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The Critical Assessment of Massive Data Analysis (CAMDA) addresses the
complexities of harnessing Big Data in life sciences by hosting annual
competitions that inspire research groups to develop innovative solutions. In
2023, the Forensic Challenge focused on identifying the city of origin for 365
metagenomic samples collected from public transportation systems and
identifying associations between bacterial distribution and other covariates.
For microbiome classification, we incorporated both taxonomic and
functional annotations as features. To identify the most informative
Operational Taxonomic Units, we selected features by fitting negative
binomial models. We then implemented supervised models conducting 5-fold
cross-validation (CV) with a 4:1 training-to-validation ratio. After variable
selection, which reduced the dataset to fewer than 300 OTUs, the Support
Vector Classifier achieved the highest F1 score (0.96). When using functional
features from MIFASER, the Neural Network model outperformed other models.
When considering climatic and demographic variables of the cities, Dirichlet
regression over Escherichia, Enterobacter, and Klebsiella bacteria abundances
suggests that population increase is indeed associated with a rise in the mean of
Escherichia while decreasing temperature is linked to higher proportions of
Klebsiella. This study validates microbiome classification using taxonomic
features and, to a lesser extent, functional features. It shows that demographic
and climatic factors influence urban microbial distribution. A Docker
container and a Conda environment are available at the repository: GitHub
facilitating broader adoption and validation of these methods by the scientific
community.
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1 Introduction

The Critical Assessment of Massive Data Analysis (CAMDA)
addresses a fundamental challenge of our era: the effective and
intelligent utilization of Big Data in the life sciences. Microbes
constitute most of Earth’s biodiversity (Hug et al., 2016);
however, our comprehension of their distribution and ecological
roles remains incomplete. Urban microbiomes, in particular, offer
valuable insights into living conditions and public health. Studying
the microbiome of public transportation systems can be a proxy for
monitoring other urban sites. Various factors influence the presence
and metabolic content of microorganisms in urban environments.
The microbiome of public transportation systems is largely derived
from the human microbiome (Hernández et al., 2020). A primary
source of variation in the human microbiome is the specific niche
(Huttenhower et al., 2012). The microbiome found in public
transportation systems is reflective of the skin microbiome.
Although the skin microbiome can vary over time (Gilbert et al.,
2018), some studies indicate a degree of stability (Byrd et al., 2018;
Callewaert et al., 2020). After traveling, passengers’ microbiomes
tend to converge (Vargas-Robles et al., 2020). Subways act as hubs
for microbiome exchange and are reservoirs for antibiotic resistance
(Peimbert and Alcaraz, 2023). The forensic challenge aimed to
develop models capable of accurately classifying these
metagenomic samples according to their city of origin.

Since 2017, the CAMDA community has promoted forensic
metagenomics challenges in collaboration with the MetaSUB

consortium. In the 2017 challenge, approximately
1,000 samples of 16S from three cities in the United States
suggested that differences in the cities’ microbiome were
enough to separate them (Walker and Datta, 2019). For the
CAMDA 2018 challenge, 293 shotgun metagenomics samples
from 12 cities were analyzed, extending the 16S data from 2017
(Walker and Datta, 2019). In 2018, benchmarking of genome
ensemble methods from MetaSUB metagenomes was conducted
(Gerner et al., 2018). In 2019, participants were interested in
functional annotation, including antibiotic resistance (Casimiro-
Soriguer et al., 2019), and even a microbiome annotator was
developed (Zhu et al., 2017; 2019). In 2020 challenge, 28 cities
were analyzed (Zhang et al., 2021a; b). Other variables such as
climate and population density were included (Zhelyazkova et al.,
2021) and model combinations were included (Walker et al.,
2018; Anyaso-Samuel et al., 2021b; a). Finally, in 2021, outside of
CAMDA challenges, a global map of the urban microbiome and
antibiotic resistance was created by Danko, complete with a web
interface (Danko et al., 2021) featuring more than 4,000 samples
from 60 cities. In 2023, CAMDA presented a classification
challenge involving microbiomes from public transportation
systems in 16 cities worldwide. A total of 365 metagenomic
samples were provided to the CAMDA community by The
International Metagenomics and Metadesign of Subways and
Urban Biomes (MetaSUB) Consortium (Mason et al., 2016),
see Table 1 for a complete description of the samples and
variables provided (city, year, and number of samples) and

TABLE 1 Summary table of the cities from which metagenomic samples were collected. The city set covers multiple places around the world and different
types of climates. Climate symbols follow Köppen climate classification. Samples were collected in 2016, 2017, or both (marked as 2016-7 in the table). The
cities were not sampled equally: there are significant differences in the sample count and read depths between cities. For example, Tokyo and New York
lead in terms of sample count, whereas Minneapolis has the least samples. Bogota was sampled with a significantly higher depth than other cities, while
samples from San Antonio and Sao Paulo have a relatively low read depth.

City ID City Latitude Longitude Climate Year Samples Reads average [×106] Reads std. dev. [×105]

AKL Auckland −36.85 174.76 Cfb 2016 14 4.87 7.88

BAL Baltimore 39.29 −76.61 Cfa 2017 13 2.63 10.89

BER Berlin 52.52 13.40 Cfb 2016 15 22.21 192.11

BOG Bogota 4.71 −74.07 Cfb 2016 15 37.55 45.58

DEN Denver 39.74 −104.99 BSk 2016–7 44 2.68 16.25

DOH Doha 25.29 51.53 BWh 2016–7 27 2.97 9.21

ILR Ilorin 8.54 4.54 Aw 2016–7 33 22.12 202.37

LIS Lisbon 38.72 −9.14 Csa 2016 14 3.60 16.60

MIN Minneapolis 44.98 −93.27 Dfa 2017 6 4.20 7.85

NYC New York 40.71 −74.01 Cfa 2016–7 46 15.52 110.01

SAC Sacramento 38.58 −121.49 Csa 2016 16 3.66 7.39

SAN San Antonio 29.43 −98.49 Cfa 2017 16 2.21 15.07

SAO Sao Paulo −23.56 −46.64 Cfa 2017 25 2.14 9.81

TOK Tokyo 35.68 139.65 Cfa 2016–7 49 17.22 151.02

VIE Vienna 48.21 16.37 Cfb 2017 16 4.28 12.01

ZRH Zurich 47.38 8.54 Cfb 2017 16 4.03 13.52
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collected (latitude, longitude, climate, average of reads, and
standard deviation)”.

Reducing the predictor variables to a small set of OTUs (Ryan,
2019; Casimiro-Soriguer et al., 2019; Zhang et al., 2021a), functions,
or AMR features that constitute a footprint of a city has been a
constant goal in the CAMDA challenges. The Negative Binomial
(NB) model is a generalized linear model suited for counting
overdispersed data. Since the work of Lu et al. (Lu et al., 2005),
the NB model has found extensive application in the analysis of
differential gene expression, see for instance the R packages edgeR
(Chen and Lun, 2017) and DeSeq2 (Michael Love, 2017). Drawing
inspiration from this application, McMurdie et al. (McMurdie and
Holmes, 2014) introduced the NBmodel for microbiome count data
analysis to identify differentially abundant OTUs. In this work, we
apply the NB model to guide variable selection as a first step before
classification algorithms. Specifically, we employ NB to identify
differentially abundant OTUs across multiple cities, aiming to
reduce data dimensionality. Following data dimension reduction,
we proceeded to evaluate the performance of several classification
algorithms on our dataset. The best result was obtained with Support
Vector Classifier (SVC), which achieved an F1 score of 0.96,
followed by Multilayer Perceptron Classifier (MLPC) and
K-Nearest Neighbors (KNN), yielding scores of 0.95 and 0.91,
respectively.

In addition to the challenges of classification, the community has
been interested in understanding the relationship between
microbiomes and other variables, such as climate, population
density of the city, or the specific surface of the transport where
the sample was collected. This year, CAMDA highlights three
clinically significant bacteria: Klebsiella, Escherichia, and
Enterobacter, in addition to microbiome data, which consisted of
urban microbiome samples from 16 cities in the world, these
samples are collected every year on June 21. Dirichlet regression
(Maier, 2014) is employed to understand the statistical distribution
of relative abundances depending on other variables known as
covariates. This study focuses on these three bacteria of interest
and examines how their abundances relate to a set of climatic and
demographic variables associated with the samples’ dates of
acquisition. In contrast to Zhang et al.‘s (Zhang et al., 2021b)
emphasis on city-specific climate metadata, our approach
integrates demographic factors and finds them relevant. Danko
et al. (Danko et al., 2021), consider climate-related, demographic
and geographical components and discard population density in
their context, whereas we find that population density emerges as a
statistically significant factor related to microbial composition.

Forensic metagenomics has demonstrated the ability to
differentiate the origin city of a microbiome from the collective
transport system for several years (Walker et al., 2018; Walker and
Datta, 2019; Danko et al., 2021). This study used the NB model to
select taxonomic variables before implementing supervised
algorithms to differentiate microbiomes by city. Then we
incorporate functional profiles, with various annotation methods,
where Mifaser at level 4 provided the best performance with MLP,
achieving an F1 score of 65.4%, followed by Metacyc at level 7 with
VC(Soft) and an F1 score of 52%. Finally, we conducted a Dirichlet
analysis and found that there is an impact of other variables, such
as climate and population density, on the abundance of
these bacteria.

2 Results

The objective of the forensic geolocalization challenge is to
predict the city of origin for selected samples using taxonomic
and functional profiles. The MetaSUB consortium provided
CAMDA participants with urban microbiome samples from
16 cities worldwide. Each year, on June 21, the Global City
Sampling Day (gCSD) collects microorganisms in urban
environments. From the numerous samples collected during
gCSD 2016 and 2017, 374 paired-end samples were made
available for this challenge (Figure 1A). Following quality control,
nine samples were excluded from the analysis. The remaining
365 samples—174 from 2016 to 191 from 2017—underwent
adapter and quality trimming, reducing their total size by
approximately 30%, and were subsequently assembled. Using
both the read and contigs, we constructed their taxonomic
profiles, identifying around 20,000 OTUs among all reads and
nearly 13,000 in the assemblies distributed across the 16 cities
(refer to Figure 1B for the complete pipeline). Apart from Homo
sapiens, with a read proportion of 33.35%, the most abundant taxa
were Cutibacterium acnes (3.93%), Stutzerimonas stutzeri (3.85%),
Bradyrhizobium sp. BTAi1 (1.96%),Massilia sp. NP310 (0.80%) and
Staphylococcus aureus (0.67%), all of which correspond to human or
soil-associated bacteria; see Supplementary Figure S1.

As an initial city classification model, we utilized principal
components followed by a multivariable logistic regression. First,
we selected a subset of J OTUs from a total pool of 20,448. After
applying a natural logarithm transformation, this subset underwent
principal component analysis (PCA), generating the first N
principal components to serve as inputs for the logistic
regression classification algorithm. Various combinations of J
and N were tested, achieving accuracy of up to 88% in the
classification task. Since increasing the value of J did not
significantly improve performance, we applied variable selection
on the reads table, followed by several classification models, refer to
the Supplementary Materrial Section S3 for a full description of the
method. As a result, fewer than 300 variables were chosen based on
their status as the most differential OTUs under a Negative
Binomial model.

2.1 Selecting most differential OTUs

We aimed to strategically curate Operational Taxonomic
Units (OTUs) that best differentiate by city and year,
considering potential zero-inflated OTU distribution. By
modeling the zero-inflated data phenomenon in our selection
process, we aimed to impact the reliability and effectiveness of
our predictive frameworks. The proposed models were fitted for
the data organized by reads and assembly, each categorized by
Bacteria-Archaea, Eukarya, Virus, and all three categories
combined. We further divided each of the eight resulting
datasets, see Table 2, to consider their components at different
taxonomic levels: phylum, class, order, family, and genus,
resulting in 40 databases. This comprehensive approach
ensures a thorough examination of the data.

Since selecting important variables for predictive models is
reasonably related to identifying differentially abundant OTUs,
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similarly to the DESeq2 library from R (Love et al., 2014), we
consider generalized linear models for count data {yi}ni�1, but
including models that can account for a possible excess of zeros
in the data. The four models were Poisson, Negative binomial (NB),
Zero-inflated Poisson (ZIP), and Zero-inflated negative binomial
(ZINB). In all of them, covariables {xi} and {zi} represent a pair city-
year, see Methods 3.4. Specifically, given two city-years, {xi} and {zi}

are dummy variables that indicate the city-year to which the counts
{yi} are associated. For each OTU and each categorical pair of
variables {xi} and {zi}, p-values were collected for the coefficients of
the fitted regressions to assess their statistical significance with False
Discovery Rate adjustments. Afterward, within each model, we
selected OTUs with the lowest associated adjusted p-values for
each combination of year and city.

FIGURE 1
(A)On June 21st every yearMetSUB collected urban samples around theworld. For the CAMDA 2023 challenge, wewere provided 374 samples from
16 cities. (B) The 374 samples underwent prepocessing. Nine samples were discarded in the initial quality control step, leaving 365 samples for the adapter
and quality trimming process. During this phase, their size was reduced by 30% before assembly. Subsequently, both reads and assemblies were used for
taxonomic assignment.
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As we simultaneously conduct multiple hypothesis tests on various
Operational Taxonomic Units (OTUs), the probability of committing a
Type I error increases with the number of tests. This error is related to
the ‘False Discovery Rate’ (FDR), and it occurs for a specific pair of
variables (year-cities in our case) when a small p-value leads to the
rejection of H0: ‘There is no differential OTU count between the
compared year-cities,’ when H0 is actually true (that is, there is no
statistical difference between the OTU counts of the two year-cities).
The FDR is the expected proportion of false positive results among all
the rejected hypotheses. Various methods can be employed to mitigate
this tendency and prevent spurious discoveries. One of the most well-
known methods is the Bonferroni correction (Bonferroni, 1935), where
the base significance level is divided by the number of tests.
Alternatively, more sophisticated approaches, such as the Tukey
(Tukey, 1949) or Scheffé tests (Scheffé, 1999), can be utilized. Here,
tomitigate incorrect rejections of the true null hypothesis, i.e., to control
the FDR, we used the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995).

We observed that many p-values were exceptionally low
(numerically equal to zero) but presented high Akaike
information criterion (AIC) scores, pointing to low model fitting.
The AIC is a measure used in statistics and model analysis to
compare how suitable each model is; the lower its value, the
better the model fits. Thus, for each OTU and each pair of year-
cities, we selected the model with the minor AIC score and kept the
p-value associated with that model. This prevents the presence of
OTUs associated with small p-values but with inappropriate fitting.
After computing the AIC scores, we concluded that NB model was
the most appropriate fitting. Then we proceed to choose differential
OTUs. We deemed an OTU to be “most differential” if it is
differential for more than ten year-city comparisons, i.e., if the
OTU is selected as a differential for at least 11 pairs of year-cities.
The table of the most differential OTUs is presented in the
Supplementary material, Supplementary Table S1.

The NB model, fitted on each kingdom separately, was more
successful in selecting the 294 most informative OTUs (see
Figure 2A for the complete pipeline; Table 3 for the number of
selected OTUs when considering the 5 OTUs with lowest p-values).
Considering the NB model and individual kingdoms to select variables
(differential OTUs), classification reached an F1 score close to 0.96, see

the results described in Section 2.2. Pairwise comparison and selection
of most differential OTUs might be interpreted biologically. Alpha
diversity measures environmental richness or species abundance within
an environment. In Figure 2B, we can observe the richness distribution
in each sample. After implementing the selection process for the most
informative Operational Taxonomic Units (OTUs), we observe that the
distribution of alpha diversity remains consistent across each
sample, Figure 2C.

2.2 Prediction models using OTUs selection

Classification models were implemented with a 5-fold cross-
validation scheme with 4:1 training to validation sets. OTUs were
selected using the NB selection method, independently for each of
the five folds in the cross-validation scheme as described in
Figure 3C. This ensured that no information from one fold was used
to influence the classification for the test set, thereby avoiding model
overfitting or model score bias. In this process each fold got between
288 and 304 different OTUs with 123 of them being shared between all
folds, detailed description of features (OTUs) used for each fold
presented in Supplementary Table S1.2. Macro F1 scores for city
prediction models based on abundance tables were computed. The
Multilayer Perceptron Classifier (MLPC) achieved a score of 0.95, the
Support Vector Classifier (SVC) scored 0.96, and the K-Nearest
Neighbor (KNN) model attained a score of 0.91 (rounded values).
The results presented in Figure 3A illustrate the consistency of these
scores across different folds, with the SVCmodel exhibiting less variance
in the Macro F1-score compared to KNN and MLPC, which reported
broader confidence intervals. Furthermore, Figure 3B, shows the
outstanding accuracy of the SVC model in predicting most cities.

2.3 Classification models with
functional profiles

We annotated the functional profiles within our samples with
the tools: Mifaser (Zhu et al., 2017), Metacyc (Caspi et al., 2019) and
Prokka (Seemann, 2014). In the case of Mifaser and Metacyc, we
kept data structured into hierarchical tables based on the level of

TABLE 2Datasets obtained by considering reads and assembly data, categorized by Bacteria-Archaea, Eukarya, and Virus. The columnDataset describes the
name of each dataset, while the ✓ mark indicates what data is contained in it.

Type of data Categories

Dataset Reads Assembly Bacteria-Archaea Eukarya Virus

reads ✓ — ✓ ✓ ✓

readsAB ✓ — ✓ — —

readsEukarya ✓ — — ✓ —

readsViruses ✓ — — — ✓

assembly — ✓ ✓ ✓ ✓

asemblyAB — ✓ ✓ — —

assemblyEukarya — ✓ — ✓ —

assemblyViruses — ✓ — — ✓
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functional annotation. For Mifaser, annotations are E.C. numbers
stored in data tables ranging from level 1 to level 4, where level
4 provided the highest annotation specificity. Similarly, with
Metacyc, data tables span specificity levels from 1 to 8, with level
8 offering the most detailed annotations.

For instance, a specificity level 1 annotation in Mifaser could be
as broad as “oxidoreductases (EC 1)” encompassing a wide range of
enzymes that catalyze oxidation-reduction reactions. A more
specific level 4 annotation in Mifaser might include terms like
“glycerol-3-phosphate dehydrogenase (EC 1.1.1.8)” which

provides a more detailed description of the enzyme’s function.
On the other hand, in MetaCyc, a specificity level 1 function
might be broadly categorized as “biosynthesis” and a more
specific level 8 annotation could encompass detailed pathways
such as “CMP-legionaminate biosynthesis I”.

We used a similar scheme to that employed with abundance
tables, implementing a 5-fold cross-validation scheme with 4:
1 training to validation sets. However, unlike the approach with
abundance tables involving the NB model, we utilized a quantile
transformer before training the models, Figure 4C.

FIGURE 2
Negative Binomial model reduced variables by selecting 300 from 20,000 OTUs. (A) Pipeline to fit the NBmodel in the abundance tables. (B) Alpha
diversity from each city and year considering all the OTUs. (C) After selecting the most distinguishable OTUs, the alpha diversity maintains a consistent
distribution across each city. This suggests that reducing variables preserves the original samples’ richness.

Frontiers in Genetics frontiersin.org06

Contreras-Peruyero et al. 10.3389/fgene.2024.1449461

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1449461


Our analysis assessed the performance of the following machine
learning models: KNN, MLP, and SVC. Additionally, we explored
alternative methods and their ensembles. The supplementary

materials provide detailed results and findings from these
additional analyses. It is important to note that the results in the
supplementary materials did not include a 5-fold cross-validation.

The model results consistently demonstrated superior
performance when utilizing Mifaser data at specificity level
4 where, after a rigorous 5-fold cross-validation process, we
found that the Multi-Layer Perceptron (MLP) Classifier
demonstrated superior performance. With a mean macro F1 of
approximately 60% across the folds as shown in Figure 4A.

2.4 Dirichlet regression reveals associations
with concomitant variables

Regression methods characterize the statistical distribution of a
relevant variable (called the response) as a function of other variables
that exert some influence or association (called predictors or
covariates). The expectation is that discovering the relationships

TABLE 3 Number of selected OTUs under each model. In parenthesis we
indicate the percentage of OTUs that were not selected in any pair of year-
cities.

Model Fit with all
kingdoms

Fit kingdoms
separately

P 15 (0.91) 16 (0.96)

NB 280 (8.19) 294 (10.24)

ZIP 343 (11.85) 305 (10.70)

ZINB 450 (29.94) 428 (30.22)

Model
selection

298 (12.76) 312 (11.94)

FIGURE 3
Results for the classification methods considering the abundance tables. (A) For each classification model, we plotted the Macro F1 score, in all the
model this score was above 0.9. (B) In the confusion matrix for the SVCmodel, we can observe that the majority of predictions were correct (numbers on
the diagonal). NYC had the most incorrect labels (numbers off the diagonal). (C)We split the data (abundance tables) into five folds; after this, we trained
the models using four-folds, and we tested our result with the remaining fold. We run this process by varying the folds in the training set and the
validation set. Finally, we compared the acc and made F1 scores of the models.
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between these sets of variables sheds fascinating biological insight.
We conceive regression in its broadest sense: describe the complete
distribution of the response instead of only its mean. This year,
beyond the microbiome data, CAMDA focuses on three clinically
relevant bacteria. As the response, we consider the relative
abundance of our three bacteria of interest, Klebsiella,
Escherichia, and Enterobacter. This constitutes a case of
compositional data, meaning that each observed city sample
datum is a set of three proportions that add up to 100%. The
Dirichlet distribution is a flexible statistical model specifically
suitable for this type of observation.

Studies on climate change have shown that temperature and
humidity variations impact the composition, structure, regulation,
and presence of metabolic functions in microbial communities
(Jansson and Hofmockel, 2020). The climatic effect depends on
the ecosystem, and population density can also be significant in
urban environments. For each city, we augmented its original
genomics data with predictor values drawn from worldwide
climate (minimum and maximum temperatures and total June
rainfall) (Fick and Hijmans, 2017) and city demographics
(Brinkhoff, 2023) (total population and population density).
Specifically, covariates for a given city are considered minimum

and maximum temperatures and total rainfall for June, total
population, and population density.

Dirichlet regression (Maier, 2014) is a technique designed
explicitly for relating a compositional response to covariates.
With its denomination originating from a namesake probability
distribution, the model setup involves multiplicative parameters
associated with each predictor, testable for significance and
interpretable regarding the context. The results, detailed in
Section 4.7, establish that all predictors are statistically significant
in determining the response distribution except for rainfall.

While it was fortuitous that precisely three proportions were
chosen to be studied, this conveniently allowed results to be
represented graphically using ternary plots (Hamilton and Ferry,
2018). These are designed to represent triplets of percentages that
add to 100%, working with axes oriented along the sides of an
equilateral triangle so that its barycenter corresponds to value
(1/3, 1/3, 1/3). Each vertex represents 100% in exactly one of the
components (Figure 5). The vast amount of variability in this
type of data becomes conspicuously evident, yet with points
tending to gravitate towards the axis that corresponds to 100%
Enterobacter and 0% Escherichia (Figure 5A). Dirichlet
regression probes into any structure that may be present in

FIGURE 4
Results for the classification methods considering the functional annotation. (A) Using Mifaser functional annotation tables level 4, the trained
models showed improved and consistent performance, achieving amacro F1 score between 0.4 and 0.6. TheMLPmodel exhibited the best performance
on average. (B) The confusion matrix for the MLP model shows that some cities reached up to 92% correct responses, with BAL, SAC, and ZRH being the
lowest. (C) In contrast to the pipeline that utilizes abundance tables, for the functional annotation tables we employed a quantile transformer after
implementing a 4:1 training to validation set scheme. This approach allowed us to sweep parameters and train the models effectively.
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these scattered points. A definite relationship is determined
(Section 4.7) with demographic and temperature variables;
when quantified in terms of their effect on proportion means,
it becomes easier to detect differences between cities (Figure 5B).
Analysis corroborates notable variability, with trends towards
> 80% Enterobacter and < 20% Escherichia. Dirichlet regression
uncovered underlying structures within the data, revealing
statistically significant relationships with demographic and
temperature variables. Quantifying their effects on mean
abundances facilitated the detection of differences amongst
cities. In addition, we posited that the fitted model could be
used to simulate random instances of compositional vectors to
investigate hypothetical scenarios based on varying
predictor values.

3 Discussion

Forensic metagenomics community has tested several variable
reduction and classification algorithms as well as proposed new
approaches to obtain information from microbiological data. In
variable selection, clustering and dimensionality reduction,
techniques such as t-SNE (Casimiro-Soriguer et al., 2019; Ryan,
2019), PCA (Walker and Datta, 2019), and UMAP have been
employed. Among classification methods Support Vector Machines
(Walker and Datta, 2019; Zhu et al., 2019), Random Forests (Walker
et al., 2018; Walker and Datta, 2019; Ryan, 2019), and Neural Networks
(Zhelyazkova et al., 2021) have been extensively used to identify the city
of origin of urban microbiomes. A constant goal has been to identify
bacterial fingerprints for the provided cities. To produce fingerprints
taxonomic (Walker and Datta, 2019; Ryan, 2019; Danko et al., 2021),
functional (Zhu et al., 2019; Casimiro-Soriguer et al., 2019; Danko et al.,
2021), and antibiotic resistance (Casimiro-Soriguer et al., 2019;
Zhelyazkova et al., 2021; Danko et al., 2021) features have been
considered. To construct the fingerprints, organisms that maximize
the differences between cities are selected (Walker and Datta, 2019).

The NBmodel’s wide applications (Lu et al., 2005) inspired us to
adopt methodologies from differential gene expression analyses to

select OTUs exhibiting significant count variations across at least
two year-cities. Specifically, under the NB model, selected OTUs
exhibit greater variability in counts than expected by chance alone.
In our work the OTU that were more times differential in pair
comparisons between year-cities were Staphylococcus (75 times),
Cutibacterium (54 times), Stutzerimonas (46 times),
Bradyrhizobium (46 times), and Hydrogenophilus (40 times), see
Supplementary Table S1. Interestingly, Cutibacterium acnes and
Bradyrhizobium sp. BTAI1 were the most relatively abundant
species in the global Urban Microbiome calculated in 2021
(Danko et al., 2021), and Cutibacterium, is one of the most
common bacteria in the skin microbiome. In contrast some
species of the genera Acinetobacter, Pseudomonas and
Janthinobacter were selected for being more differential in
Walker and Datta, 2019 study (Walker and Datta, 2019), while
Campylobacter jejuni and Staphylococcus argenteus were found
highly predictive in Ryan 2019 work (Ryan, 2019). Discrepancies
in differential species are maybe due to the method of variable and
selection, and of course to the fact that each year the targeted cities
can be different.

Functional profiles achieve lower F1 scores than taxonomic
classification which is in agreement with the observation global
in the metagenomic map of urban microbiomes (Danko et al., 2021)
that functional profiles are more homogeneous across urban
samples than taxonomic profiles. Nevertheless this low
performance could also be due to the fact that functional
categories are more focused on conserved functions. Perhaps
functions that differentiate cities are contained in families of
specialized functions that are not known yet and in consequence
we are not using them as features. Our classification using Mifaser
functional annotations achieved a commendable 0.7 accuracy,
aligning with the state of the art of the field. This finding is
particularly noteworthy compared to existing studies that utilized
KEGG annotations, where reported accuracies reached 0.73 using a
10-fold CV(Casimiro-Soriguer et al., 2019). Our results demonstrate
a competitive accuracy level, reinforcing the efficacy of our chosen
approach and emphasizing the relevance of Mifaser annotations in
achieving outcomes comparable to those of widely used databases

FIGURE 5
Ternary plots for compositional sample data. (A) All 366 data points in database. (B) Data points from USA cities only (small circles) with estimated
vectors of mean values via Dirichlet regression, (μ1 ,μ2 ,μ3), superimposed (large circles). Small circles thus depict raw data, whereas positions of large
circles implicitly incorporate climatic and demographic information. The precise nature of these variables’ effects on distributions of relative abundance
are elicited from Table 4.
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like KEGG. Our obtained results align with and contribute to the
field’s current state of the art. Specifically, through a 10-fold cross-
validation, our analysis using Mifaser at specificity level 4 achieved a
commendable 70% accuracy. This finding is particularly noteworthy
compared to existing studies utilizing KEGG annotations, where
reported accuracies reached 73% using a 10-fold cross-validation
schema (Casimiro-Soriguer et al., 2019). The slight variation in
performance could be attributed to the differences in annotation
databases and methodologies employed. Nonetheless, our results
demonstrate a competitive accuracy level, reinforcing the efficacy of
our chosen approach and emphasizing the relevance of Mifaser
annotations in achieving comparable outcomes to widely used
databases like KEGG.

Regarding the three bacterial genera of main interest described
above as related to city covariates, we found that increased population
density (total population) is significantly associated with lower (higher)
average proportions of Escherichia and Klebsiella, relative to
Enterobacter. This contrasts with Zhang et al. (Zhang et al., 2021b),
who proposed considering city-specific metadata such as weather data
to improve prediction outcomes, and suggested that environmental
factors play a more influential role in microbial composition (Jansson
and Hofmockel, 2020) than do demographic variables. Incorporating a
broader collection of covariates that included geographical aspects as
well, Danko et al. (Danko et al., 2021) established that climate-related
components significantly differentiated samples, whereas, admittedly to
their surprise, population density did not display a significant effect on
taxonomic variation. However, these authors acknowledge a possible
masking effect due to correlations between covariates. In any case, albeit
these inconsistencies in results may stem from differences in study
scope andmethods, it is demonstrated that the effects of environmental,
demographic and geographic variables on microbial composition
merits further, explicit research.

For future studies, it would be valuable to benchmark the
potential enhancements in performance through the combination
of different taxonomical and functional profiles. Investigating the
synergies between various annotation tools or databases could lead
us to more robust models and better predictions. Additionally,
OTUS selected by different feature selection techniques could be
compared and ranked with some score according to howmany times
different studies identify them as part of the most informative
features contributing to the classification profiles of some specific
year-city. This approach may not only improve the interpretability
of the models but also potentially enhance their predictive
performance.

4 Methodology

4.1 Data prepocessing

Integrity was checked on the WGS metagenomic paired-end
samples by parsing each file with the SeqIO module of BioPython
1.78 (Cock et al., 2009); any sample that failed this test was excluded
from downstream analyses. The resulting samples were then adapter
and quality trimmed with TrimGalore 0.6.10 (Krueger et al., 2023),
discarding reads shorter than 40 base pairs. Afterwards, assemblies
were performed at sample- and city-levels usingMEGAHIT 1.2.9 (Li
et al., 2015).

4.2 OTU abundance tables

The taxonomic profiles were predicted with Kraken 2.1.3
(Wood et al., 2019) from read and assembly data at both levels
above, using the 14 March 2023 version of Kraken’s database
available as an AWS S3 Bucket (Langmead, 2023). The taxonomic
abundance tables were produced in BIOM format (McDonald
et al., 2012) with kraken-biom 1.2.0 (Dabdoub, 2016) using
sample taxonomy data.

4.3 Functional profiles tables

Functional profiles were annotated with two different pipelines:
mi-faser 1.60 (Zhu et al., 2017) on the reads and one of EnvGen’s
Metagenomics Workshop functional annotation pipelines
(Alneberg et al., 2014) on the contigs. The latter, precisely,
consists in the following: first, the assemblies are annotated with
Prokka 1.14.6 (Seemann, 2014), modified to skip the execution of
tbl2asn, which was found to be extremely slow when working with
large metagenomic assemblies; and second, using the E. C. numbers
identified by Prokka and the MetaCyc Database (Caspi et al., 2019)
as reference, we use MinPath 1.6 (Ye and Doak, 2009) to obtain the
minimum set of MetaCyc pathways, which is then hierarchized into
eight functional levels.

4.4 Variable selection

To select variables by addressing the zero-inflated phenomenon,
we use four regression models for count data {yi}ni�1. The fitted
models consider the covariates xi and z i to be the categorical
variables that correspond to the location from which the samples
originate. The statistical fits are implemented with the R (version
4.3.0) packages-functions: stats-glm, MASS-glm.nb and pscl-
zeroinfl. These regression models, consider as offset the
logarithms of the total read, {log(Ni)}, and are.

1. Poisson (P),

f yi|xi( ) � μyi exp
−μi

yi!
I 0,1,...{ } yi( ), μi

log Ni( ) � exp x⊤i β( ).

2. Negative binomial (NB),

f yi|xi,ϕ( ) � Γ yi + 1/ϕ( )
Γ yi + 1( )Γ 1/ϕ( )

1/ϕ
1/ϕ + μi

( )
1/ϕ μi

1/ϕ + μi
( )

yi

I 0,1,...{ } yi( ),
μi/log Ni( ) � exp x⊤i β( )exp ei( ), where exp ei( ) ~ Gamma 1/ϕ, 1/ϕ( ).

(1)

3. Zero-inflated Poisson (ZIP),

f yi|μi, πi( ) � πiI 0{ } yi( ) + 1 − πi( ) μ
y
i exp

−μi

yi!
I 0,1,...{ } yi( ),

E Yi|xi, z i( ) � 1 − πi( )exp x⊤i β( ),
Where the probability of yi being a zero count is modeled in the
regression model with logit function and covariates z i:
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log
πi

1 − πi
( ) � z⊤i γ. (2)

4. Zero-inflated negative binomial (ZINB).

f yi|μi, πi( ) � πiI 0{ } yi( ) + 1 − πi( ) Γ yi + 1/ϕ( )
Γ yi + 1( )Γ 1/ϕ( )

1/ϕ
1/ϕ + μi

( )
1/ϕ

× μi
1/ϕ + μi

( )
yi

I 0,1,...{ } yi( ),
E Yi|xi, z i( ) � 1 − πi( )μi,

with μi/log(Ni), ei and πi as in Equations 1, 2.
This procedure is performed for each of the taxonomic levels

previously presented and for each pair of year-cities. However, the
variable selection considers all the computed p-values resulting from
the analysis at each taxonomic level. We only consider pairs of
categories where the OTU count is greater than zero for both. This is
to avoid numerical errors.

To control the FDR we used the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995) implemented in R
with the command p. adjust. Its procedure for variable selections is.

1. Sort the p-values in ascending order and assigning a rank or
position p(1) ≤p(2) ≤/≤p(k).

2. Compute the adjusted p-value for using the formula:

padj i( ) � min 1,minj≥i

mp j( )
j

{ }{ },
wherem represents the total number of hypotheses being tested, the
purpose of taking the minimum ratio is to find the smallest value
that controls the FDR while considering all hypotheses ranked at or
above the current p-value. Taking the minimum ensures that the
adjusted p-value is conservative and provides a corrected measure of
statistical significance that accounts for multiple tests.

Typically, for a given test level α, we find the largest j such that
padj(j) ≤ α and reject the null hypothesis (i.e., declare discoveries) for
those variables associated to the first j ranked p-values. However, for
identifying the OTUs that can be more successful in differentiating
cities (year-cities), we obtained all the p-values for each pair of year-
cities and selected those OTUs with the lowest p-values. The
objective was to obtain a reduced list of OTUs that can perform
well for the forensic challenge of city classification.

For each model (P, NB, ZIP, and ZINB) we selected the 5 OTUs
with the lowest recorded p-values. Table 3 presents the resulting
number of OTUs under each model, and in parenthesis, we report
the percentage of zero counts for the obtained OTUs for all pairs of
cities. The resulting OTUs under “Model selection” are those from
the best model (P, NB, ZIP or ZINB) that for each pair of cities, has
the smallest AIC.

4.5 Prediction models using OTUs selection

Code for city prediction uses Python 3.10, with libraries scikit-
learn 1.0.2, pandas 1.5.3, and matplotlib 3.7.1. To establish a robust
and consistent prediction process, a 5-fold cross-validation scheme
was implemented (Figure 3C). Within this framework, a stratified

procedure was devised to partition the initial dataset into five
distinct groups. This approach ensured that city proportions
remained consistent across all groups. While training, each city
was considered as a different class for samples from different years.

The 5-fold process divided the data into one validation set and
four training sets per iteration to ensure a thorough evaluation.
Subsequently, a variable selection process was conducted exclusively
on the training set using the NB method, chosen for its robust
performance in preliminary tests. This procedure aimed to
guarantee that the selected variables contained no information
from the validation set. Following the variable selection process,
different selections were made for each fold due to the varying
information available in the distinct training sets. The resulting
variables from the training set were then utilized for the subsequent
classification process.

The initial stage of the classification process involved taking the
reduced set of variables from the training set and subjecting it to
standardization and normalization procedures (using python’s
sklearn libraries) to prepare the data for classification algorithms.
Extensive testing identified the quantile transformer (normalizing
by OTUs instead of cities) with z-score as the most
effective algorithm.

The subsequent phase of the classification process encompassed
the application of three potential algorithms: MLP, KNN, and SVC,
all from the sklearn libraries. To ensure reproducibility, all
algorithms employed a fixed random seed.

The specific configurations utilized for each algorithm were
200 neurons in a single layer for MLP, 23 neighbors for KNN,
and a linear kernel with 2 degrees for SVC. Although several other
hyperparameters were assessed, including some random forest
classifier models, they exhibited subpar performance.

For each cross-validation fold, the Macro F1 score was
computed for each of the algorithms mentioned above,
understanding that before this process, all the years for a given
city were merged into a single class representing that city.

4.6 Classification models with
functional profiles

To determine the most effective parameter configurations for the
models, we employed Grid Search, a systematic approach exploring a
range of hyperparameters, see Supplementary Table S3. For the SVC,
the optimal configuration involved a linear kernel, chosen after
thorough evaluation during Grid Search. The MLP model achieved
optimal results with specific parameters identified through Grid Search.
These included a Tanh activation function, automatic batch size
adjustment, disabled early stopping, a single hidden layer of
100 neurons, adaptive learning rate, a maximum of 3,000 training
iterations, and the Stochastic Gradient Descent (SGD) solver.

Similarly, for the KNN Classifier, Grid Search determined that
configuring the model with two neighbors for prediction and a
distance-based weighting scheme yielded the most accurate
predictions.

We employed a 5-fold cross-validation strategy to assess our
models’ robustness and generalization. This involved partitioning
the dataset into five subsets, training the models on four subsets, and
evaluating their performance on the remaining subset. The average
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performance across these folds provided a reliable estimate of the
overall effectiveness of the models.

4.7 Dirichlet regression

A Dirichlet distribution for a random compositional triplet Y �
(Y1, Y2, Y3) is described by three parameters μ1, μ2, μ3 in (0,1)
representing the means of each entry (E(Yc) � μc), plus a
precision parameter, ϕ> 0, that controls variability around the
means (Maier, 2014). The restriction ∑3

c�1μc � 1 is enforced. Set
X0 � 1 to allow for an intercept term. If C predictors are aggregated
and denoted by X � (X0, X1, . . . , XC) and a set of coefficients by
β � (β0, β1, . . . , βC)⊤, we use vector notation to write
Xβ � ∑C

i�0Xiβi. Dirichlet regression postulates that mean
parameters depend on covariates by setting

μ1 �
exp Xβ1( )

∑2
c�1

exp Xβc( ) + 1
, μ2 �

exp Xβ2( )
∑2
c�1

exp Xβc( ) + 1
, and

μ3 �
1

∑2
c�1

exp Xβc( ) + 1
.

(3)

Regression parameters are β1 and β2, one vector for each of the
first two components, plus the precision parameter, ϕ. A third beta
parameter, β3 say, is neither involved nor required because the
restriction ∑3

c�1μc � 1 determines the third mean in terms of the
other two. This parametrization implicitly signifies that the third
component is viewed as a reference category in terms of ratios
between means. More precisely, interpretation of β1 and β2 follows
from noting that μ1/μ3 � exp(Xβ1) and μ2/μ3 � exp(Xβ2). In fact, if
a different category were to be chosen as the reference, the same
estimated values of μ1, μ2 and μ3 would result; the reference category
simply establishes one baseline to compare the other two against.

In addition to the means in Equation 3 as specific properties of
the Dirichlet distribution, we may also state.

VAR Yc( ) � μc 1 − μc( )
ϕ + 1

and (4)

COV Yc, Yd( ) � −μiμj
ϕ + 1

for c ≠ d. (5)

The reason for referring to ϕ as a precision parameter becomes
clear from Equation 4, because a larger value of ϕ results in smaller
variances of all proportions in the compositional vector Y . Negative
covariance in Equation 5 is also expected since a larger proportion in
any given entry ensues at the expense of smaller proportions in
the other two.

Package DirichletReg in R (Maier, 2021) addresses Dirichlet
regression and implements model fitting by numerical methods for
maximum likelihood. Estimated parameters (Table 4) grant a Dirichlet
density to describe the distribution of compositional triplets for a given
value of X pertaining to a particular city. The regression structure
exploited across cities means that assessments can be made for
hypothetical new values of X. For example, the effect on bacterial
composition if maximum temperature were to increase by 1°C or if
population density increases by 2%. Estimated values of μ1, μ2, μ3 for
given values of X can be readily obtained by plugging-in estimated

coefficients shown in Table 4 into Equation 3 (as has been done in
Figure 5B). Likewise, estimated variances are obtained by plugging
into Equation 4.

Another use for regression models is the simulation of specified
scenarios. Once model parameters have been estimated based on
data, clouds of simulated (pseudo) data points can be obtained for
understanding the complexion of variability or for comparing
probabilistic distributions at different levels of X. To enable this,
R package DirichletReg provides function rdirichlet to
simulate random instances of compositional vectors for a specified
set of parameters.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 4 Estimates in the Dirichlet regression model using the
parametrization described in the text. Estimates for Enterobacter are not
required because it is implicitly acting as a reference category. The z test
statistics and associated p-values refer to the test of the hypothesis that the
corresponding parameter is zero. Asterisks denote standard R codes for
significance: *** � 0, ** � 0.0001, * � 0.01. With Enterobacter adopted as
the reference, these are examples of how individual estimates are to be
interpreted: 1.190e − 04 for Escherichia under population is highly
significant and positive, meaning that an increase in population is
associated with a greater mean proportion of Escherichia relative to
Enterobacter; −7.190e − 02 for Klebsiella under minimum temperature is
highly significant and negative, so that a lower minimum temperature is
associated with a higher proportion of Klebsiella; rainfall is not significant
for neither Escherichia nor Klebsiella.

Estimate Std. error z value p-value

Escherichia (β1)
intercept −9.503e−01 3.750e−01 −2.534 0.0113 *

minimum temp −1.065e−02 2.130e−02 −0.500 0.6172

maximum temp 1.184e−02 1.969e−02 0.601 0.5477

rainfall −1.366e−03 1.084e−03 −1.260 0.2076

total population 1.190e−04 1.502e−05 7.925 2.29e−
15 ***

population density −1.526e−04 2.367e−05 −6.446 1.14e−
10 ***

Klebsiella (β2)
intercept −1.821e−01 2.852e−01 −0.638 0.523,205

minimum temp −7.190e−02 1.672e−02 −4.299 1.71e−
05 ***

maximum temp 5.620e−02 1.517e−02 3.706 0.000211
***

rainfall 7.100e−04 8.446e−04 0.841 0.400,503

total population 9.690e−05 1.191e−05 8.137 4.04e−
16 ***

population density −1.030e−04 1.736e−05 −5.932 2.99e−
09 ***

Precision (ϕ)
2.06226 0.05015 41.12 < 2e−16 ***
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