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Gene transcription is a stochastic process that occurs in all organisms.
Transcriptional bursting, a critical molecular dynamics mechanism, creates
significant heterogeneity in mRNA and protein levels. This heterogeneity
drives cellular phenotypic diversity. Currently, the lack of a comprehensive
quantitative model limits the research on transcriptional bursting. This review
examines various gene expression models and compares their strengths and
weaknesses to guide researchers in selecting the most suitable model for their
research context. We also provide a detailed summary of the key metrics related
to transcriptional bursting. We compared the temporal dynamics of
transcriptional bursting across species and the molecular mechanisms
influencing these bursts, and highlighted the spatiotemporal patterns of gene
expression differences by utilizing metrics such as burst size and burst frequency.
We summarized the strategies for modeling gene expression from both
biostatistical and biochemical reaction network perspectives. Single-cell
sequencing data and integrated multiomics approaches drive our exploration
of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we
examined classical methods for parameter estimation that help capture dynamic
parameters in gene expression data, assessing their merits and limitations to
facilitate optimal parameter estimation. Our comprehensive summary and review
of the current transcriptional burst dynamics theories provide deeper insights for
promoting research on the nature of cell processes, cell fate determination, and
cancer diagnosis.
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1 Introduction

There are currently two primary recognized modes of gene expression: constitutive and
bursty. Explosive transcription is a common occurrence in the human genome. In 2012, Dar
et al. provided strong evidence of a theoretical framework for comparing gene expression
patterns in cellular expression profiles (Dar et al., 2012). Transcriptional bursting represents
a type of molecular dynamics that manifests as the heterogeneous expression of identical
genes across different cells. The stochastic nature of transcriptional bursting and its
potential for feedback regulation are integral to the maintenance of complex networks
of biochemical interactions in living organisms.

An electron microscopy imaging study in the 1970s provided direct visual evidence of
the discontinuous transcription of genes. Miller chromatin spreads from Drosophila
embryos showed nascent transcripts distributed unequally along the gene sequence
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(Miller Jr and McKnight, 1979). The advent of fluorescence
microscopy has advanced gene expression detection techniques
such as single-molecule fluorescence in situ hybridization
(smFISH) (Femino et al., 1998) and RNA phage MS2 stem-loop
detection methods (Bertrand et al., 1998) on fixed cells. The studies
in single cells have consistently recorded the rapid emergence and
subsequent short-term disappearance of multiple mRNAs within a
single gene (Raj et al., 2006; Battich et al., 2013; Larson et al., 2013;
Lenstra et al., 2016). These imaging techniques not only confirm the
discontinuity of transcription but also reveal transcriptional
bursting that occurs on a timescale of minutes. In eukaryotes and
prokaryotes, the dynamics of rapidly producing large amounts of
mRNA in a short period is referred to as a “transcriptional burst”.
Given the myriad life processes ongoing within an organism, cells
continuously adjust their transcription processes to meet the
demands of these activities. However, the internal dynamics of
this process are complex (Tunnacliffe and Chubb, 2020). The
study of rapid balance of gene states determines the state and
function of discrete phenotypic cells, and feedback regulation
significantly affects the switching of individual gene states (Ge
et al., 2015). Ge et al. proposed a wave rate model to investigate
the effect of random gene state switching dynamics by operons on
the regulation of cell phenotypic specificity (Ge et al., 2018).
Investigating the characteristics of transcriptional bursting,
including the size and frequency of bursts and the degree of
response to environmental, chemical, and genetic stimuli, we
provide insights into the principles of transcriptional functions
within the nucleus at the single-molecule level. Moreover, studies
have reported that variations in the transcriptional bursting features
can alter the cellular state (Fritzsch et al., 2018; Wang and Wang,
2021). Different cellular states can in turn influence the dynamics of
transcription initiation and elongation (Mines et al., 2022). This is
dependent on the interaction between internal and external noises,
forming a rudimentary feedback loop in the regulation network.
Transcriptional burst models of gene expression often discretize the
continuous dynamics of gene expression into mathematical models
of promoter switching. One of the earliest models used to describe
gene expression was the protein synthesis model based on a
Markovian framework (Peccoud and Ycart, 1995), known as the
stochastic telegraph model of gene expression. This model
characterizes the random switching of genes between the active
and inactive states. With advancements in sequencing technology,
the moment estimation method for inferring parameters in protein
models has been improved to inferred mRNAmodels (Larsson et al.,
2019). However, simplifying gene expression mechanisms by
ignoring the complexity of intermediate states sacrifices many
hidden stochastic molecular processes (Fritzsch et al., 2018).
Therefore, Schwabe et al., Rodriguez et al., and Jia et al.
independently developed multi-state models to map the
mechanisms of sequence-encoded regulation on a genome-wide
scale (Schwabe et al., 2012; Larsson et al., 2019; Jia and Grima,
2023). The steady-state solution of the analytical model reflects the
dynamic equilibrium state of the gene expression system. In 2013,
Kim et al. presented the Poisson-beta model based on the steady-
state solution of the telegraph model, which was the first use of
single-cell RNA sequencing (scRNA-seq) data (Kim and Marioni,
2013). In 2017, Jiang et al. proposed the SCALE framework to
overcome ignoring technical variations in the model and attributed

the source of noise in PHO5 gene expression to nucleosome
occupation and the differential expression of genes to the
regulation of burst frequency (Jiang et al., 2017). In 2019,
Larsson et al. inferred burst frequency and burst size from
endogenous mouse and human genes using scRNA-seq data,
which provided insights into how cis-regulatory sequences and
transcriptional machinery govern these bursting characteristics
(Larsson et al., 2019). Integrating transcriptional bursting with
other factors or investigative methods is essential for the study of
gene expression, regulation of gene activity, and the specificity of
gene functions. In 2024, Wang et al. developed a comprehensive
framework that integrated the dynamics of chromatin accessibility
and transcriptional bursting (Wang et al., 2024). They enriched the
theoretical modeling of gene expression mechanisms by
constructing a stochastic gene expression model with feedback
regulation. This model combines static promoter structures and
dynamic regulatory networks using scRNA-seq data. In the same
year, Fallacaro et al. quantified the molecular dynamics of
transcription factor-specific hubs in Drosophila embryos using
imaging technology and single-molecule tracking (Fallacaro et al.,
2024). Their study showed that variations in burst duration,
magnitude, and frequency control the different ways in which
genes are expressed in the same cell nucleus (Fallacaro et al.,
2024). Recently, Mayer et al. developed a gene expression model
for multinucleated cells and showed that the division of
transcriptional labor allows the syncytium to circumvent the
tradeoff between gene expression efficiency and precision (Mayer
et al., 2024). The stochastic nature of gene expression originates
from regulation at different levels; intracellularly, multiple copies of
the same gene can achieve similar developmental expression
patterns during transcriptional bursting and receive distinct
regulatory inputs for individual genes, a process that contributes
to protein function diversity. Transcriptional bursting can affect
expression states and behaviors by altering the communication
between cells. This behavior results in the diversity and
specificity of non-genetic transcription and sensitivity of cellular
states to external interventions. Moreover, it affects how cells
respond to the microenvironment and the modes of cell death.
In emerging fields, such as spatiotemporal molecular medicine,
transcriptional bursting provides novel insights into the
molecular mechanisms underlying drug resistance (Wang and
Wang, 2021).

The above studies either focused on specific medical directions
without sufficient evidence or experimental results to support a
unified conclusion (Rodriguez and Larson, 2020; Tunnacliffe and
Chubb, 2020; Wang and Wang, 2021). The natural question is how
to more comprehensively explain the stochasticity in the gene
expression process using models or how to use advanced
technology, such as scRNA-seq technology, to investigate the
dynamics of transcriptional bursting in gene expression.

In this study, we provide a comprehensive review of the research
contributions and current popular focus areas related to the
mechanisms of transcriptional bursting, beginning with a
systematic combination of various gene expression models and
their applicability. Second, we elaborate on and summarize the
key indicators of transcriptional bursting, the temporal scale
separation of species-related mechanisms, and their degrees of
impact. We then show the strategies for gene expression models
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from different perspectives and the philosophies, advantages, and
disadvantages of classical parameter inference methods. Finally, we
delve into the omics of single-cell data that drive the establishment
of new gene expression mechanism models. We focus on the latest
advancements and potential developments in the study of the
mechanisms of transcriptional bursting dynamics. We further
discuss the possible methods for exploring these dynamics and
meaningful research directions. This study provides a
comprehensive synthesis guidance for researchers in this field.

2 Models and methods

2.1 Gene expression model

In multicellular organisms, the configuration or compositional
elements of promoters are crucial molecular mechanisms that
determine transcriptional bursts. This is reflected in the allocation
of promoter states and the stochastic pausing associated with the
formation of specific biomolecular complexes at these promoters. The
nucleosome in eukaryotes is the basic structural unit of chromatin,
where the nucleosome is formed by combining DNA with histone
proteins. The tight structure of chromatin leads to the silencing of
genes, which is not conducive to transcription. During the slow
opening of the DNA strand on the nucleosome, the gene will go
through multiple deactivated states and eventually bind to
transcriptional regulatory elements to activate transcription
(Minnoye et al., 2021). At the transcriptional level, one way of the
gene expression regulating is through induction fine-tuning, and an
inducible gene is silenced most of the time. Such genes are briefly
expressed when activated by external signals such as hormones, sugar
and temperature. In order to model this biological process, Peccoud
et al. first constructed model of the random switching of promoter
states, which included the random switching of promoters between
active and inactive states (Peccoud and Ycart, 1995). Two-state model
of gene expression is commonly used as the random transcription
model. However, for genome-wide studies, many experiments and
theories have led to the development of multistepmodels to reflect the
transcriptional dynamics and explain the heterogeneity of
developmental gene expression. Here, we present the existing
classical promoter state-switching models that represent one of the
important advancements in understanding gene expression dynamics.

2.1.1 One-state model
To explore the source of heterogeneity in transcriptional

dynamics and the most essential cause of random fluctuations,
we need to understand the most basic one-state model of gene
expression (the constitutive gene expression model). The one-state
model describes the birth and death processes of gene products.
Gene expression models describe genes that have multiple activated
(ON) and inactivated (OFF) states: in the ON state, genes produce
RNAs continuously at a constant rate, while existing RNA
transcripts are degraded at a constant rate; in the OFF state, they
stop producing RNAs, yet the degradation of existing RNA
transcripts continues, as in the ON state. The one-state model of
gene expression generally includes only a single active state Son (see
Figure 1A) (Klindziuk and Kolomeisky, 2018), and some
experiments have shown that the burst size of the gene follows a

geometric distribution (Paulsson and Ehrenberg, 2000; Golding
et al., 2005). At this point, the transcription process of the gene
involves two simultaneous activities: the generation of RNA
molecules at a constant rate and the degradation of RNA
molecules at a constant rate. The rate is proportional to the
number of existing RNA transcripts in the system. The one-state
model consists of two effective reactions.

Son →km Son +mRNAs,

mRNAs →δm ∅. (1)

Single-molecule RNA fluorescence in situ hybridization
(smFISH) can measure differences in RNA abundance and reveal
differences between cells; however, the one-state model is not
suitable for highly variable smFISH data (Nicolas et al., 2017).
Furthermore, the steady-state distribution of the RNA molecules
produced by the one-state model conforms to a Poisson distribution.
However, this unique distribution of variance, equal to the mean,
could not cover the transcriptional distribution of all genes and
could not account for the overdispersion phenomenon in the results
of the difference significance test of gene expression. Paulsson et al.
found that adding additional gene expression states to the model
could explain the differential expression phenomenon based on
smFISH data (Paulsson, 2005).

2.1.2 Two-state model
Studies on transcription in both prokaryotic and eukaryotic

systems have yielded conflicting evidence about the primary modes
of gene expression over extended periods. Several studies have
focused on the elevated expression of mRNA alone (Golding
et al., 2005; Taniguchi et al., 2010). By constructing a three-
dimensional noise-space analysis framework, Dar et al.
quantitatively analyzed the dynamic expression behavior of
8,000 gene loci and proved that the majority of human genomic
loci appear to stochastically fire during episodic bursts. Combined
with the high production rate and short activation time, bursting
kinetics enable a more realistic distribution than previously studied
one-state models (Herbach, 2019).

The two-state model of gene expression (see Figure 1B), is a
phenomenological model that quantifies the burst dynamics of
genes (Peccoud and Ycart, 1995). It does not require specifying
the molecular identity of the burst parameters (Lammers et al.,
2020). It can produce mRNA distributions of various shapes and
mRNA copy numbers to reveal the underlying dynamics of the
promoters. For example, short activation states cause long tails and
high (hyperPoisson) variances in mRNA distributions; the slow
promoter conversion rate and long waiting time for activated and
inactivated states of the promoter cause two peaks in the mRNA
distribution (Nicolas et al., 2017). The complete chemical reaction,
based on the two-state model, is as follows:

Soff →kon Son, Son →koff Soff,

Son →km Son +mRNAs,mRNAs →δm ∅,

mRNAs →kp mRNAs + proteins, proteins →δp ∅. (2)

The assumptions of the two-state model are brief but limited,
and models containing multiple actived or inactived states are
increasingly becoming alternatives to modeling transcription
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mechanisms that cannot be explained by them (Neuert et al., 2013;
Bothma et al., 2014). This requires a careful balance between
overfitting and predictive power of the model. Transcriptional
burst behavior occurs on multiple timescales (see section 2.2 for
details). The transcriptional burst gene expression models are a
characterization of the degree of discretization of a continuous
process in which chromatin compact structures are fully opened
and fully closed. Promoter activity states have different fluctuations
on multiple time scales; importantly, the transition between states
may involve multiple rate-limiting steps, branching pathways, and
molecular events (Tantale et al., 2016). However, the two-state
model does not account for randomness.

2.1.3 Three-state model
Genes produce mRNAs almost simultaneously at an unsteady

rate, followed by a period of deactivation. Several models have
focused on regulating parameters such as burst size and burst
frequency to understand these dynamics (Brouwer and Lenstra,
2019). The two-state model largely fails to satisfactorily describe the
transcription process. The two-state model assumes that burst
decentralization is a secondary issue of transcription, occurring
only because of specific internal molecular noise, and does not
account for external sources of variation. In fact, chromatin opening
is a slow process, and genes go through the refractory period before

being activated again. Thus, a direct case for expanding the two-state
model is to increase the refractory period (Suter et al., 2011a). The
refractory period extends the two-state model to a three-state model
(Figure 1C). The three-state model refines the long-occupied
inactive state Soff into a deeply inactive state Soff2 and an
inactive state Soff1. The complete chemical reaction, based on
the three-state model, is as follows:

Soff2 →
kon Son, Son →

koff1
Soff1, Soff1 →

koff2
Soff2

Son →km Son +mRNAs,mRNAs →δm ∅,

mRNAs →kp mRNAs + proteins, proteins →δp ∅. (3)
The latter allows a faster switch to the active state (Brouwer and

Lenstra, 2019; Rodriguez et al., 2019). The three-state model also
contains some variants (Figure 2(A1-A2)). The type-1 three-state
model of gene expression (Figure 2A1) has multiple sub-OFF states,
with the TATA-box binding protein (TBP) being a key protein and
an important target for gene regulation (Tantale et al., 2016). An
intermediate state appears when TBP is bound, and the long state
appears when TBP is dissociated, encompassing the states of two
non-licensing periods: OFF2a and OFF2b. The type 2 three-state
model of gene expression type 2 (Figure 2A2), where RNA
Polymerase II (RNA Pol II) pausing occurs on a minute

FIGURE 1
Classical transcriptional burst model of random gene expression (A) The one-statemodel of gene expression, where km represents the transcription
rate of RNA (B) The two-state model of gene expression (the random telegraph model), kp represents the translation rate of protein production, kon

represents the rate of gene activation, koff represents the rate of gene inactivation, δm represents the rate of mRNA degradation, and δp represents the
rate of protein degradation (C) The three-state model of gene expression includes the inactived state of two genes: the deeply inactived state Soff1

and the inactived state Soff2 (D) The classical chain four-state model of gene expression includes the inactived states of three genes: deep inactived state
Soff1, deep inactived state Soff2, and inactived state Soff3 (E) The circular multi-state model of gene expression, consisting of multiple discrete gene
inactived states and one activated state (F) The continuum model of gene expression, consisting of an actived state and an inactive state of a gene, and
regulatory factors continuously regulating transcriptional initiation behavior over a long period.
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timescale, is characterized by forced pausing (Pimmett et al., 2021).
The three-state model with obligatory pause describes the systematic
entry of all RNA Pol II molecules into a paused state, followed by
extension and pause in mRNA production, while the three-state
model with non-obligatory pause describes a random entry of a
subset of RNA Pol II molecules into a paused state, followed by
extension and pause in mRNA production.

2.1.4 Four-state model
To refine the process of the slow opening of chromatin and

capture important random events, we often need to add more states
to accurately describe how static promoter sequences encode
transcriptional burst dynamics. The classical four-state model of
gene expression is a chain model (Figures 1D, 2B2) (Neuert et al.,
2013; Rodriguez et al., 2019; Lammers et al., 2020). Furthermore, the
integration of promoter-switching models with other dynamic
models aims to uncover gene expression mechanisms that
encompass more comprehensive information. Recently, Wang
et al. addressed how upstream genomic spatial organization,
particularly enhancer-promoter spatial communication, affects
downstream transcriptional bursting dynamics by constructing a
four-state model (Figure 2B1) (Wang et al., 2024). The OFF state of
the model contains a deep inactive state (Soff2) and an activated but
inactive state (Soff1), whereas the ON state of the model contains the

Pol II recruitment state (Srec (Fuda et al., 2009)) and Pol II
suspended release state (Srel (Chen et al., 2017)). Genes
synthesize mRNA during the transition from state to state. The
number of rate-limiting steps in gene transcription is usually small;
therefore, the Markov’s four-state model can balance feasibility and
efficiency. However, the context-specific four-state model is limited
in its interpretation of transcriptional phenomena involving other
molecular processes.

2.1.5 Multi-state model
Early research on bacteria developed a series of in vitro single-

molecule and live-cell experiments to model transcriptional
bursting, where the waiting time between states of the two-state
model follows an exponential distribution (Chong et al., 2014).
However, there is a “refractory” behavior in genes transcription of
mammalian cells that produces a distribution of non-exponential
peaks (Suter et al., 2011a). Promoters with multiple activation states
also exist, resulting in a non-exponential distribution of activated
state wait times (Sepúlveda et al., 2016). Corrigan et al. found that
continuously varying activation states can describe experimental
data more accurately than discrete states, enabling a wide dynamic
range of cellular responses to stimuli (Corrigan et al., 2016). The
“refractory” behavior in this gene reflects molecular memory, and
the existence of molecular memory in different states further affects

FIGURE 2
Classical transcriptional burst model of random gene expression (A1) The type-1 three-state model of gene expression. The regulation of the key
factor TATA-box binding protein (TBP) determines the structure of the sub-OFF state (A2) The type 2 three-state model of gene expression type 2. The
different degrees of RNA polymerase suspension shaped variants of the two three-state models (B1) The type-1 four-state model of gene expression
integrates a framework that combines chromatin accessibility with transcriptional burst dynamics (B2) The type-2 four-state model type of gene
expression consists of one inactive state and three activated states (C1) The type-1multi-statemodel of gene expression consists of one inactive state and
three activated states (C2) The type-2 circular multi-statemodel of gene expression consists of one activated state and several discrete inactivated states,
with arbitrary connections between states (C3) The type-3 chain multi-state model of gene expression consists of one inactive state and several discrete
sequentially activated states.
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the differential peak shape of gene product number distribution. In
fact, molecular memory is a feedback mechanism for inducing
bimodal, fine-tuning expression noise, and inducing promoter-
switching memory (Zhang and Zhou, 2019). Molecular memory
is a non-Markov process that simulates reactions within cells,
helping to identify more molecular details of biological processes.
The previous model reduced the non-Markov problem to a Markov
problem without considering that the switching of gene states
between active and inactive states is a multi-step process. At
present, there have been studies to reveal the non-Markov
properties of kinetics by modeling the waiting time of each state
as a non-exponential distribution. We introduce these models in the
following sections.

2.1.5.1 Typical multi-state model
Understanding howmultiple interacting elements cause genes to

switch randomly between different depths of active states during
transcription is crucial. Therefore, we constructed a multi-state
model of gene expression to study the dynamics of
transcriptional bursts. A chain multi-state model is the first to
explain this complex promoter-switching mechanism
(Figure 2C3). Previous studies focused on the steady-state
behavior of systems. The steady-state distribution of mRNA copy
numbers usually satisfies the generalized hypergeometric functions.
A natural choice is to extend the chain multi-state model to a ring
model with one active and multiple inactive gene states (Figure 1E).

From the perspective of the transient behavior of the system, Jia
et al. studied the time-dependent distribution of mRNA and protein
copy number (Jia and Li, 2023). They integrated multiple promoter
configurations to establish a gene expression model that described
complex promoter switching. The complete chemical reactions
based on this model are as follows:

Si →
kij

Sj, i, j � 0, 1, 2,/, L, i ≠ j,

S0 →
φ0p

kq
S0 + kp, Si →φ1p

kq
Sj + kp, k≥ 0,

p →δ ∅. (4)

Where the parameter follows a geometric distribution,
q � 1 − p. The first line of reaction in the system indicates that
the promoter switches between all gene states at the rate kij; the
second line of reaction describes the generation of gene product p in
all gene states. When k � 0, the generation of gene product p is
constitutive, and when k≥ 1 , the generation of gene product p is
bursty. The last line of reactant shows that the gene product p decays
at rate δ. The rate φ0p

kq and φ1p
kq indicate the reaction tendency

functions and describe the state switch of the promoter. When the
promoter is in the S0 state, the gene product is produced at rate φ0,
and when the promoter is in the Si state, the gene product p is
produced at rate φ1. When φ0 <φ1, S0 is active state, Si , i � 1, 2,/, L
is inactive. In this case, the active period presents an exponential
distribution, and the correspondingmodel is called themultiple OFF
states model (Figure 2C1), and the inactive period may present a
non-exponential distribution. When φ0 >φ1 is inactive, S0, i �
1, 2,/, L , is the active state, the active period is non-exponential
distribution, and the corresponding model is called the multiple ON
states model (Figure 2C2). Dividing multi-state models directly
based on the activation state of genes is a simple and direct

approach. Some studies categorize multi-state models according
to the waiting time of the activation state (Daigle et al., 2015).

2.1.5.2 Continuum model
The snapshot data obtained from the population of dead cells via

scRNA-seq did not allow the observation and quantification of the
continuous evolution of transcriptional behavior over time (Chubb
et al., 2006). A quantitative imaging study of actin gene transcription
revealed that its activity of gene transcription is not strictly discrete,
but resembles a continuous or dynamic spectrum of states (Corrigan
et al., 2016). This suggests that there is a wide dynamic range of
cellular responses to stimulation. Corrigan et al. constructed a
continuum model of gene expression based on the two-state
burst model (Corrigan et al., 2016). This model includes a long-
term inactivated state of the gene and the activation state of genes
that continuously switch due to slow fluctuations in the activation
rate (Figure 1F). The continuum model simulates suitable dynamic
gene expression data for the immediate response of cells to stimuli
(Featherstone et al., 2015) and provides a suitable scenario for
interpreting the continuous output of transcriptional products
(Sepúlveda et al., 2016). The study found that most promoters
have more than two effective states (Harper et al., 2011; Zhang
et al., 2012). In the multi-state model, transitions between switching
states expand the reaction steps to describe more complex
transcriptional burst regulation mechanisms (Schwabe et al., 2012).

2.1.6 Comparison of models
The telegraph model first rigorously links transcriptional

dynamics to random gene expression. Researchers commonly use
the two-state model for gene expression studies owing to the
conciseness of its assumptions. The simplicity of this model
stems largely from the assumption of constant rates during gene
state switching and transcription. Morepver, these assumptions
attribute burst behavior to internal molecular noise, without
accounting for the influence of external variant signals. In
particular, the two-state model is insufficient to explain the
dynamic process of eukaryotic gene transcription that involves a
large number of regulatory proteins and cofactors (Schwabe et al.,
2012). Earlier reports have added to the bias between the refractory
period and the two-state model; the bias extends to the three-state
model, which includes refined periods of activity and inactivity
(Suter et al., 2011a). The advantage of this model is in its ability to
explain the control of explosive mRNA production and is suitable
for genome-wide studies. However, it may lead inefficient
information transfer in multi-state transcription. Models with
only one or two gene states cannot accurately describe the
dynamic transcription of several genes. Multi-state models can
avoid these limitations of and offer a more accurate depiction of
gene expression dynamics (Elgart et al., 2011; Schwabe et al., 2012;
Zhang and Zhou, 2014; Zoller et al., 2015; Livingston et al., 2023;
Wang et al., 2023; Chen et al., 2024). However, researchers have
guided the design of the model based on prior knowledge of the
system, specific research objectives, and the subjects limiting it.
Table 1 summarizes the advantages and disadvantages of the various
gene expression models.

Overall, using a two-state model to simplify the description of a
gene’s transcriptional burst should not be the default approach;
likewise, some form of multi-state structure is not guaranteed to be
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more descriptive (Nicolas et al., 2017). Therefore, we must choose
the most suitable model that can best reveal the nature of the
differentiation destiny of a certain organism according to various
data types to achieve a better match between the theoretical model
and experimental data. In addition, the gene expression models we
constructed were all independent models based on specific problem
situations, with a large number of models and varying degrees of
complexity. Therefore, biological processes in complex biological
systems require the integration of multiple models for regulation.
Random telegraph model can be used as the basic unit to construct
interaction gene regulatory networks (Herbach et al., 2017).

Traditional multi-state models of gene expression lack the ability
to capture randomness affecting observed mRNA numbers, such as
the inability of telegraph models to account for the effects of external
noise on gene transcription and switching rates. Fortunately, several
studies have addresssed this by modeling the effects of noise on
mRNA and protein abundances, that can affect parameter estimates,
from data and model driven perspectives, respectively. From a
model perspective, Durrieu et al. coupled gene expression to cell
size and cell-specific nuclei (Durrieu et al., 2023); Jia et al. andWang
et al. correlated polymorphic models of gene expression with cell
size, cell cycle stage, and gene dosage compensation coupling (Jia
and Grima, 2023) (Wang et al., n.d.); and Thomas et al. coupled gene
expression with cell division and cell differentiation (Thomas and
Shahrezaei, 2021). From a data perspective, Tang et al. considered
the effects of cell size and counting noise on gene expression (Tang
et al., 2023), and Grima et al. identified the source of external noise
in gene expression based on parameter deviation characteristics
(Grima and Esmenjaud, 2024). In conclusion, focusing on
improving model randomness in gene expression research is
more in line with the complexity of biochemical systems.

2.2 Molecular mechanism of transcriptional
burst and its regulatory factors

2.2.1 Time scale of transcriptional burstmechanism
Bacteria, as representative prokaryotes, and mammalian cells, as

representative eukaryotes, intermittently produce transcripts on
different timescales. The synthesis and processing of these
products involve molecular mechanisms across multiple scales of
time. The experimental results of gene expression measurements at
different time resolutions, ranging from milliseconds to days

(Harper et al., 2011; Fritzsch et al., 2018; Rodriguez et al., 2019),
provide a basis for understanding gene regulation mechanisms.

The duration of a transcriptional burst is the sum of the time
course during which multiple transcription initiation events occur
(Wang et al., 2018). Despite advances in imaging techniques and
single-cell sequencing, the accurate measurement of the duration of
transcriptional bursts remains challenging. The existence of multiple
time scales Figure 3 can be explained by variations in the duration of
individual transcriptional bursts across different organisms and
genes (Figure 3 (1–3), Table 2 and 3) and variations in the
temporal resolution of different underlying molecular processes
related to transcription (Figure 3 (4–11) and Table 4).
Experiments by Pichon et al. on the molecular activity of the
TATA-binding protein (TBP) and the pre-initiation complex
(PIC) revealed the following three timescales of promoter
activation in steady-state systems (Pichon et al., 2018): (1) long
inactive periods and brief active periods, (2) 1-min transcriptional
intervals produced by TBP binding, and (3) faster fluctuations
between active and inactive promoter states induced by TBP
binding and subsequent molecular activities. It is critical to
determine the timescales of the transcription process and build
interpretable and analyzable mathematical models of promoter
states. Different genes display distinct bursting characteristics in
biological processes with different timescales, and regulation of burst
size influences the degree to which cells respond to stimuli and the
extent of variability in downstream gene products.

Within a single gene, these multiscale transcriptional bursts can
occur independently and simultaneously (Tantale et al., 2016),
encompassing the complex dynamics of bursting behavior.
Recently, several studies have focused on extending the
traditional two-state model to include additional insights and
validations of these stochastic processes (see Table 4), while
preserving the tractability of the model analysis (Kim and
Marioni, 2013; Vu et al., 2016; Larsson et al., 2019; Chen et al.,
2022; Grima and Esmenjaud, 2024).

2.2.2 Regulatory factors affecting transcriptional
burst mechanism

Cells with the same genome in a common environment exhibit
heterogeneity in gene expression, which is reflected in expression
patterns and degrees of expression. In eukaryotic organisms, a
greater degree of gene-specific behavior in gene expression relies
on the description of burst characteristics, with burst size and burst

TABLE 1 Summary and comparison of random gene expression models, where BCR is biochemical reaction.

Model Bcr Advantage Disadvantage Ref.

One-State Model Equation 1 A fixed initiation rate Lack of complexity
Overdispersion

Klindziuk and Kolomeisky (2018)

Two-State Model Equation 2 Widely applicable
Distribution BS

Steady-state distribution of mRNA.

Constant rate
Lack of randomness
No external noise

Peccoud and Ycart (1995), Lammers et al. (2020)

Three-State Model Equation 3 Controlled burst synthesis
Genome-wide applicability

Inefficiency of information transfer Suter et al. (2011a), Tantale et al. (2016), Pimmett et al. (2021)

Lack of complexity

Multi-State Model Equation 4 Gene regulation
High flexibility

Clear object of study Daigle et al. (2015), Corrigan et al. (2016), Chen et al. (2024)

Specific prior assumption
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frequency commonly used to analyze the mechanisms of
transcriptional bursting. These burst features are regulated by
molecular mechanisms such as the local chromatin environment,
nuclear occupancy, histone modifications, number and affinity of
cis-regulatory elements, DNA looping, and transcription factors (see
Figure 1). To understand the extent to which these molecular
mechanisms drive burst dynamics, we analyzed the influence of
molecular mechanisms on burst size and frequency, drawing from a
comprehensive body of literature that quantitatively assesses the
impact of regulatory factors in various gene expression contexts

(Table 4). The degree of influence on the burst indicators was
proportionally delineated based on the referenced volume in the
literature. The number of cis-regulatory elements exclusively affects
burst size (Dey et al., 2015). However, nuclear occupancy,
particularly at transcription termination sites (TTS), dominates
the regulation of burst frequency and it acts as a key factor
driving burst dynamics (Raj et al., 2006; Suter et al., 2011b;
Senecal et al., 2014). Histone modifications and the affinity of
cis-regulatory elements primarily influence burst size, whereas
DNA looping and the acquisition of transcription factors mainly

FIGURE 3
Temporal scale separation of transcriptional bursting and its underlying molecular processes across different species. The time scales of
transcriptional bursts at different species levels are shown above the time scale arrows. The time scales of potential molecular processes associated with
transcriptional bursts are shown below the time scale arrows (A) Transcriptional bursts in an embryo of the fruit fly Drosophila melanogaster, yeast, and
bacteria occur on timescales of a fewminutes (B) Transcriptional bursts in the nematode Caenorhabditis elegans occur on timescales of minutes to
hours (C) Transcriptional bursts in human cells occur on timescales of a few hours (D) The process of DNA wrapping or unwrapping of nucleosomes
occurs on timescales of milliseconds (E) Nucleosome turnover in the chromatin of eukaryotic cells occurs on timescales of minutes to hours (F) Histone
modification occurs on timescales of minutes to days (G) Transcription factor binding occurs on timescales of a few seconds (H–I) Enhancer-promoter
interaction and transcription initiation occur on timescales of seconds tominutes (J) RNA polymerase cluster kinetics occurs on timescales of seconds to
minutes (K) Media cluster dynamics occur on timescales of seconds to minutes (L) The promoter-proximal pausing behavior occurs on timescales of
seconds to minutes. The details are shown in Table 2.

TABLE 2 Time separation of single transcriptional bursts in different biological systems.

Bio-
system

Bacteria Fruit fly embryo Nematode Human, mouse Amoeba

Gene In vitro
Tet system

even-skipped
Notch signaling; gap genes;

hunchback

Notch signaling TGF-β
Signaling

TFF-1 signaling; liver genes;
Mammalian genes

actin gene family 1
actin gene family 2

Timescale minutes minutes minutes
hours

hours minutes
hours

Ref. Chong et al.
(2014)

Bothma et al. (2014), Desponds et al. (2016),
Falo-Sanjuan et al. (2018), Lammers et al. (2018), Zoller

et al. (2018), Berrocal et al. (2020)

Lee et al. (2019) Suter et al. (2011a), Molina et al.
(2013), Bahar Halpern et al.

(2015)

Corrigan et al. (2016),
Tunnacliffe et al. (2018)
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affect burst frequency. A study based on the two-state model
revealed that the local concentration of transcription factors
around a gene and their residence time at the binding sites
jointly regulate the size and duration of transcriptional bursts
(Suter et al., 2011a). However, the relationship between the
activity of target genes and the binding rates of transcription
factors is being further investigated (Ochiai et al., 2020), as the
correlation between transcription factor binding rates and
transcriptional burst frequency is not universally observed
(Rullan et al., 2018). In addition, other cellular factors may
play a role in the regulation of transcriptional dynamics
(Lenstra et al., 2016), such as the regulation of burst frequency
by promoter-enhancer proximity during dominant developmental

processes (AntoloviÄ‡ et al., 2017; Alexander et al., 2018; Chen
et al., 2018).

2.3 Research methods for gene
expression models

We divided existing analysis and solution methods of previously
reported gene expression models into two categories: the
biostatistical perspective and the biochemical reaction network
perspective. To capture the randomness of transcriptional burst
mechanisms in gene expression, models usually assume that all
biochemical random events are Markov processes, considering the

TABLE 3 Time isolation of potential transcriptional molecular mechanisms in eukaryotes.

Molecular
processes

Nucleosomal DNA
wrapping/unfolding

Nucleosome
Turnover

Histone modification

Regulatory molecule Mononucleosomes
Mononucleosomes
Mononucleosomes

Histone H3.3
Histone H3

Histone H1,H2B,H3and H4 tagged with GFP

dCas9
inducible recruitment

rTet Rinducible recruitment
Histone H3

Targeted recruitment; liver genes;
Histone H2a, H2b, H3, H4
Histone H2, H2a, H2b

Organism In vitro reconstitution Fruit fly cell
Yeast, Plant cell
Human cell

Mammalian cell
Human cell

Yeast
Mammalian cell

Times-scale Milliseconds
Seconds

Hours
Minutes

Day
Hours
Minutes

Ref. Kassabov et al. (2003), Li et al. (2004),
Tomschik et al. (2005)

Waterborg (1993), Misteli et al. (2000), Kimura and
Cook (2001), Dion et al. (2007), Deal et al. (2010)

Chestier and Yaniv (1979), Katan-Khaykovich and
Struhl (2002), Zee et al. (2010), Hathaway et al.

(2012), Bintu, 2016; Braun et al. (2017)

TABLE 4 Molecular regulatory mechanisms affecting transcriptional bursts in higher eukaryotic genes, as depicted in Figure 5.

Molecular
mechanism

Influence
index
(BS/

BS&BF/BF)

The index affects the crude
proportion

(BS/BS&BF/BF)

Ref.

Local chromatin
environment

BS/BF 50%/37.5%/12.5% Singh et al. (2010), Skupsky et al. (2010), Larson et al. (2013), Singer et al.
(2014), Zoller et al. (2015), Fukaya et al. (2016), Mazzocca et al. (2021)

Nuclesome occupancy BF 1 Dey et al. (2015)

Histone modifiaction BS/BS&BF/BF 57.1%/14.3%/28.6% Muramoto et al. (2010), Harper et al. (2011), Suter et al. (2011a), Dar et al.
(2012), Viñuelas et al. (2013)

Number of cis-regulator
elements

BS 1 Raj et al. (2006), Suter et al. (2011a), Viñuelas et al. (2013)

Affinity of cis-regulator
elements

BS/BS&BF 50%/50%/0 Suter et al. (2011a), Corrigan et al. (2016)

DNA looping BS&BF/BF 0/33.3%/66.7% Bartman et al. (2016), Fukaya et al. (2016)

Transcription factors
availability

BS/BS&BF/BF 13.3%/33.3%/53.4% Raj et al. (2006), Singh et al. (2010), Suter et al. (2011a), Dar et al. (2012), 2016;
Larson et al. (2013), Ochiai et al. (2014), Senecal et al. (2014), Singer et al.
(2014), Bahar Halpern et al. (2015), Kalo et al. (2015), Xu et al. (2015), Ezer

et al. (2016), Kafri et al. (2016)

Burst size (BS): the number of copies transferred by a transcription burst.

Burst frequency (BF): the number of transcriptional bursts that occur in a fixed cycle.
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ease of the model. From the perspective of biostatistics, the best way
to characterize the randomness of gene products is through a
probability distribution. The goal of the researchers is to fit
ideally the steady-state distribution predicted by gene expression
models with the count distribution of single-cell mRNA snapshots
generated by sequencing techniques, such as smFISH or scRNA-seq.
From the perspective of the master equation, a biochemical reaction
network describes the dynamic changes in the state of a
transcriptional burst biochemical system. It is a group of
differential equations that describes the probability density
function of the change in the number of species in a biochemical
system. The appropriate choice of statistical tools helps gain finer
insights from the same transcriptome data.

2.3.1 Biostatistical perspective
From a traditional biostatistical perspective, transcription is

described as a low-probability event. In eukaryotic cells,
transcriptional products are generally considered to be generated
by the Poisson process, based on the classical telegraph model of
gene expression. In the case of bursts, a negative binomial
distribution is considered to be the canonical distribution of
intracellular dynamics. When the introduced technical noise and
biological noise are considered, the mRNA counts are divided into
real counts and observed counts, and the mRNA counts of the
telegraph model are often characterized by a mixed distribution
(Wang et al., 2018; Luo et al., 2022a). Based on the results of cell-
sequencing experiments, we often need to assume the probability
distribution of the observed sequencing counts to supplement the
analysis before modeling the gene expression mechanism. The
authenticity of the biological processes and their rationality must
be considered. The count data for gene expression are generally
discretized, and discrete distribution is best used to describe such
data, excluding cases where the entire number of expression counts
is extremely high (Amrhein et al., 2019).

2.3.1.1 Poisson distribution
Poisson distribution is prevalent in various random dynamics of

gene expression, regardless of whether it is time-dependent or
stationary. The Poisson distribution describes the number of
independent events within a given period. In systems biology, the
Poisson distribution variable represents the number of independent

events that produce a biomolecule. The Poisson distribution was
derived from a simple gene expression one-state birth-and-death
model. The Poisson process describes the number of generated
events in the time interval of transcription bursts, which represents
the lifetime of a molecule destined to survive for a given duration.
The negative binomial distribution of mRNA counts occurs as a
steady-state distribution derived from a kinetic model that produces
mRNA molecules in a burst form (Amrhein et al., 2019). It assumes
a convenient tradeoff between computational complexity and
biological simplicity.

2.3.1.2 Negative binomial distribution
Most mammalian genes are described using transcriptional

burst models of gene expression, which implicitly serve as the
basis for a negative binomial model of scRNA-seq counting
(Gorin and Pachter, 2020). The negative binomial distribution is
itself a distribution of discrete random variables that describe the
probability of the number of failed events X observed in a series of
independent Bernoulli experiments until a predefined number of
successes occurs, that is ~ NB(r, p), where the success probability is
p ∈ [0, 1] and the predefined number of successes is p ∈ [0, 1]. The
probability quality function of the number of failed events X is
Equation 5

fNB x; r, p( ) � PNB r,p( ) X � x( )

� x + r − 1
x

( )pr 1 − p( )x, for x ∈ N0 (5)

In early studies of gene expression, the negative binomial (NB)
distribution was considered suitable for random gene expression
models in mathematics, but there was no adequate explanation in
biology (Raj et al., 2006). In 2019, Amrhein et al. combined stochastic
differential equations and the chemical master equation (CME) to
build an interpretable mechanismmodel that could directly derive the
NB distribution under steady-state conditions (Amrhein et al., 2019).
In the parameter setting, they regarded transcription events as failure
events and gene inactivation events as success events. In gene
expression models that include splicing dynamics, the NB
distribution exists as a marginal distribution containing the
combined distribution of nascent and mature mRNA counts,
which helps fit the observed single-cell data (Gorin et al., 2021).

FIGURE 4
Key indicators of transcriptional burst (A) The burst size and the length of time the gene waits in the state SON are directly proportional to mRNA
production (B) Burst frequency is the total number of gene switches to state SON per unit time (C)Dwell time is the length of time a gene waits in a SON or
SOFF states. The cycle period of a gene is the total length of time the gene waits in a continuous SON and SOFF states.
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The solution of the telegraph model in the burst limit can be
approximated as a negative binomial distribution (Paulsson and
Ehrenberg, 2000) or a zero-expansion NB distribution, such as the
three-state model of gene expression (Jia, 2020). Of course, it is
difficult to directly obtain a mechanistic model of NB distribution
under a steady state. Therefore, continuous Poisson-beta and Poisson-
gamma distributions are commonmethods for inferring the evolution
process. The Poisson-beta, Poisson-gamma, and NB distributions are
mathematically equivalent.

2.3.1.3 Poisson-beta distribution
Based on the classical telegraph model of random gene

expression, when all aspects of biological variation and technical
noise, including cell size and dropout rate, are considered, the
mRNA count is divided into two types: real and observed counts.
Owing to the overly decentralized nature of gene expression data, a
common statistical method is to use the Poisson-beta distribution
with three parameters (Kim and Marioni, 2013; Tang et al., 2018;
2023). The mRNA count distribution Xij of the two-state model
follows a mixed distribution as follows in Equation 6:

Xij ~ Poisson kpi( ),
pi ~ Beta α, β( ). (6)

The random variable Xij is the mRNA count observed in the j
gene of the i cell, following the Poisson distribution; its parameter

kpi, pi is the original mRNA count in the i cell, that is, the original
count follows the distribution, and k is the effective transcription
rate acting on the original mRNA count. The observed mRNA count
Xij follows a Poisson-beta distribution. Although this distribution
provides good results for the estimation of RNA-seq data, it has a
high computational cost because of its large number of parameters.

2.3.1.4 Poisson-gamma distribution
The mRNA count distribution has been modeled based on the

two-state model of gene expression. Some studies suggest that the
observed count of gene expression levels in cells under steady-state
conditions follows a conditional probability distribution that
adheres to a Poisson distribution, and the promoter switching
dynamics obey a gamma distribution. When all aspects of
biological variation and technical noise are factored, the mRNA
counts of the two-state model are follow a mixed distribution: the
Poisson-gamma distribution like Equation 7 (Amrhein et al., 2019).

Xij ~ Poisson kpi( ),
pi ~ Gamma α, β( ). (7)

2.3.2 Biochemical reaction network perspective
The complexity of the gene expression process implies that it

involves numerous biochemical reactions, which reduce the process
to a set of biochemical reaction networks (including reaction rates)

FIGURE 5
Regulatory molecular mechanisms underlying the transcriptional burst mechanism. In higher eukaryotic systems, the local chromatin environment,
nuclear occupancy, histone modifications, and the number and affinity of cis-regulatory elements influence transcriptional bursting, adding to the
regulatory complexity. The colored boxes highlight specific molecular mechanisms for their regulatory impact on burst size and frequency: blue
represents regulation of burst size, red indicates regulation of burst frequency, and yellow indicates control over both burst size and frequency. The
proportion of colors corresponds to the frequency of citations in Table 4.
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after coarse-grained processing of molecular details (T, 2019) seeing
Equation 8.

∑n
j�1
rijXj→ ki∑n

j�1
sijXj, 1≤ i≤M, 1≤ j≤ n, (8)

where rij and sij are stoichiometric, that is, the amount of change in
the number of molecules of species Xj with reference to the i th
reaction and ki is the reaction rate, such as the transfer network
between the promoter states. The CME is not only the basis for
establishing a gene expression model but also contributes to the
dynamic change of the biochemical system state. The differential
equation describing the probability density function P(X; t) of the
change in the number of species molecules X with time t in a
biochemical reaction (T, 2019) is written as follows Equation 9:

∂P X; t( )
∂t

� ∑M
i�1

E−vi − I( ) ai X( )P X; t( )[ ], (9)

where I represents the identity operator, E and its inverse E− are
translation operators, and ai(X) is the reaction tendency function.
Our aim is to construct meaningful and interpretable CMEs,
especially selecting the right solution tools, which are the key to
studying gene expression models, and finally obtain a steady-state
solution and determine the statistical significance of the distribution
that the variables follow.

Currently, methods based on simulation, matrices, and analysis
are the three most common methods used to solve the main
equations of chemistry. Simulation-based methods, such as the
well-known Gillespie stochastic simulation algorithm (Gillespie,
1976; 1977), are used to solve difficult to find analytical solutions
to the CME. The Gillespie algorithm makes many computable
sample statistics that asymptotically approach the statistics of the
underlying processes at different speeds. Limited to small-scale
biochemical reaction systems with relatively single molecular
species, such as transcription systems, Gillespie is easy to operate
and can be parallelized. However, it is unable to provide a joint
probability distribution of the variables concerned. Matrix-based
methods, such as the finite state projection algorithm (FSP) and
multifinite buffers (Munsky and Khammash, 2006), which reduce
the state space to calculate the precise steady-state solution and

variable network probability landscape (Cao et al., 2016), either rely
on matrix exponentiation or eigenvalue computation to solve the
truncation problem of infinite dimensional CME systems.
Therefore, it is effective for large-scale biochemical reaction
systems. Convenient symmetry and faster runtimes relative to the
simulation methods require feature runtimes, generally O(n3),
where n is the state-space size. The analysis-based method is a
general method for solving the main equation and can directly solve
basic ordinary differential equations. For example, the steady-state
solution can be reconstructed using the relationship between the
generating function and the probability density function in the main
equation (Gardiner, 1985), or the convolution structured method
used for the basic system can easily obtain multiple properties of the
solution (Jahnke and Huisinga, 2006), and its running time is
generally O(n).

Through the relevant Markov jump process, numerical
simulation technology to achieve an approximate solution of the
CME or an effective method to solve the CME directly is still widely
open for research, and methods that have the running time,
application dimension, solution accuracy, and special properties
of the obtained solution are still being explored. In addition to the
use of CMEs, the queuing theory has been proposed to model and
solve complex biochemical reaction systems for RNA production
and degradation. Recently, various stochastic models describing
gene burst expression have been mapped onto several specific
queuing systems (Bressloff, 2017; Fralix et al., 2023; Szavits-
Nossan and Grima, 2023). Solving stochastic gene expression
models using queuing theory (Szavits-Nossan and Grima, 2024)
provides different viewpoints to building solutions for more
complex gene expression models than those currently considered.

2.4 Definition of key indicators of
transcriptional burst

RNA imaging technology has been used to directly visualize the
dynamics of transcriptional bursts in cells (Larson et al., 2011). Burst
measurements can help capture dynamic processes overlooked in
standard population-averaged measurements of gene product
expression, reflecting the underlying mechanisms of

TABLE 5 The molecular regulatory mechanisms affecting transcriptional bursts in higher eukaryotic genes correspond to those described in Figure 4.

Parameters Definition Formula Function Ref.

Burst size (BS) The number of copies transferred
by a transcription burst

BS � s
koff

The randomness of gene expression is mainly
determined by the explosive nature of

transcription

Luo et al. (2022b), Wang
et al. (2024)

Burst frequency (BF) The number of transcriptional
bursts that occur in a fixed cycle

BF � 1
(τoff )+(τon ) Understanding the temporal dynamics of

gene expression and how cells quickly adapt
to environmental changes

Friedman et al. (2006), Kim
and Marioni (2013), Luo

et al. (2022b)BF � koff

Dwell time (DT) The sum of dwell times in total
states in a single burst

CT � ∑ τSi Understand the dynamic nature of gene
regulation

Zopf et al. (2013), Wang
et al. (2024)

Cycle time (CT) The duration of the RNA
polymerase remaining on the gene

for transcription

E[DTON] � 1
λon1

+ λoff2
λon1λon2

Reveal the efficiency of transcription
processes and the overall dynamics of gene

expression

Zopf et al. (2013), Donovan
et al. (2018), Wang et al.

(2024)

Average travel
ratio (MTR)

Pol II density between genosome
and promoter approximation

E[TR] � PGB
PPP

� E[BS]
E[DTrel ]τE � λrelτE Reveal the balance between transcriptional

initiation and elongation
Wang et al. (2024)
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transcriptional regulation. Transcriptional burst models of gene
expression can be characterized by several random variables,
namely, burst size, burst frequency, dwell time, cycle time, and
average travel ratio, and several studies have focused on the
regulation of these parameters (Ochiai et al., 2020). Our
mathematical analysis focused on building expressions for
parameters based on explicable biological principles, the
calculation of which is closely related to the rate of state
switching, and then calculating the probability density function
(PDF) or the probability mass function (PMF) of these random
variables and their statistics. Basic information regarding these
outbreak parameters is summarized in Table 5 and Figure 4.

2.4.1 Burst size
In our characterization of transcriptional burst dynamics, burst

size and burst frequency were the two most critical parameters.
Transcriptome-wide data reveal that burst frequency is primarily
determined by enhancers, and burst size is primarily determined by
core promoters (Wang et al., 2024). Constrained by the biocentric
rule (Jia et al., 2019), gene expression includes three stages:
transcription, translation, and promoter switching between the
active and inactive states. Based on the two-state model, mRNA
synthesis occurs in random bursts and exhibits a geometric
distribution. The average number of transcripts produced by a
gene at each burst is called the burst size (see Figure 4A).

2.4.2 Burst frequency
Based on the above model, there are two common descriptions

of burst frequency. One is defined as the average number of bursts
occurring per unit time (Luo et al., 2022b), that is, the reciprocal of
the average cycle time, which can also be understood as the number
of transcriptional bursts occurring in a fixed cycle (Friedman et al.,
2006), where τoff is the waiting time of the promoter in the OFF
state, τon is the waiting time of the promoter in the ON state, and
<·> is the average waiting time. Another definition is based on the
rate at which the promoter state switches (Figure 4B) (Kim and
Marioni, 2013).

2.4.3 Cycle time
The cycle time of a gene transcriptional burst consists of two

processes (Zopf et al., 2013): (i) residence time from the inactive
state SOFF to the activated state SON and (ii) dwell time from the
active state to the inactive state. For different gene expression
models, the cycle period is a random variable equal to the sum
of the residence times of all states Si in an outbreak process (see
Figure 4C) (Wang et al., 2024).

2.4.4 Dwell time
Based on the four-state model of gene expression (Wang et al.,

2024), dwell time is a random variable of the waiting time of a single
state of a gene during the transcriptional burst cycle (Figure 4C). We
temporarily ignored the dwell time in the SOFF state and calculated it
in the SON state (Zopf et al., 2013). Subsequently, the residence time
in the SON state can be calculated separately (Donovan et al., 2018;
Wang et al., 2024). Let HT|BS,S(tmiddle|m, s) be the survival
probability of mRNAs generated in a burst
(i.e., BS � m,m � 0, 1, 2, . . ..) at time t (i.e., T � t) and S state

(i.e., S � s, s ∈ {rec, rel}). According to the concept of burst size,
the marginal probability of the survival time T is

HT|BS,S t|m, s( ) � Pr Texit > t|BS � m, S � s( ), (10)
where Texit denotes the exit time from the S state in Equation 10. For
the detailed solution process in (Wang et al., 2024), the average ON-
state dwell time E[DTON] can be expressed as Equation 11

E DTON[ ] � ∫+∞

0
tpON t( )dt

� λrel + λreloff1

λrecλ
rel
off1 + λrel + λreloff1( )λreloff1

+ λrec

λrecλ
rel
off1 + λrel + λreloff1( )λreloff1

, (11)

where λc, c ∈ {rec, rel, off1} is the transfer rate of the burst process
and Sc represents each state in the model.DTON is the dwell time of
the ON state and PON(t) is the total transition probability density
function of the dwell time of the ON state. The first term on the right
side of the equation is the average dwell time E[DTrec] of the
fundraising state of Pol II, and the second term is the average dwell
time E[DTrel] of the fundraising state of Pol II in the ON state.
Similarly, the average dwell time in the OFF state is calculated as
follows in Equation 12:

E DTON[ ] � 1
λon1

+ λoff2
λon1λon2

. (12)

2.4.5 Average travel ratio
Based on an important characteristic parameter mentioned in

the four-state model, the average travel ratio (MTR) is defined as the
ratio of the Pol II concentration in the gene body (i.e., the DNA
sequence of the entire region of the gene, except for the regulatory
region, from the transcription of the gene start site to the
polyadenylation signal) to the Pol II concentration at the
proximal promoter seeing Equation 13.

E TR[ ] � PGB

PPP
� E BS[ ]
E DTrel[ ] τ � λrelτ, (13)

where τ is a fixed extension time interval of mRNA and PGB is the
proportion of the total extension time of Pol II to the total
circulation time in the genome. PPP is the Pol II concentration
near the promoter, which can be viewed as the proportion of the
residence time of the Srel (Pol II suspended release state) state
throughout the transcriptional burst; λrel is the effective rate of
Pol II pause release (Wang et al., 2024).

2.5 Parameter inference methods

In a single cell, highly variable patterns of gene expression often
make the production of gene expression products (mRNA and
proteins) explosive. Therefore, several methods have emerged to
infer the parameters of transcriptional burst dynamics from single-
cell data. According to the given real gene expression data (See it in
section 2.6), we first need to carry out outlier processing and
normalization of the data. Secondly, we defined the transcription
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parameters and the master equation to solve the steady state
distribution of mRNA according to the selected model (See it in
section 2.1; section 2.3; section 2.4). Thirdly, we construct the state
transition matrix according to the requirement of the likelihood
function and select the parameter inference method. one is based on
likelihood and moment; the other is the simulation-based approach
(See it in section 2.5). Fourthly, you implement parameter inference
and optimize the inferred parameter set. Finally, we perform
parameter validation and model evaluation, including checking
the simulation results with inferred parameters and fitting to real
data, and evaluating the uncertainty of parameters. The relatively
mature estimation methods of transcriptional burst characteristic
parameters can be mainly divided into two categories: one is based
on likelihood and moment and the other is a simulation-
based approach.

For estimation methods based on likelihood and moment,
parameters can be estimated by either explicitly calculating the
likelihood of the observed data for given parameters or by
comparing the moments (mean, variance, skewness, etc.) of the
distribution of gene expression products (mRNA and proteins) with
those predicted by the model. Typical methods include maximum
likelihood estimation (MLE) and the method of moments
estimation (MME), such as the general method of moments and
binomial moment estimation. Daigle et al. used an iterative,
simulation-based Monte Carlo expectation-maximization
algorithm (modified cross-entropy Monte Carlo expectation
maximization, MCEM2) to compute the likelihood function for
parameter estimation (Daigle et al., 2015). The advantage of this
method lies in its effective estimation of parameters for stochastic
biochemical systems from given incomplete data and in inferring
promoter state numbers and structures. This method can be used to
infer the burst size follows the geometric distribution. The MLE
method maximizes the probability of observing the gene expression
data given the parameters, making it a universal parameter
estimation method. However, the consistency and efficiency of
MLE estimates depend on large sample sizes, which make
parameter optimization challenging. Moreover, MLE does not
provide a natural measure of parameter uncertainty.

The hierarchical Bayesian method, which integrates prior
knowledge based on Bayesian principles, is a promising
parameter estimation approach. Kim et al. were the first to study
the dynamics of stochastic gene expression using scRNA-seq data
(Kim and Marioni, 2013). They constructed a beta-Poisson model
based on a stochastic telegraph model of gene expression. The
hierarchical Bayesian method assumes a gamma distribution for
each gene-specific parameter in the beta-Poisson model (normalized
by the degradation rate). The gamma distribution is advantageous in
that it is strictly positive, possesses a simple functional form, and
allows independent adjustments of its mean and variance. Finally,
the hierarchical Bayesian method is combined with collapsed Gibbs
sampling for parameter estimation. More importantly, it necessitates
a clear computational form of the likelihood function. Sensitivity to
outliers in the data can lead to numerical instability in the MLE,
which is highly sensitive to model assumptions. As an alternative to
the MLE method, the MME is based on the first three moments of
raw gene expression counts and can more directly reflect the
characteristics of the data. Larsson et al. were among the first to
propose an MME method suitable for estimating the parameters of

the telegraph model based on single-cell transcriptomic data
(Waterborg, 1993; Ezer et al., 2016). This method utilizes the
first three moments Mi

1,M
i
2,M

i
3 from each gene. With the

advancement of single-cell sequencing technology, the
exponential moments for estimation combined with scRNA-seq
data are represented as follows in Equation 14:

Mi
1 �

1
Q
∑Q
j�1
xij,

Mi
2 �

1
Q
∑Q
j�1
xij xij − 1( ),

Mi
3 �

1
Q
∑Q
j�1
xij xij − 1( ) xij − 2( ). (14)

The parameters for each gene are estimated separately according
to the continuous ratio of the exponential moments as Equation 15:

r1 � M1, r2 � M2/M1, r3 � M3/M2. (15)

The estimated kinetic parameters are like Equation 16

kon � 2r1 r3 − r2( )
r1r2 − 2r1r3 + r2r3

,

koff � 2r1 r3 − r2( ) r1 − r3( ) r2 − r1( )
r1r2 − 2r1r3 + r2r3( ) r1 − 2r2 + r3( ),

ksyn � 3r1r3 − 2r1r2 + r2r3
r1 − 2r2 + r3

. (16)

Although the MME overcomes the limitations of the sample
size, the relationship between moments and parameters is not
always consistent, which may lead to biased estimates.
Furthermore, the MME is sensitive to the data distribution,
particularly the behavior of the tails (e.g., heavy-tailed data
distributions). Skewed distributions or outliers can affect the
sample moments, ultimately affecting the estimation results.

For simulation-based estimation methods, the parameters can
be estimated by minimizing the distance between the model
distribution and the observed data. Typical approaches include
those based on the Bayesian theory, such as approximate
Bayesian computations (ABC) and neural network techniques.
These methods do not rely directly on the computation of the
likelihood function but instead approximate or infer the posterior
distribution of key parameters for transcriptional bursts through
extensive simulations. Toni et al. applied ABC methods based on
sequential Monte Carlo (SMC) for parameter estimation and model
selection in dynamic models (Toni et al., 2008). For simulation-
based estimation methods, parameters can be estimated by
minimizing the distance between the model distribution and the
observed data. Typical approaches include those based on the
Bayesian theory, such as ABC and neural network techniques.

Machine learning and deep learning methods have developed
rapidly in recent years. Jiang et al. developed an artificial neural
network (ANN) with a universal function approximator to study the
non-Markov models of gene expression and transcriptional
feedback (Jiang et al., 2021). The principle involves
approximating non-Markov models with simpler stochastic
models using ANNs. They utilized ANNs in conjunction with the
maximum likelihood approach to infer sets of transcriptional

Frontiers in Genetics frontiersin.org14

Zhang et al. 10.3389/fgene.2024.1451461

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1451461


dynamic parameters (including gene activation and inactivation
rates, transcription rates, burst frequencies, and burst sizes) from
the synthetic data. The ANNmethod of must be solved using a finite
state projection algorithm (FSP). For multispecies interaction
systems in scRNA-seq data, a universal closed-form solution for
the CME has not yet been developed, and challenges remain in
computing biophysical parameters. Recently, within a CME system
encompassing transcriptional bursts, splicing, and degradation,
Gorin et al. proposed a kernel-weighted regression (KWR)
method that requires learning with neural networks (Gorin et al.,
2022). This method represents a multidimensional solution of the
CME for simulating transcriptional dynamics, specifically, the
steady-state joint distribution solutions of the two models that
approximate the RNA lifecycle. The authors integrated both
KWR and Parameter Scaling KWR (psKWR) neural
approximation strategies into a maximum likelihood estimation
framework to infer sets of gene expression parameters in mouse
brain cells.

In the future, time-resolved single-cell data with spatial
information will become the primary focus for constructing
mathematical models to study the dynamics of transcriptional
bursting. The challenge of combining more flexible statistical
methods to minimize the impact of noise and thereby infer
parameters related to transcriptional bursting remains to be
addressed (Luo et al., 2022a).

2.6 Approaches to studying data-driven
dynamics of transcriptional burst

The data-driven construction of single-cell gene expression
dynamics has been the preferred approach in several studies (Jovic
et al., 2022). The rapid advancement of single-cell sequencing
technologies in recent years has provided extensive data for
individual analyses and multiomics studies to elucidate gene
expression features and regulatory mechanisms at the single-cell
level. The results obtained from single-cell sequencing data enable
not only transcriptomic-level analyses but also the exploration of
genomic and epigenomic heterogeneity fluctuations within cell
populations (Kashima et al., 2020). As the demand for broader
applications and increased precision in omics feature analysis of
single-cell sequencing data has grown within the field, the concept
and technology for integrating multilevel single-cell sequencing data
have gradually taken shape and developed. However, the lack of
spatial information remains a limitation of single-cell sequencing
technology. Spatial transcriptomics, which has recently been widely
discussed, can identify differential expression patterns according to
local environmental conditions within tissues (Kumar and Manning,
2022). Integrating temporal and spatial information to deeply dissect
omics features at various levels within each cell and comparing results
from integrated data and imaging techniques with tissue pathology
provide new insights into the mechanisms of transcriptional bursting
in gene expression (Kashima et al., 2020).

2.6.1 Studies using only single-cell transcriptome
sequencing data

To probe cell identity, status, function, and response, scRNA-seq
is an alternative method for analyzing gene expression activity in

cells. ScRNA-seq is a whole-genome sequencing method that
extracts dynamic behavior from static measurement distributions.
It allows single-cell-level transcriptomes of millions of cells to be
analyzed in a single experiment to classify, characterize, and
distinguish individual cells, thereby identifying populations of
cells that are few in number but are significantly functional
(Jovic et al., 2022). Therefore, scRNA-seq can uncover low-
abundance but critical features of rare cells that are often masked
by vast dominant expression signals, thereby enhancing the utility of
single-cell transcriptomic sequencing data (Tang et al., 2009;
Armingol et al., 2020). In 2009, Tang et al. reported a more
mature scRNA-seq technology for generating high-throughput
transcriptomic data (Tang et al., 2009; Rodriguez and Larson,
2020). When analyzing the burst characteristics and regulatory
mechanisms of gene expression implicit in scRNA-seq, it is
necessary to make appropriate assumptions about gene
expression mechanisms when building mathematical models.
These assumptions, such as the limiting rate and step of
promoter state switching, are necessary even if they affect the
model’s accuracy. Although scRNA-seq is widely used in high-
throughput sequencing assays, it usually only measures mature
RNA abundance, which is determined by both RNA synthesis
and degradation (Blumberg et al., 2021). Therefore, a more direct
approach to understanding transcriptional dynamics is to leverage
nascent RNA sequencing techniques (NRS), which can directly
capture active RNA polymerases in the nuclei, such as PRO-seq
(Mahat et al., 2016). Recently, Zhao et al. developed a statistical
model to estimate transcription rates for NRS data; however,
estimating parameters for transcription bursts is challenging if
the data are not at the single-cell level (Zhao et al., 2023).
Fortunately, single-cell NRS recently has been developed (Mahat
et al., 2024), allowing direct estimation of burst size and frequency.
Therefore, descriptive results from data-driven and
phenomenological analyses alone are insufficient to explain this
biomechanism. Only by combining single-cell data with a statistical
physical model can we accurately, robustly, and flexibly infer burst
dynamics and reveal the biophysical mechanisms of gene regulation.

2.6.2 Studies using integrated data
Although scRNA-seq data have been widely used in multiple

fields such as immunology, developmental biology, and oncology,
multidimensional data generated by single-cell sequencing are
sparse and do not provide complete information about protein
levels or post-translational modifications. Therefore, the selection
of appropriate tools for computational analysis according to the
research context and datasets is necessary. The study of spatial omics
data and the integrated use of multiple-omics data will push single-
cell technology into a wider range of scientific and translational
research, expanding the scope for health monitoring, disease
diagnosis, and in-depth analysis of genomic, epigenomic, and
transcriptomic data characteristics (Tunnacliffe and Chubb, 2020).

The mechanisms of gene expression regulation have been
studied using sequencing. To investigate the role of epigenomic
data in transcription dynamics (Kashima et al., 2020; Ma et al.,
2022), protein-DNA interactions can be directly detected using
single-cell chromatin immunoprecipitation and sequencing
(scChIPseq) from the perspective of the local chromatin
environment, nucleosome occupancy, histone modification, and
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number and affinity of regulatory elements (transcription factors).
This, in turn, helps identify protein-binding sites for genes of
interest, such as transcription factor-binding sites and chromatin
tissue heterogeneity. ScATAC-seq, which studies open chromatin
from the perspective of the local chromatin environment and assists
in accessing genome-wide chromatin, can help determine cell types
at a single-cell resolution, analyze intercellular heterogeneity, and
identify many different modes of gene regulation (Kashima et al.,
2020;Wu et al., 2021). From the perspective of the DNA dissociation
rate, transcription is a discontinuous process in eukaryotes, and
mRNA is produced explosively after transcription factors bind to
regulatory elements in the genome (Mazzocca et al., 2021). To
investigate the role of genomic data in transcriptional dynamics,
it is essential to understand the influence of transcription factors on
the frequency, duration, and size of transcriptional bursts. ScSLAM-
seq can visualize and explain differences in transcriptional activity at
the single-cell level, describing “ON/OFF” switching in gene
expression and transcriptional burst dynamics (Erhard et al.,
2019). In living organisms, the structure of genetic information
determines the basic properties, which in turn determine the
function and use of cells. From the perspective of nuclear
structure (including DNA cycling, promoter-enhancer contact,
and nuclear regionalization), we can extract two main features of
enhancer-promoter communication through extensive genome-
wide studies (4C, 5C, and Hi-C): (1) communication between
enhancers and promoters may be mediated by chromatin loops
and (2) the genome is organized into topologically associating
domains (TADs) that may delineate local gene activity. In
addition, enhancer–promoter communication mainly regulates
burst frequency rather than burst size (Daigle et al., 2015; Wang
et al., 2024). In fixed cells, the application of the standard smFISH
technique for single RNA imaging generated a distribution of
nascent and mature mRNA counts in single cells and provided a
new dataset for large-scale single-molecule studies. Conventional
single-cell sequencing techniques often lack spatial information
regarding cells; however, high-throughput and multiplexed
datasets compensate for this limitation (Wang et al., 2018). The
development of transcription-regulated live-cell imaging techniques
has greatly facilitated the search for molecular mechanisms
underlying precise spatiotemporal gene expression programs
(Daigle et al., 2015).

Single-cell sequencing data can effectively characterize the omics
of genomic, epigenomic, and transcriptomic data. Therefore, many
studies have attempted to overcome these barriers of information
disability by integrating single-cell sequencing data from different
omics layers. On the one hand, the activity and integrity of a cell are
destroyed in the process of sequencing a single omics layer for a cell,
preventing the simultaneous analysis of different levels of omics
information from the same cell. On the other hand, the abundance
of single-cell sequencing data can improve the accuracy of cell
characterization. The model of transcriptional burst dynamics
using integrated data can ensure the high fidelity of accurate
transcriptional regulation. Additionally, the diversity of data
sources can fully characterize the randomness of biochemical
reactions and reveal cellular heterogeneity (Wang et al., 2016;
2018; Kashima et al., 2020). Correlation analysis of gene features,
such as burst parameters and promoter structure at the single-cell
level, will help analyze the regulatory mechanism of gene expression

dynamics. The development of single-cell techniques has gradually
enriched the information contained in the data, allowing us to
understand multiple transcription factors, their interactions, and
their effects on the transcriptional output of specific target
genes in the same living cell, thus providing opportunities to
further understand the mechanisms of transcriptional bursts in
the future.

Currently, the study of transcription and transcriptional bursts
using single-cell transcriptome data is extensive. The single-cell
transcriptome data discussed in the previous section and the
single-cell genome sequencing data and epigenome data
discussed in this section are at the same level and are
independent. Therefore, an effective computing strategy is needed
to determine the relationship between different levels of omics data
and integrate them to approximate the multilayer sequencing results
of the same cell. By obtaining prior information on different levels of
omics of the same cell, insights will be more comprehensive. This
approach presents an opportunity to move from descriptive
“snapshot” conclusions to a deeper revelation of the mechanisms
underlying cellular transcriptional bursts.

3 Prospect

The stochastic nature of transcriptional bursting dynamics
during gene expression is an important source of phenotypic
heterogeneity. Bursts and periods of silence occur alternately
during the mRNA synthesis, corroborating that genes are
predominantly inactive during the transcriptional bursting cycle
and that the bursts are brief. The multi-state model of gene
expression is based on this unique biological mechanism.
Specifically, judicious selection of multi-state models of gene
expression is important for the accurate analysis of real single-
cell transcriptomic sequencing data. The stochastic telegraph model
is a fundamental choice in gene regulation studies. However, there is
a lack of comprehensive research demonstrating that models with
more transcriptional states better fit the actual data. In contrast,
simpler models with two, three, or four states can often predict gene
expression with a lower theoretical bias.

In this study, we critically examined conventional gene
expression models, explained the temporal scales and regulatory
factors implicated in transcriptional bursting, and assessed the
methodologies employed in gene expression research from the
perspectives of biostatistical and biochemical network analysis.
To uncover the regulatory underpinnings of stochastic gene
expression, we focused on key factors, including burst size,
frequency, cycle period, residency time, and travel ratio, to
elucidate the mechanisms underlying bursting dynamics. We also
categorized the foundational concepts and enumerated methods for
parameter inference within a bursting dynamics framework. Finally,
we explored the current landscape and identify challenges in the
evolving field of transcriptional bursting dynamics propelled by
advancements in single-cell sequencing data. Although the study of
transcriptional bursting dynamics has advanced over the last decade,
analysis of scRNA-seq and other omics data, along with cutting-edge
technologies, continues to evolve. These ongoing developments
promise to contribute substantially to the progress of systems
biology and bioinformatics.
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Spatial transcriptomics technology fills the gap in spatial
distribution information that scRNA-seq sequencing technology
lacks. By facilitating precise comparisons between gene
expression patterns and histopathological information, it enables
the identification of differential expression patterns within the local
tissue microenvironment, as well as, provides insights into cell-to-
cell interactions and signal transduction. One significant challenge
with the advent of spatial transcriptomics is the absence of a
standardized analysis workflow. Developing spatial dynamic
models of cell communication or models that reflect gene
regulation by integrating spatial transcriptomic data with other
omics datasets remains a crucial task for gaining more
comprehensive insights into computational systems biology. In
the future, we should focus on the dynamics of key transcription
factors and enhancers, as well as on phase separation methods, for
the quantitative study of the dynamic parameters influencing
bursting. Progress in single-molecule techniques will enhance
these analyses, allowing imaging of multiple transcription factors,
their interactions, and their impact on the transcriptional output of
specific target genes within the same living cell. In the future, the
development of a unified analytical workflow that combines in vivo
imaging, single-cell sequencing, and mathematical modeling will
permit systematic analysis of bursting behavior across multiple
genomic loci.
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