normalization)

2.2.5 tbj �
Xbωb

j

(mb ) 12
(obtain Xb block score)

2.2.6 Tj � [t1j , . . . , tbj , . . . , tBj ] (combine all scores in Tj)

2.2.7 ωsuper
j � Tj

⊤uj
ujTuj

(obtain X super weight)

2.2.8 Normalize ωsuper
j to ||ωsuper

j || = 1 (super weight normalization)

2.2.9 tsuperj � Tjω
super
j

ωsuper
j ⊤ωsuper

j
(obtain X super score)

2.2.10 qj � Y⊤ tsuperj

tsuperj ⊤tsuperj

(obtain Y weight)

2.2.11 uj � Yqj
qj⊤qj

(obtain Y score)

End

2.3 Deflation

2.3.1 pb
j �

Xb⊤tsuperj

tsuperj ⊤tsuperj

2.3.2 Xb � Xb − tsuperj pb
j⊤

2.3.3 Y � Y − tsuperj qj⊤
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proposed method, i.e. asmbPLS, with mbPLS, Block Forest, IPF-
Lasso, Sparse Group Lasso, and Priority-Lasso using both the
simulated and the real data. The choice of parameters for each
method followed the suggestion from the corresponding R package
tutorial. All these methods make use of group structure information
and enable us to do the prediction.

2.5 Data Source

The R codes for the simulation study have been made publicly
accessible on https://github.com/RunzhiZ/Runzhi_Susmita_
asmbPLS_2024. The simulated ovarian cancer dataset was
generated with OmicsSIMLA (Chung and Kang, 2019) (https://
omicssimla.sourceforge.io/simuomicsTCGA.html), which includes
RNA-seq data and proteomics data. The melanoma dataset was
obtained from (Spencer et al., 2021) (https://github.com/mda-
primetr/Spencer_et_al_2021), which includes progression-free
survival interval/status, clinical covariates, and various types of
omics data such as microbiome data and proteomics data for
melanoma patients. The lung squamous cell carcinoma (LUSC)
from The Cancer Genome Atlas (TCGA) was obtained via the
Genomic Data Commons (GDC) data portal (https://portal.gdc.
cancer.gov/). Gene and miRNA expression data, along with survival
data, were downloaded and pre-processed using R package
TCGAbiolinks (Colaprico et al., 2016).

3 Results

3.1 Simulation study 1

3.1.1 Simulation strategies
We simulated n samples, q bacterial taxa and p metabolites to

mimic the real microbiome and metabolome data, where the two

types of omics data were simulated to be correlated. Subsequently,
we generated censored survival time based on the simulated
microbiome and metabolome data.

3.1.1.1 Microbiome data
We simulated the microbiome data using the Dirichlet-

multinomial (DM) distribution (Chen and Li, 2013) to accurately
capture the over-dispersed taxon counts. We denote Q �
(Q1, Q2, . . . , Qq) as the observed counts for q bacterial taxa. The
most common model for count data is the multinomial model,
whose probability function is given as:

fM Q1, Q2, . . . , Qq;ϕ( ) � Q+
Q

( )∏q
j�1

ϕ
yj
j

where Q+ � ∑q
j�1

Qj is the total taxon count, which is determined by
the sequencing depth, and ϕ � (ϕ1, ϕ2, . . . ,ϕq) are the underlying
taxon proportions with ∑ ϕj � 1. The sequencing depth-induced
variability can lead to different Q+ in different samples.

The DM distribution assumes that proportions ϕ used in the
multinomial model come from the Dirichlet distribution
(Mosimann, 1962) and the probability function is given by:

fD ϕ1, ϕ2, . . . , ϕq; γ( ) � Γ γ+( )
∏q

j�1Γ γj( )∏
q

j�1
ϕ
γj−1
j

where γ � (γ1, γ2, . . . , γq) are positive parameters, generating from
the uniform distribution, γ+ � ∑q

j�1
γj and Γ(·) is the Gamma function.

Consequently, the DM distribution is the result of a compound
multinomial distribution with weights from the Dirichlet
distribution:

fDM Q1, Q2, . . . , Qq; γ( ) � ∫fM Q1, Q2, . . . , Qq;ϕ( )fD ϕ; γ( )dϕ
In summary, to generate microbiome data, we first generated

γ ~ uniform(0, 1). γ was then used for generating ϕ, and the

TABLE 2 CV procedure for the asmbPLS algorithm.

(1) Randomly place the samples into K roughly equal groups. And we assume that the ratios of observed samples to unobserved samples are the same in all the groups. Since we
are only interested in the observed samples, the observed samples in each group will be serving as the validation set in turn with the samples from all the other groups serving as the
training set.

(2) For k � 1, . . . , K, for convenience, the same set of combinations of degree of sparsity, i.e. quantileblock1 � qblock11 , .., qblock1a{ } and quantileblock1 � qblock21 , . . . , qblock2b{ } are used
for different PLS components.

For the number of used PLS components l (l starts from 1),

a) Fit asmbPLS models using the first l PLS component(s) with different quantile combinations used for the lth PLS component based on the training set.

b) Predict the validation set using fitted asmbPLS models.

c) Calculate the (scaled) K-fold mean squared error (MSE) for each combination:

MSEK−fold,obs � 1
σ2K ∑K

k�1
1
nk
∑nk
i�1
(Ŷk,i − Yk,i)2

where nk is the number of samples in thekth validation set, and σ2 (details can be found in the section “Simulation Strategies”) is used for scaling.

d) Choose the combination with the lowest MSE for the lth PLS component.

e) Data deflation for X and Y, let l = l +1.

f) Repeat steps (a) – (e) until we obtain the combinations for all the 5 PLS components. For step (a), the combination with the lowest MSE obtained from the previous steps will be
used for the first (l - 1)th PLS component(s).

Frontiers in Genetics frontiersin.org05

Zhang and Datta 10.3389/fgene.2024.1444054

https://github.com/RunzhiZ/Runzhi_Susmita_asmbPLS_2024
https://github.com/RunzhiZ/Runzhi_Susmita_asmbPLS_2024
https://omicssimla.sourceforge.io/simuomicsTCGA.html
https://omicssimla.sourceforge.io/simuomicsTCGA.html
https://github.com/mda-primetr/Spencer_et_al_2021
https://github.com/mda-primetr/Spencer_et_al_2021
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1444054


generated ϕ with theQ+ ~ uniform(m, 2m) can be used to generate
taxon counts for each sample, where m was used to control the
abundance of microbial features in a specific sample. Therefore, a
n × q microbiome data matrix Xmicro.count was generated with rows
indicate the samples and columns indicate the microbial taxa.
Microbial relative abundance Xmicro.relative abundance was then
calculated from the count data, which will be used in the
downstream simulation.

3.1.1.2 Metabolome data
Once microbiome data was generated, it can be used to simulate

the metabolome data due to the associations between microbiome
data and metabolome data. Notice that Xmicro.relative abundance should
be scaled first to control the microbial effect. Let a n × p matrix
Xmeta be the simulated metabolome data, letXmeta

ik be the intensity of
k th metabolite in i th sample, we assumed that the metabolite level
of Xmeta

ik was consisted of three parts:

Xmeta
ik � μk + Eik + ϵik � μk + Xmicro.scale

i βk + ϵik

where μk denoted the average intensity of metabolite k, Eik �
Xmicro.scale
i βk was the microbial effect for metabolite k in i th sample

and ϵik was the random error term. Here, we have taken
μk ~ uniform(4, 8) and ϵik ~ N(0, 1). β(e) � (β1, . . . , βk , . . . , βp)
was a q × p matrix to indicate the effect of q microbial taxa on p
metabolites. Among the q × p pairs in the β(e) matrix, e pairs were
selected randomly to have non-zero values with all the other elements in
β(e) to equal to zero. And among these e pairs, half of the pairs were
randomly selected to have positive values with another half to have
negative values. In other words, |β(e)non zero| ~ uniform(A, 2× A),
different values of A indicate different scales of association between
microbiome and metabolome data.

3.1.1.3 Censored survival time
Following the generation of the metabolome data, a similar

scaling process was applied. Subsequently, the scaled metabolome
data was integrated with the scaled microbiome data to facilitate the
generation of survival time. Under the AFT framework, we assumed
that both microbiome data and metabolome data collectively impact
the actual survival time:

Yt � log Tt( ) � baseline + Xmicro.scaleβmicro + Xmeta.scaleβmeta + 

where baseline � log(500) indicated the logarithm of the
baseline survival time for subjects, βmicro and βmeta were the
coefficients to decide the associations between the features and
the survival time,  was the random error term. Two types of
error distributions were considered here: 1) Normal distribution,
indicating the lognormal distribution for survival time; 2)
logarithms of Weibull distribution, resulting in the Weibull
distribution for survival time. Specifically, in both cases we set
 � �

r
√

σZ, where Z is either N(0, 1) or [log Weibull(5, 1){ } −
E log Weibull(5, 1){ }]/ �������������������

Var[log Weibull(5, 1){ }]√
, σ2 � βTΣXβ with

β � (βmicroT , βmetaT )T and r was the noise to signal ratio. In
addition, to simulate the censored time, the censoring variable
c was taken to be

�
r

√
σN(−Φ−1(censoring rate), 1), where Φ was

the cumulative distribution function of the standard normal
distribution. It was added to the Yt to form the Yc if c≤ 0. For
c > 0, the true survival time Yt will be used.

For β mentioned above, we considered six settings that we
believe cover a broad range of situations. Details are listed in
Table 3. In setting (1), only a limited number of relevant features
exist within each block. In setting (2), for both blocks, the
coefficients are fast decaying with only a small proportion of
features contributing to the outcome. Setting (3) is like setting
(2) but with a slower decay. Setting (4) corresponds to the
situation where all the features have equal contributions to
the outcome. In setting (5), there are different numbers of
relevant features in different blocks (number of relevant
taxa > number of relevant metabolites). Setting (6) is like
setting (5) but with the number of relevant taxa < the
number of relevant metabolites. We normalized the vector of
β in each case to control the effect of features on survival and for
computational stability.

3.1.2 Simulation results
A variety of simulation settings were considered to account for

different scenarios. In low dimensional setting, q and pwere taken to
be 200, the other parameter values used in this simulation were:m =
20,000 to control the abundance of microbial features in samples, e =
200 to indicate the number of randomly selected non-zero effects
between microbial features and metabolites, A = 0.5 or 2 to denote
moderate or high correlation between microbiome and metabolome
data, r = 0, 0.1, 0.2, 0.5, 1 to indicate different scales of noise and
censoring rate (cr) = 0.1, 0.3, 0.5, 0.7 to simulate different censoring
rates in survival analysis. Sample size n was taken to be 100, and an
additional ntest = 100 samples were generated using the same design
parameters to serve as the test set. For each scenario, we simulated
100 datasets. We also conducted simulations in mixed dimension
(q = 1,000 and p = 200, m = 100,000, e = 500) and high dimension
(q = p = 1,000, m = 100,000, e = 1,200) settings, the results are
present below.

Since the microbial data were presented in the form of relative
abundance, we imputed the zero value with the small pseudo value
0.5 and then implemented centered log-ratio transformation
(Aitchison, 1982) to the relative data. We conducted the same
procedure for the real data.

The number of PLS components used for asmbPLS and mbPLS
were both taken to be 3 in the simulation study. For asmbPLS, the
quantile combinations used for cross validation (CV) in low
dimension setting were quantileblock1 � quantileblock2 = {0.7, 0.8,
0.9, 0.95, 0.975}; the quantile combinations used for CV in the
mixed dimension setting were quantileblock1 = 0.9, 0.95, 0.975, 0.99,
0.995} and quantileblock2 = {0.7, 0.8, 0.9, 0.95, 0.975}; and the quantile
combinations used for CV in high dimension setting were
quantileblock1 = quantileblock2 = {0.9, 0.95, 0.975, 0.99, 0.995}. For
IPF-Lasso, 9 different penalty ratios were used, i.e. {1:1, 2:1, 1:2, 3:1,
1:3, 4:1, 1:4, 5:1, 1:5}, which indicates different penalty factors, used
for two predictor blocks.

3.1.2.1 Prediction performance
The performances of prediction of all the methods were

measured in terms of the scaled MS Ep using the test set:

MSEp � 1
ntestσ2

∑ntest
i�1

Ŷnew,i − Ynew,i( )2
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Figure 2 displays the results for low dimension setting with
lognormal distributed survival time and A = 2. Additionally, we
implemented t-test to compare the MSEp of asmbPLS with other

methods across each scenario, using a significance level of 0.05 as the
criterion. The results of Priority-Lasso were not included here due to
its much worse performance. For cr = 0.1 (Figure 2A), asmbPLS

TABLE 3 Different settings for β. j and k are the indices for microbial taxa and metabolites, respectively.

Setting
for β � (βmicroT

βmetaT )T
βmicro
j (j = 1,. . ., p) βmeta

k (k = 1,. . ., q)

(1) for 1≤ j≤ 5, βmicro
j � j, for j > 5, βmicro

j � 0 for 1≤ k ≤ 5, βmeta
k � k, for k > 5, βmeta

k � 0

(2) exp(−j) exp(−k)

(3) 1
j

1
k

(4) 1 1

(5) for 1≤ j≤ 10, βmicro
j � jmod 5 if jmod 5 < 5, and = 5 otherwise,

for j > 10, βmicro
j � 0

for 1≤ k≤ 5, βmeta
k � k, for k > 5, βmeta

k � 0

(6) for 1≤ j≤ 5, βmicro
j � j, for j > 5, βmicro

j � 0 for 1≤ k≤ 10, βmeta
k � kmod 5 if kmod 5 < 5, and = 5 otherwise,

for k > 10, βmeta
k � 0

FIGURE 2
Prediction results for low dimension setting with lognormal distributed survival time and A = 2. (A) cr = 0.1; (B) cr = 0.3; (C) cr = 0.5; (D) cr = 0.7. The
x-axis indicates different methods, and the y-axis indicates scaled MSE. The vertical facet titles indicate different β settings, and the horizontal facet titles
indicate different noise levels.
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generally outperforms mbPLS and Block Forest in β settings
(1)(2)(3)(5)(6) except in settings (5)(6) with high noise. However,
asmbPLS performs worse than the best performer, IPF-Lasso
(followed by SGL), in most of the scenarios except in β setting
(4) and settings (2)(5) with high noise. In β setting (4), where we
assume that all the features have equal contributions to the outcome,
mbPLS, considered as a special case of asmbPLS, performs the best.
It makes sense since mbPLS makes use of the information from all
the features. For cr = 0.3 (Figure 2B), the scaled MSEs of all the
methods increase due to the increase in cr. Overall, IPF-Lasso
continues to perform the best in most scenarios except in β
setting (4). However, the performance of asmbPLS is closer to
that of IPF-Lasso in all the scenarios, particularly in high noise
conditions. For cr = 0.5 (Figure 2C), the performance of asmbPLS
and IPF-Lasso are comparable in most scenarios, and asmbPLS
outperform SGL in cases with fewer relevant features such as in β
setting (2). For cr = 0.7 (Figure 2D), asmbPLS exhibits slightly better
performance than all other methods in β settings (1)(2)(3)(5)(6)
with low tomoderate noise (r < 1, p-value <0.05 compared tombPLS
and Block Forest, and p-value >0.05 compared to IPF-Lasso and
SGL). In high noise scenarios (r = 1), all methods show similar
performance with no significant differences observed between them.
In summary, although asmbPLS is not the best in low censoring rate
scenarios, the performance of asmbPLS improves with the
increasing censoring rate, and asmbPLS achieves the best
performance in high censoring rate scenarios. In addition,
asmbPLS performs better in scenarios with fewer relevant
features but a higher level of significance of those relevant
features, i.e. β setting (2), than the other scenarios. Furthermore,
asmbPLS cannot always maintain the best performance with
increasing noise.

We observed comparable patterns in low dimension setting
with lognormal survival time and A = 0.5 (Additional file 1:
Supplementary Figure S1). Moreover, consistent outcomes were
noted when the distribution of survival time shifted from
lognormal to Weibull (Additional file 1: Supplementary
Figures S2, S3). Similarly, in both mixed and high dimension
settings, we observed analogous trends with different survival
time distribution and values of A (Additional file 1:
Supplementary Figures S4–S11).

3.1.2.2 Feature selection
In this section, only results for β settings (1), (2), (3), (5) and (6)

are presented since the feature selection for β setting (4) is not
necessary. In addition, among all the methods, the feature selection
procedure is not included for mbPLS and Block Forest since these
methods do not inherently include feature selection. Therefore, we
compared asmbPLS with IPF-Lasso, Priority-Lasso, and SGL only.
The performances of feature selection were measured in terms of
sensitivity and specificity.

For different β settings, we defined the true relevant features
differently. For β settings (1), (5) and (6), we defined the true
relevant features as the features with positive β. For β settings (2)
and (3), since all β s are positive with different values, we
defined the true relevant features as the features with false
discovery rate (FDR) adjusted p-value <0.05 by conducting
the univariate linear regression for each feature. After
obtaining all the feature selection results, we calculated

sensitivity and specificity based on 100 simulated datasets for
each scenario.

Figure 3 presents the sensitivity and specificity of the feature
selection for low dimension setting with lognormal distributed
survival time. According to Figure 3, the performances of
different methods on feature selection vary in different types of
omics data and all methods show a similar trend in different A
settings. Regarding the sensitivity (Figures 3A, B), the performance
of asmbPLS might not be the best at lower noise with β settings (1),
(5) and (6) in scenarios with cr = 0.1, 0.3 or 0.5. However, with the
increase of the noise, asmbPLS gradually performs better than the
other methods whose sensitivity is largely affected by the noise. For β
settings (2) and (3), asmbPLS performs the best with sensitivity close
to 1 in all the scenarios regardless of the censoring rate and the noise.
This can be due to the definition of the true relevant features in these
two β settings because the nature of asmbPLS makes it always find
the most significant features (with the lowest p-value). For β settings
(1), (5) and (6), the true relevant features are defined as the features
with positive β. However, it’s important to note that in these
scenarios, the feature with positive β may not be significant in
the simulations due to the inherent randomness of the simulation
process. And this randomness can result in lower sensitivity across
all three settings for the methods being evaluated. In scenarios with
high censoring rates (0.7), the sensitivity of asmbPLS is the highest
among all the methods. This high sensitivity aligns with the lower
MSE observed for asmbPLS, highlighting its superiority in scenarios
with higher censoring rates. Correspondingly, the better sensitivity
of asmbPLS is along with the lower specificity (Figures 3C, D). It is
worth noting that the specificity of other methods increases with the
increase of noise, there is a gradual decline in the specificity of
asmbPLS. This indicates that asmbPLS tends to retain more features
compared to other methods, especially in scenarios with higher
noise. Retaining at least some features for each block is one of the
inherent characteristics of asmbPLS, this nature can enhance the
interpretability of results by providing a more comprehensive view
of the data. However, it may also have a trade-off with prediction
performance in certain cases where including more irrelevant
features may introduce noise and potentially hinder the
prediction accuracy. For asmbPLS, although with more features
included and more false positive counts, the weights are assigned
differently for the different blocks and features, which can still help
us to find the most significant features. We observed consistent
results with Weibull distributed survival time (Additional file 1:
Supplementary Figure S12). Similar patterns were also noted across
both mixed and high dimension settings (Additional file 1:
Supplementary Figures S13–S16).

3.1.2.3 Computational efficiency
Table 4 displays the mean computational time for each

method in different dimension settings. The computational
time is measured as the time needed for model fitting
including the CV. Among all the methods, mbPLS, which does
not require the CV step, is the fastest procedure, followed by
Priority-Lasso, asmbPLS and IPF-Lasso. As the special case of
asmbPLS, the computational time of mbPLS is equal to asmbPLS
given selected quantile combinations for all the PLS components.
For asmbPLS, the CV step takes the longest time, which largely
depends on the number of quantile combinations and the
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number of folds for the CV. Block Forest and SGL run much
slower compared to other methods, especially as the size of data
increases. It is noteworthy that IPF-Lasso and Priority-Lasso
shows a decreased computational time in the mixed dimension
and high dimension settings compared to low dimension setting.
The computational time of all the other methods increase in
different degrees with the increases of the dimension. SGL and
Block Forest are two of the slowest methods among all
those evaluated.

3.2 Simulation study 2

3.2.1 Simulation strategies
We utilized a simulated multi-omics data generated with

OmicsSIMLA (Chung and Kang, 2019), based on the ovarian
cancer data from the TCGA project (https://omicssimla.
sourceforge.io/simuomicsTCGA.html). OmicsSIMLA, a multi-
omics data simulator, can simulate various types of omics data
while modeling the relationships between omics data. 50 batches of

FIGURE 3
Sensitivity and specificity of the feature selection for low dimension setting with lognormal distributed survival time. (A) Sensitivity for microbiome
block; (B) Sensitivity for metabolome block; (C) Specificity for microbiome block; (D) Specificity for metabolome block. The x-axis indicates different
noise levels, and the y-axis indicates sensitivity or specificity. The vertical facet titles indicate different β settings, and the horizontal facet titles indicate
different censoring rates.

TABLE 4 Average computation time (in seconds) for different methods in different dimension settings.

Dimension asmbPLS mbPLS Block forest IPF-lasso SGL Priority-lasso

Low 3.33 0.15 182.18 5.18 105.80 0.70

Mixed 5.54 0.27 280.29 4.10 297.61 0.63

High 7.29 0.37 359.62 4.85 557.19 0.60
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samples were simulated, with each batch containing normalized
RNA-seq data of 12,000 genes and normalized proteomics data of
12,000 proteins across 1,000 patients, comprising 500 cases and
500 controls. For simplicity, we selected 500 cases and the first
2,000 features from each omics data in each batch. In each batch, we
utilized RNA-seq data and proteomics data to generate the censored
survival time as described in section “Censored Survival Time”, with
the first 400 patients treated as the training set and the remaining
100 patients as the test set. Among the 400 patients in the training
set, 50% of the patients were designated to be censored. In each type
of omics data, only the first 5 features were set as relevant, with the
coefficients of all remaining features set to zero. The noise to signal
ratio, r, was set to 0.5. SGL was excluded from the comparison
because of its extensive computation time.

3.2.2 Simulation results
The numbers of PLS components used for asmbPLS and mbPLS

were both taken to be 3 in the simulation study. For asmbPLS, the
quantile combinations used for cross validation (CV) were
quantileblock1 � quantileblock2 = {0.95, 0.96, 0.97, 0.98, 0.99, 0.995}.
For IPF-Lasso, 9 different penalty ratios were used, i.e. {1:1, 2:1, 1:2,
3:1, 1:3, 4:1, 1:4, 5:1, 1:5}, which indicates different penalty factors
used for two predictor blocks.

Table 5 outlines the comparative results for prediction and
feature selection capabilities. Regarding prediction, IPF-Lasso is
the top performer among the five evaluated methods, closely
followed by asmbPLS (no significant difference between IPF-
Lasso and asmbPLS). Conversely, mbPLS and Block Forest are
noted for their inferior performance. For feature selection,
asmbPLS and IPF-Lasso each achieve perfect sensitivity for RNA-
seq data, with Priority-Lasso showing a sensitivity of 0.84, albeit with
a higher specificity. For proteomics data, Priority-Lasso has the
highest sensitivity, followed by asmbPLS, while IPF-Lasso’s
sensitivity is markedly lower. Notably, Priority-Lasso attains the
highest specificity for proteomics data also. Overall, asmbPLS
demonstrates the highest average sensitivity across both omics
datasets, with its prediction performance close to the best.

3.3 Application to melanoma patients data

In our study, we utilized data from Aitchison (1982),
encompassing progression-free survival (PFS) interval/status,
clinical variables, and diverse omics data gathered from
167 melanoma patients. We focused on three blocks of data: one

low-dimensional block comprising clinical covariates, and two high-
dimensional blocks consisting of microbiome data and proteomics
data. The outcome of interest is the progression-free survival
interval, with patients experiencing unobserved events (those
without disease progression or death detection) considered right-
censored. Among the available clinical variables, we selected
17 clinical variables, age and BMI are continuous with all the
other variables are binary: sex, tumor response status, types of
treatment, substage of disease in patients with late-stage disease,
dietary fiber intake level, lactate dehydrogenase (LDH) level,
probiotics use at baseline, antibiotic use at baseline, metformin
use at baseline, steroid use at baseline, statin use at baseline,
proton pump inhibitor (PPI) use at baseline, beta-blocker use at
baseline, other (non-beta-blocker) hypertensive medication use at
baseline, whether or not the patient received system therapy prior to
baseline. The microbiome block and the proteomics block contain
225 microbial features and 6,773 proteins, respectively.

After filtering the subjects with missing values and without
survival data, we obtained 89 samples (55 events) for the
downstream implementation. The mean imputation was
conducted first for the censored survival time, we then applied
the AFTmodel to determine whether there is an association between
PFS and any of the features in the three blocks. Since we have no
prior information about the association, we implemented a
univariate analysis for each feature to determine whether any of
the features are predictive of PFS. To this end, we fitted the simple
linear regression model with imputed log-survival PFS as our
outcome and each feature as our predictor one at a time. The
obtained p-values in each block were then adjusted using the false
discovery rate (FDR). Specifically, at a significance level of 5%, no
microbial features and proteins are significant. For clinical variables,
only tumor response status and substage of disease are significant.
With this information, we applied asmbPLS and the other methods
in the real data and compared them in three aspects: 1) The fit of the
model to data; 2) Prediction error of the model; 3) Feature selection
of the model.

To measure the fit of the model to data, we used the MSE of fit to
compare different methods:

MSEF � 1
nO

∑n
i�1
δi Ŷi − Yi( )2

where nO is the number of observed samples and δi is the event
indicator for sample i. We included the first three PLS components
for comparison for PLS-based methods. In addition, for asmbPLS,
the 5-fold CV was implemented to obtain the best quantile

TABLE 5 Simulation results comparison regarding prediction and feature selection for simulation study 2. The results are the average of the 50 batches.

Method MSEp RNA-seq Proteomics

Sensitivity Specificity Sensitivity Specificity

asmbPLS 1.10 1 0.988 0.112 0.995

mbPLS 1.68 - - - -

Block Forest 1.68 - - - -

IPF-Lasso 1.08 1 0.986 0.044 0.998

Priority-Lasso 1.26 0.84 0.999 0.164 1
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combination used for model fitting. The pre-determined quantile
combinations set were quantilemicrobiome = {0.9, 0.925, 0.95, 0.975,
0.99, 0.999}, quantileproteomics = {0.997, 0.9985, 0.9993, 0.9999},
quantileclinical = {0, 0.3, 0.5, 0.7, 0.8, 0.9, 0.99}, resulting in
168 combinations considered. Based on the results of CV, the
optimal number of PLS components is 1, combination (0.999,
0.9999, 0.9) was selected for the first PLS component. Table 6
lists the values of MSEF. Among all the methods, asmbPLS
shows the lowest MSEF, followed by SGL, IPF-Lasso, mbPLS,
and Block Forest. The performance of Priority-Lasso is much
worse than all the other methods, which is corresponding to the
results from the simulation study. On the other hand, to evaluate the
prediction performance of the model, we computed the MSE of
prediction via leave-one-out (LOO) CV with each observed sample
serving as validation data for once:

MSEP,LOO � 1
nO

∑n
i�1
δi Ŷi,− − Yi( )2

where Ŷi,− is computed by the model using the dataset with i th
sample excluded. The selected quantile combination from the
previous CV was used here for the validation set. The results are
listed in Table 6. Block Forest was able to fit the model, but cannot be
used to do the prediction due to the error message in R. As seen in
the table, among all the other methods, SGL performs the best,
followed by IPF-Lasso, asmbPLS, mbPLS, and Priority-Lasso.

For asmbPLS, 1 microbial taxon, 1 protein, and 2 clinical
variables were selected. And block weights for microbiome block,
proteomics block, and clinical blocks were 0.069, 0.021, and 0.997,
respectively. Due to the nature of asmbPLS, at least one feature was
selected for each block. Nevertheless, the block weights for
microbiome and proteomics data were notably less than that of
the clinical block. This suggests that clinical features could be more
relevant to the outcome, which was validated by the univariate
analysis. The two clinical variables selected by asmbPLS were tumor
response status and substage of disease, which were the only two
significant clinical variables. Furthermore, all features identified by
asmbPLS within the microbiome and proteomics blocks were
significant prior to FDR adjustment. Notably, within the
microbiome block, Ruminococcus lactaris stands out. It is worth
highlighting that elevated levels of R. lactaris are associated with
extended PFS and exhibit a tendency towards reduced systemic
inflammation, as evidenced in a B cell-lymphoma patient group
(Stein-Thoeringer et al., 2023). Our study corroborates these

findings, indicating that increased levels of R. lactaris correspond
to prolonged PFS among melanoma patients. Moreover, in the
proteomics block, the selected feature is NADH oxidase, which
plays a pivotal role in regulating growth and transcription in
melanoma cells (SS et al., 2002).

For IPF-Lasso, 0 microbial feature, 0 protein, and 2 clinical
variables were selected. The variable substage of disease, which was
highly significant before and after FDR adjustment, was not selected
by IPF-Lasso. Conversely, the lactate dehydrogenase (LDH) level,
which was not significant prior to FDR adjustment, was selected. For
SGL, 0 microbial feature, 0 protein, and 3 clinical variables were
selected. In addition to the two significant variables, LDH level was
also selected by SGL and assigned with a much higher weight than
substage of disease. For priority-Lasso, only tumor response status
was selected.

In addition to the three aspects discussed above, we explored the
utility of the super score, which integrated information from all data
blocks (e.g., microbiome, proteomics, and clinical data) and was
uniquely derived using asmbPLS andmbPLS, as the predictor for the
outcome. While asmbPLS selected a limited number of features, it
prioritized those with the strongest and most relevant contributions
to the outcome, enabling the super score to capture the most critical
information from each block. Specifically, an optimal cut-point on
super score was determined to define the two groups using the
maximally selected rank statistics (Lausen and Schumacher, 1992) as
implemented in the R package survminer (Kassambara et al., 2017),
and the p-value was calculated based on a log-rank test between the
resulting groups. As seen in Figure 4, super score is significantly
associated with progression-free survival time. Patients with higher
super scores (blue group) seem to have much higher survival
probability. In other words, once we have a new sample with its
corresponding microbiome, proteomics, and clinical data, asmbPLS
can calculate the super score and then assign the sample to the high
or low risk group. This information could be instrumental in
designing personalized treatment tailored to each patient.

Furthermore, we have done the additional analysis without
using the most significant clinical block. In this test, only
microbiome block and proteomics are included as predictors.
The same pre-determined quantile combinations set are used for

TABLE 6 Comparison of the model fitting and prediction performance for
different methods using the melanoma patient data.

Methods MSEF MSEP,LOO

asmbPLS 0.609 0.817

mbPLS 0.736 1.451

Block Forest 1.096 -

IPF-Lasso 0.658 0.792

SGL 0.644 0.782

Priority-Lasso 19.949 21.766

FIGURE 4
Prediction of PFS using super score from asmbPLS.
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microbiome and proteomics blocks. Based on the results of CV, the
optimal number of PLS components is 1, combination (0.999,
0.9999) was selected for the first PLS component, indicating that
1 microbial taxon and 1 protein were selected. These two features are
still the most significant feature in each block even though they are
not significant after p-value adjustment. For the other three Lasso-
basedmethods, 0 microbial taxon and 0 protein was selected. Table 7
lists the results for comparison of model fit and CV. With the fact
that no predictor is relevant, all the methods show relatively higher
MSEP,LOO than in Table 6. Especially, asmbPLS shows higher
MSEP,LOO than the other Lasso-based methods, which is due to
the nature of asmbPLS, which always keeps at least one most
relevant predictor for each block. This nature will help the
prediction when there are significant predictors but can make the
prediction worse if there is no real relevant predictor.

3.4 Application to TCGA-LUSC data

In addition, we applied TCGA-LUSC data to further assess the
feature selection capability of asmbPLS. Lung squamous cell
carcinoma is a type of non-small cell lung cancer (NSCLC).
Among NSCLC, adenocarcinoma is the most common, followed
by squamous cell carcinoma of the lung, especially in women
(Sabbula et al., 2023). The analysis included gene expression,
miRNA and survival data. Subjects with missing gene, miRNA or
survival data were excluded, resulting in a final dataset of
362 subjects (91 events) with 45,362 genes and 1,409 miRNAs.
Similarly, mean imputation was performed for the censored survival
time, and asmbPLS was then applied on the dataset. For comparison,
IPF-Lasso was also conducted. SGL and Priority-Lasso were
excluded from the analysis as they generated error messages
during the model fitting process. We included the first three PLS
components for asmbPLS and 5-fold CV was used to determine the
optimal quantile combination for model fitting. The pre-determined
quantile combinations set were quantilegene = {0.9997, 0.9998,
0.9999, 0.99999}, quantilemiRNA = {0.99, 0.995, 0.999}. Based on
the results of CV, the optimal number of PLS components is 1,
combination (0.99999, 0.999) was selected for the first
PLS component.

Regarding feature selection, 1 gene (ENSG00000286152) and
2 miRNAs (has-mir-610 and has-mir-7977) were selected by
asmbPLS, with block weights of 0.194 for the gene block and
0.981 for the miRNA block, indicating that the selected miRNAs

might be more relevant. For the selected gene, ENSG00000286152,
does not currently have an associated gene symbol in available
databases. However, for selected miRNAs, miR-610 was found to
suppress lung cancer cell proliferation and invasion by targeting
GJA3 expression (Jin et al., 2014), while exosomal miR-7977 has
been identified as a novel biomarker for patients with lung
adenocarcinoma and may function as a tumor suppressor in lung
cancer (Chen et al., 2020). No feature was selected by IPF-Lasso.

4 Discussion and conclusion

In this paper, we developed asmbPLS algorithm to identify the
most significant features of the multi-omics data gathered from the
same set of samples. Subsequently, these selected features are
harnessed for outcome prediction. Different from conventional
smbPLS, asmbPLS is flexible in determining the penalty factor
for different omics data in different PLS components. With some
prior knowledge of omics data, the pre-decided quantile set can be
provided to each block. Then, the best quantile combination can be
chosen in a completely data-driven manner. In addition, using the
quantile makes the interpretation more straightforward, block with
selected quantile = 0.95 indicates that only the top 5% features are
relevant to the outcome. asmbPLS works with continuous predictor
variables and continuous outcomes, binary variables can be
transformed to 0/1 to meet the requirement. And for categorical
variables with more than 2 levels, the one-hot encoding can be one
strategy, where the categorical variable with G levels can be
transformed into G - 1 dummy variables. asmbPLS is
implemented in the R package asmbPLS available on our GitHub
(https://github.com/RunzhiZ/asmbPLS).

Simulation study 1 has demonstrated the superior predictive
performance of asmbPLS compared to other methods, particularly
in scenarios characterized by higher censoring rates, especially when
dealing with fewer relevant features such as β setting (2). However,
in scenarios with low to moderate censoring rate (0.1, 0.3 and 0.5),
asmbPLS does not outperform IPF-Lasso. Additionally, as noise
increases, the MSE of asmbPLS rises similarly to other methods, and
the difference in MSE between methods become smaller. In
scenarios with more relevant features, such as β settings
(4)(5)(6), asmbPLS tends to have higher MSE. This occur
because including more related features in the survival time
simulation reduces the individual effect of each feature, as β is
normalized to control the overall effect, making it more difficult to
identify the relevant features. According to the results of the
simulation study, including three PLS components may suffice
for balanced prediction performance and computational
efficiency, since, in most simulations, the optimal number of PLS
components is either 1 or 2. Including more PLS components fails to
consistently improve prediction accuracy while incurring additional
computational demands in the CV procedure. Regarding feature
selection, asmbPLS outperforms other methods in identifying truly
relevant features, especially in scenarios with high noise and
censoring rates. This aligns with the essence of asmbPLS, where
significant features are consistently identified. This corresponds to
the results from β settings (2) and (3), where truly relevant features
are defined as those with an adjusted p-value <0.05 using univariate
linear regression. Although asmbPLS tends to select a relatively

TABLE 7 Comparison of the model fitting and prediction performance for
different methods using the melanoma patient data (without clinical
block).

Methods MSEF MSEP,LOO

asmbPLS 2.21 2.94

mbPLS 1.31 3.45

Block Forest 2.49 -

IPF-Lasso 2.35 2.26

SGL 2.35 2.24

Priority-Lasso 2.35 2.24
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larger number of features compared to other methods, the allocated
weights remain informative for both the features and the blocks,
proving effective in identifying the most significant contributors. In
simulation study 2, asmbPLS continues to exhibit nearly the best
prediction performance while delivering the top performance in
feature selection.

The performance of asmbPLS is further validated through its
application to melanoma patient data. Notably, asmbPLS retained
features from both the microbiome and proteomics blocks, even in
cases where no significant feature was identified (after p-value
adjustment) within these blocks. The calculated block weights of
0.069, 0.021, and 0.997 validate the limited contributions of the
microbiome and proteomics blocks. Furthermore, it is noteworthy
that despite the retention of features, the top features selected by
asmbPLS from the microbiome and proteomics blocks exhibit
meaningful biological significance. In addition, the exploration of
the super score in melanoma patient data has demonstrated that
super score of asmbPLS is an effective predictor for classifying
different survival groups. This practice holds significant potential,
enabling the assignment of patients into high-risk or low-risk
groups, thereby facilitating the development of personalized
treatment plans. In addition to the melanoma dataset, we applied
asmbPLS to the TCGA-LUSC dataset, which includes gene
expression, miRNA, and survival data, to further evaluate its
feature selection capability in lung cancer. asmbPLS successfully
identified 1 gene and 2 miRNAs as key features, with miRNAs
appearing to have higher relevance based on block weights. This
further underscores asmbPLS’s ability to select biologically
meaningful features, outperforming other methods like IPF-
Lasso, which failed to select any features in this dataset.

A notable limitation of asmbPLS emerges when there is no real
relevant feature in the predictor blocks. In such cases, the inclusion
of a certain number of features within each block might sacrifice the
predictive performance of asmbPLS, although enhancing our
understanding of the relative importance of these features. In
addition, to perform the model fitting in asmbPLS, each subject
must have the same number of predictors and outcomes with no
missing data. If any predictors contain missing values, the affected
samples must be removed before model fitting, which can reduce the
effective sample size and potentially bias the results. This limitation
may be particularly problematic in datasets with a high proportion
of missing data, as it can lead to a loss of statistical power and hinder
the model’s ability to generalize. Future enhancements could include
integrating imputation methods to better manage missing data.
Furthermore, while mean imputation offers computational
convenience for handling right censored survival data, it has the
potential to introduce bias, especially in cases where the censoring
mechanism is not random. In future extensions of this work, it’s
worth to explore the impact of different imputation methods, such
as reweighting and multiple imputation (Datta et al., 2007), on the
prediction performance of asmbPLS.

In summary, by integrating multi-omics data and continuous
phenotypes, asmbPLS can identify the most relevant features across
various omics layers and utilizes these selected features for
prediction. asmbPLS delivers competitive performance in
prediction, feature selection, and computational efficiency
compared with other state-of-the-art methods. We anticipate
asmbPLS to be a valuable tool for multi-omics research.
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