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Introduction: In the realm of next-generation sequencing datasets, various
characteristics can be extracted through k-mer based analysis. Among these
characteristics, genome size (GS) is one that can be estimated with relative ease,
yet achieving satisfactory accuracy, especially in the context of heterozygosity,
remains a challenge.

Methods: In this study, we introduce a high-precision genome size estimator,
GSET (Genome Size Estimation Tool), which is based on k-mer histogram
correction.

Results: We have evaluated GSET on both simulated and real datasets. The
experimental results demonstrate that this tool can estimate genome size with
greater precision, even surpassing the accuracy of state-of-the-art tools.
Notably, GSET also performs satisfactorily on heterozygous datasets, where
other tools struggle to produce useable results.

Discussion: The processing model of GSET diverges from the popular data fitting
models used by similar tools. Instead, it is derived from empirical data and
incorporates a correction term to mitigate the impact of sequencing errors on
genome size estimation. GSET is freely available for use and can be accessed at
the following URL: https://github.com/Xingyu-Liao/GSET.
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1 Introduction

Estimating the size of a genome (GS) is a crucial step in understanding the intricacies of
genome evolution and is often required in various aspects of genome sequencing and
assembly (Sun et al., 2018). Experimental methods, such as feulgen densitometry and flow
cytometry, offer one approach to this task. However, these methods can be complex due to
their reliance on specialized instruments. In contrast, computational methods offer a
different approach. These methods are based on the concept of k-mers, which are unique
subsequences of a given length ‘k’ within the DNA sequence. By creating a histogram of
these unique k-mers and applying mathematical models, these methods can provide a useful
estimate of genome size. The initial model for this approach was designed for an ideal
situation. It did not take into account factors such as repeat fragments and heterozygosity,
and it assumed that the sequencing process was unbiased (Li and Waterman, 2003).
However, real-world data often present more complicated situations. To address these
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complexities, several statistical distributions have been employed to
fit the unique k-mer frequencies histogram. These include the
Poisson distribution, the negative binomial distribution, and the
skew normal distribution (Liu et al., 2012; Vurture et al., 2017).
These distributions help to account for the variability and skewness
that can occur in real sequencing data, thereby improving the
accuracy of the genome size estimation. In conclusion, while
experimental methods for genome size estimation have their
place, the advent of k-mer based computational methods has
provided a powerful tool for researchers. By continually refining
these methods and models, we can hope to gain ever more accurate
insights into the complex world of genomics.

Several methods have been proposed that utilize the fitting of the
k-mer frequency histogram. For instance, findGSE (Guenzi-Tiberi
et al., 2024) employs a skewed normal distribution to fit the k-mer
frequency histogram. In contrast, GenomeScope (Oey et al., 2019;
Thai et al., 2019) uses a mixture model of the negative binomial
model for the same purpose. Both of these methods can effectively
mitigate the estimation bias caused by sequencing errors and
imbalances to a certain extent through fitting. However, their
final estimation accuracy is contingent upon the degree of fit
between the distribution characteristics of the actual sequencing
data and its hypothetical distribution model. To elaborate, the
findGSE method leverages the skewed normal distribution, which
is a flexible model capable of capturing asymmetry in the k-mer
frequency histogram. This allows it to handle a wide range of
genome size estimation scenarios, including those with significant
sequencing errors or imbalances. On the other hand, GenomeScope

employs a mixture model of the negative binomial distribution. This
model is particularly effective when dealing with overdispersed
count data, which is common in genome size estimation tasks.
The mixture model allows GenomeScope to capture the inherent
variability in k-mer frequencies, leading to more accurate genome
size estimates. However, it is important to note that while these
methods can control the estimation bias to a certain extent, they are
not foolproof. The accuracy of the final genome size estimate heavily
depends on how well the chosen distribution fits the actual
sequencing data. If the real data deviates significantly from the
assumed distribution, the genome size estimate may be off.
Therefore, it is crucial to choose the appropriate method based
on the characteristics of the sequencing data at hand.

The unique k-mer distribution histogram, as depicted in
Figure 1, provides a visual representation of the general cases of
genome sequencing. The left peak of the curve primarily comprises
k-mers that are a result of sequencing errors and biases, which occur
at a low frequency. Conversely, the right tail of the curve is made up
of repetitive fragments from the genome, which occur at a higher
frequency. Recent models have employed various distributions to fit
either the entire curve or a portion of it (Sun et al., 2018). The goal of
these models is to closely align the fitted curve with the homozygous
peak, thereby minimizing the impact of the error peak. This
approach enhances the accuracy of genome size estimation.
However, in the case of heterozygosity, a heterozygous peak
appears between the valley and the homozygous peak. This
additional peak complicates the fitting process, and the
aforementioned distribution-based models may not perform well

FIGURE 1
Unique k-mer histogram. In order to rectify the homozygous peak, the disturbance of the error peak must first be removed. The error rate of
sequencing is utilized to estimate the number of error k-mers, S′, which are enclosed by the curve and the line X � L. All local maximum values within an
interval size of 2L are then identified, and the position of the homozygous peak is determined by the highest of these local maximum values.
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without modifications. In such scenarios, prior information can be
invaluable in identifying the correct homozygous peak. In summary,
while the unique k-mer distribution histogram and the associated
mathematical models provide a powerful tool for genome size
estimation, they also present challenges. These challenges,
particularly in the case of heterozygosity, highlight the need for
continual refinement of these models and the incorporation of prior
information when available. By doing so, we can improve the
accuracy and reliability of genome size estimation, thereby
advancing our understanding of genome evolution.

In this study, we introduce a high-precision genome size
estimator, GSET (Genome Size Estimation Tool), which leverages
k-mer histogram correction. Unlike the popular data fitting models
employed by similar tools, the processing model of GSET is derived
from empirical data. It incorporates a correction term specifically
designed to mitigate the impact of sequencing errors on genome size
estimation. We have rigorously evaluated GSET using both
simulated and real datasets. The experimental results
demonstrate that GSET can estimate genome size with
remarkable precision, even surpassing the accuracy of state-of-
the-art tools currently available. Notably, GSET also performs
exceptionally well on heterozygous datasets, a scenario where
many other tools struggle to produce reliable results. This makes
GSET a versatile and robust tool for genome size estimation across a
variety of contexts.

2 Materials and methods

Assuming that the reference genome is a random sequence with
no heterozygosity and no repeats, and the coverage of each position
is uniformly distributed. LetN be the total number of k-mers in the
sequencing data, G denote the size of the genome, and C represent
the average depth of k-mers. A native genome size estimation model
can be described as N � C p (G − k + 1). As G ≫ k, we have
G ≈ N/C, which is defined as the native model shown in
Equation 1. To obtain the k-mer coverage (C) and the number
of k-mers (N), the homozygous peak in Figure 1 needs to be found.
Thus, the total number of k-mers is N � ∑n

1xi × yi, where xi is the
frequency of the i-th k-mer and yi is the number of unique k-mers
with frequency xi. The sum is over all unique k-mers in the
sequencing data, and the formula for the genome size (G) based
on the native model is:

G ≈
N

C
� ∑n

i�1xi × yi

C
(1)

Let V(xv, yv) and M(xm, ym) be the coordinates of the valley
and homozygous peak, respectively. Ideally, the k-mer coverage C
equals C � xm, and the genome size can then be estimated by
G ≈ (∑n

i�1xi × yi)/xm. However, real sequencing datasets are
more complicated due to biases in sequencing, sequencing errors,
and repetitive fragments in the genome. Each of these situations can
affect the accuracy of genome size estimation, and there is no precise
pattern to describe these effects. Therefore, all of these factors are
considered when finding correction factors from a large amount of
datasets which have accurate references and known genome sizes.
Statistical results show that most of the genome sizes (GS) estimated

by the native model are larger than the real genome size. This is
because the native model uses all k-mers, including error k-mers, to
estimate the genome size. To refine the model, we set a
dimensionless factor α, and use α × N/C to get the real GS.
Statistical results show that α � x2

m/(x2
v + x2m) is the best

correction factor. Therefore, the new genome size estimation
model, GSET, can be expressed as follows.

G � x2
m

x2
v + x2

m

×
N

C
� xm × ∑n

i�1xi × yi( )
x2
v + x2

m

(2)

In the process of genome size estimation, when sequencing
errors and bias occur, the corresponding histogram of the unique
k-mer frequency may have an exponentially decreasing curve, just as
the shown in the left part of Figure 1. These erroneous k-mers will
often cause the main peak of the frequency distribution histogram to
be shifted to the right compared to when there is no erroneous
k-mer. In order to eliminate the negative impact of these erroneous
k-mers on the accuracy of the main peak identification, we need to
adopt certain strategies to correct the estimation (e.g., reducing the
number of low-frequency k-mer participating in frequency statistics,
that is, reducing the value of N). In order to reduce the value of N,
we multiply N by a correction coefficient α. The value of α ranges
from 0 to 1. In practice, we found that the value of α is related to the
number of erroneous k-mer and overall k-mer. In the context of the
k-mer frequency histogram, the area enclosed by the curve and the
X-axis represents the total number of k-mers. Consider the points
V(Xv, Yv) and M(Xm, Ym) in Figure 2. The line passing through
these points intersects the X-axis at point P. We observe that the area
ratio of △PVV′ to △PMM′ correlates with the number of
erroneous k-mers relative to the overall k-mer counts. Here,
V′(Xv, 0) and M′(Xm, 0) represent the perpendicular feet of
points V and M on the X-axis, respectively. Furthermore, we
find that the square of the ratio Xv to Xm can represent the
proportion between the number of erroneous k-mers and the
total k-mer counts, as shown in Equation (2).

The rate and types of sequencing errors vary depending on the
NGS platforms and library preparation methods. For instance,
Illumina sequencing technologies exhibit error rates ranging from
0.5% to 2.5% (Kelley et al., 2010). These errors tend to occur more
frequently in regions with extremely high GC or AT content, such as
constant heterochromatin regions that include centromeres,
telomeres, or highly repetitive sequences. While sequencing
errors can impact the determination of X � L, they have minimal
effect on identifying the homozygous peak. This is because, within
the error tolerance range, we can ensure that there is no higher peak
to the right of theX � L cutting line than the homozygous peak. The
parameter L is influenced by the error rate of the input data. In
Figure 1, when the error rate is denoted as α, the area of S′
corresponds to α × S, where S represents the overall area
enclosed by the curve and the coordinate axis. To find X � L, we
start with x = 0 and gradually accumulate the area enclosed by the
curve until it matches S′. At that point, the abscissa corresponds to
X � L. The correction factor is specifically tied to the k-mer
frequency histogram, simplifying its acquisition compared to
methods relying on fitted distributions. Further details on
identifying the valley and homozygous peak can be found in the
Supplementary Material.
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3 Results

We evaluated the performance of GSET on both four simulated
datasets and nine real datasets. The simulated datasets were generated
using ART (Huang et al., 2012), a widely used simulator. The real
datasets (R.sphaeroides, S.aureus, V.cholerae, M.abscessus,
Human-chr14, Saccharomyces, Melanogaster, Ant, and Mouse)
were downloaded from the GAGE-B (https://ccb.jhu.edu/gage_b/)
and NCBI (https://www.ncbi.nlm.nih.gov/) websites. The first five
datasets (R.sphaeroides, S.aureus, V.cholerae, M.abscessus,
Human-chr14) consist of HiSeq Illumina reads, while the latter
datasets (Saccharomyces, Melanogaster, Ant, and Mouse) consist
of MiSeq Illumina reads. A brief introduction of HiSeq and MiSeq
technologies is as follows: 1) HiSeq is a high-throughput sequencing
system developed by Illumina. It uses sequencing by synthesis (SBS)
chemistry to generate large amounts of data with high accuracy. HiSeq
systems, such as the HiSeq 2000 and HiSeq 2,500, are known for their

flexibility, allowing for both rapid-run and high-output modes. They
can produce up to 1 terabase (Tb) of data per run,making them suitable
for large-scale genomic projects. 2) MiSeq is a benchtop sequencing
system also developed by Illumina. It is designed for smaller-scale
projects and offers a streamlined workflow from library preparation to
data analysis. MiSeq uses the same SBS chemistry as HiSeq but is
optimized for faster turnaround times and lower throughput. It can
generate up to 15 gigabases (Gb) of data per run and is ideal for targeted
gene sequencing, small genome sequencing, and 16S metagenomics.
The genome size estimation results are summarized in Tables 1, 2
(Note: The lower the evaluation indicator ’accuracy’, the better
the result).

Compared to three other methods,GSET demonstrated superior
accuracy. We further evaluated GSET’s performance on
heterozygous datasets. Our experiments involved both simulated
datasets generated by PIRS (Hu et al., 2012) and a real dataset
(C.elegans) obtained from the Bioinformation and DDBJ Center

FIGURE 2
The principle of correcting themain peak of k-mer frequency distribution histogram. Points V(xv , yv ) andM(xm , ym) represent the coordinates of the
valley and homozygous peak, respectively. The line through points V(Xv ,Yv ) andM(Xm ,Ym) intersects the X-axis at point P. Points V′(Xv ,0) andM′(Xm ,0)
represent the perpendicular feet of points V and M on the X-axis, respectively. The ratio of the areas of △PVV′ to △0PMM′ is related to the number of
erroneous k-mers relative to the overall k-mer count.

TABLE 1 The genome size estimated by different tools on simulated homozygous datasets.

Dataset Ref.
Len (bp)

GSET findGSE Genome scope Native

Value
(bp)

Accuracy Value
(bp)

Accuracy Value
(bp)

Accuracy Value
(bp)

Accuracy

SIM_dataset1 2,000,000 1,999,164 0.004 1,997,938 0.010 1,997,881 0.011 2,012,500 0.063

SIM_dataset2 2,040,000 2,039,030 0.005 2,041,272 0.006 2,036,239 0.018 2,090,851 0.249

SIM_dataset3 2,120,000 2,119,321 0.003 2,118,804 0.006 2,118,354 0.008 2,132,799 0.060

SIM_dataset4 2,140,000 2,139,623 0.002 2,141,695 0.008 2,139,622 0.002 2,171,586 0.148

GSET, findGSE andGenomeScope are three tools, and Ref. Lenmeans the length of the reference genome.Native represents the genome size measured directly from the homozygous peak of the

k-mer histogramwithout any correction. Datasets SIM_dataset1 and SIM_dataset4 are with the average read length of 125 bp, datasets SIM_dataset2 and SIM_dataset3 are with the average read

length of 150 bp.Accuracy = |The actual value of genome size − The estimation value of genome size|
The actual value of genome size . The simulated datasets are consisted of the paired-end reads. The values in bold provided in

the table are the best results.
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(https://www.ddbj.nig.ac.jp/index-e.html). The heterozygosity rate
for this dataset is 0.5 (Kajitani et al., 2014). Detailed results can be
found in Supplementary Tables S1–S9 of the Supplementary
Material. Notably, in heterozygous cases, the accuracy of various
methods tends to be lower due to the interference from heterozygous
peaks. In order to verify the performance of GSET on large real
datasets, we conducted experiments using NGS datasets from
species such as Saccharomyces, Melanogaster, Ant, and Mouse.
Notably, the read file size of the Mouse dataset exceeds 150GB, with
a corresponding genome length close to 3 GB (paired-end read files
ERR2894257, ERR2894259, and ERR2894260 were downloaded
from NCBI). The test results, as shown in Table 2, demonstrate
that GSET achieved the highest estimation accuracy for datasets
including Mouse, Melanogaster, and Saccharomyces.

The performance comparison of GSET, findGSE, and
GenomeScope for genome size estimation on real homozygous
datasets are shown in Figure 3. The estimated length of GSET

consistently increases with the increment of k across all datasets,
reaching its maximum estimated length and accuracy at k = 21 in
most datasets. This suggests a robust adaptation of GSET to genomic
complexities, significantly outperforming findGSE and GenomeScope
in these scenarios. For findGSE, performance in terms of estimated
length and accuracy decreases as k increases across all datasets, indicating
potential limitations in resolving more complex genomic structures
within a narrow range of k values. On the other hand, GenomeScope
achieves peak performance in terms of both estimated length and
accuracy at k = 13 for most datasets, with a declining trend observed
as k increases. This highlights its optimized performance at lower k
values but suggests a decrease in effectiveness in accurately capturing
genomic size as k increases.

The performance comparison of GSET, findGSE, and
GenomeScope for genome size estimation on simulated
heterozygous datasets are shown in Figure 4. GSET consistently
achieved the highest values in estimated length and accuracy across

TABLE 2 The genome size estimated by different tools on real homozygous datasets.

Dataset Ref.
Len (bp)

GSET findGSE Genome scope Native

Value
(bp)

Accuracy Value
(bp)

Accuracy Value
(bp)

Accuracy Value
(bp)

Accuracy

R.sphaeroides 4,628,173 4,693,604 0.014 4,881,932 0.055 4,715,801 0.019 5,773,793 0.248

S.aureus 2,872,915 2,867,262 0.002 2,889,550 0.006 2,610,921 0.091 2,893,163 0.007

V.cholerae 4,033,464 4,048,812 0.004 4,025,526 0.002 3,826,668 0.051 4,370,906 0.084

M.abscessus 5,090,491 4,936,399 0.030 6,421,138 0.261 6,294,412 0.237 6,729,765 0.322

Human-chr14 107,349,540 99,169,509 0.076 91,798,688 0.145 88,076,272 0.180 93,336,008 0.131

Ant 295,944,863 321,157,729 0.033 296,098,286 0.005 295,025,758 0.003 335,121,109 0.132

Mouse 2,818,974,548 2,823,422,104 0.002 2,785,210,329 0.011 2,745,274,960 0.026 3,336,771,577 0.184

Melanogaster 168,736,537 168,861,701 0.001 146,044,559 0.134 139,401,686 0.174 183,545,327 0.088

Saccharomyces 12,111,892 12,355,209 0.020 14,585,622 0.204 14,711,912 0.215 14,120,239 0.166

GSET, findGSE andGenomeScope are three tools, and Ref. Lenmeans the length of the reference genome.Native represents the genome size measured directly from the homozygous peak of the

k-mer histogram without any correction. The read file size of the Mouse dataset exceeds 150GB, and the corresponding genome length is close to 3 GB. Accuracy =
|The actual value of genome size − The estimation value of genome size|

The actual value of genome size . The real datasets are consisted of the paired-end reads. The values in bold provided in the table are the best results.

FIGURE 3
Performance comparison of genome size estimation using three tools: GSET, findGSE, and GenomeScope on real homozygous datasets.
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all datasets, significantly surpassing findGSE and GenomeScope. This
indicatesGSET?s superior capability in handling heterozygous genomic
complexities. As k increases, both the estimated length and accuracy of
GSET also show an upward trend. However, in the test2020000.300.75-
0.02–0.05 dataset, GSET reached its peak performance at k = 13, with
significantly lower performance at other k values. This suggests a
potential optimal k setting for this specific type of genomic data
within GSET’s algorithm. On the other hand, findGSE and
GenomeScope generally exhibit similar performance, with findGSE
marginally outperforming GenomeScope. Despite this, both tools are
significantly inferior to GSET, indicating their less effective handling of
heterozygous genomes. Furthermore, the performance offindGSE and
GenomeScope becomes less sensitive to changes in k beyond k = 12,
suggesting a plateau in their capability to further resolve genomic details
at higher k values.

4 Discussion

In this study, we address specific principles, delve into
implementation details, and engage with user concerns. We
meticulously respond to these issues in a systematic manner
across the subsequent sections.

4.1 Novelty of the proposed method

The methods for estimating genome size typically fall into two
categories: experimental methods and estimation methods.
Experimental techniques, such as flow cytometry and Southern
blotting, are costly and require specialized equipment. Estimation
methods, on the other hand, can be broadly classified based on their
approach. The first category involves analyzing the k-mer frequency
distribution histogram, while the second relies on sequence alignment
and assembly. Both estimation methods utilize the original sequencing
reads, but the latter demands more computational resources. Among
the tools commonly used for k-mer-based estimation, three stand out:
findGSE, GenomeScope, and our proposed method, GSET. While
findGSE fits the k-mer frequency histogram using a skewed normal

distribution, GenomeScope employs a mixture model based on the
negative binomial distribution. These approaches effectively mitigate
estimation bias caused by sequencing errors and imbalances, but their
accuracy hinges on how well their distribution models match the real
sequencing data. In contrast, our method directly analyzes the original
k-mer frequency distribution, offering three key advantages. First, it
ensures the integrity of the information used. Second, it achieves a zero-
deviation fit with the actual distribution. Finally, correction coefficients
reduce the impact of erroneous k-mers, enhancing estimation accuracy.
Experimental results demonstrate that our approach outperforms the
former two methods.

4.2 Selection of the k-mer size in estimation

Selecting the appropriate value of (k) significantly impacts the
accuracy of genome size estimation, regardless of whether we use
(findGSE), (GenomeScope), or our proposed method, (GSET). For
instance, (findGSE) provides a range of (k) values (from 15 bp to
21 bp) but does not prescribe a specific method for determining (k). On
the other hand, (GenomeScope) not only lacks a predefined range for
(k), but it also requires users to manually specify the exact (k) value.
Consequently, none of the existing tools offers a flawless solution to this
challenge. In our study, we propose solutions for two scenarios. First, if
we know the approximate genome size of a related species or have an
estimate for the rough genome size, we can determine the specific value
of (k) using Equation (3). Here, (k) represents the k-mer size, and (G)
corresponds to the approximate size of either the rough genome or the
genome of a similar species (Price et al., 2005).

k � ⌈log4G + 1⌉ (3)

Additionally, if the species is unknown, we recommend observing
the k-mer frequency histogram to assess whether the current value of k
is appropriate. When the value of k is suitable, the waveform of the
k-mer frequency histogram closely resembles that shown in Figure 1.
Conversely, if the valley corresponding to Xv (minimum frequency)
and the peak corresponding to Xm (maximum frequency) are not
distinct, with no significant difference in height, it indicates that the
chosen value of k is not appropriate.

FIGURE 4
Performance comparison of genome size estimation using three tools:GSET, findGSE, andGenomeScope on the simulated heterozygous datasets.
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4.3 Application scenarios of GSET

In the research of bioinformatics, genome size estimation has
been applied in many aspects (Bosco et al., 2007; Gao et al., 2014).
For example, in the applications of species classification and
evolutionary relationship analysis, by estimating the genome size
of the sequenced samples, we can quickly cluster these samples and
infer the evolutionary relationship among them. In this study, we
consider using GSET to analyze the stable differences between male
and female genomes. For example, we downloaded 14 human
sequencing datasets on the NCBI website, of which 7 are males
and the remaining 7 are females (Paired-end reads files
ERR1347682, ERR1347702, ERR1347706, ERR1347728,
ERR1347738, ERR1395547, ERR1395570, ERR1347657,
ERR1347661, ERR1347662, ERR1347672, ERR1347679,
ERR1347707 and ERR1419089 are downloaded from NCBI
https://www.ncbi.nlm.nih.gov/sra/). The genome sizes of these
14 samples are all estimated by GSET when k is set to 21 bp.
The average genome sizes of male and female in the experiment are
3,279 Mb and 3,428 Mb, respectively. This conclusion is consistent
with the fact: The female genome contains two X chromosomes, and
male genome contains one X chromosome and one Y chromosome.
Therefore, the female genome size is a bit bigger than that of male.
The detailed experimental results are shown in Figure 5.

5 Conclusion

In this paper, we present GSET to realize an higher accuracy
genome size estimation, the mathematical model ofGSET is concise,
and is easily to be computed than the fitting based methods.
Through the correction factor, we get a satisfactory estimation
results on both simulated datasets and real datasets, even on the
situation of heterozygous, it can also give out more useable results

than other distribution based methods. GSET could be used for
analysis which need a relatively higher accuracy estimation of
genome size in the next-generation sequencing data.
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FIGURE 5
A stable difference in genome length exists between male and
female genomes, as estimated by the GSET tool. In this study, we
investigated stable differences in genome length between male and
female individuals using the GSET Tool. The average genome
size for males was estimated to be 3,279 Mb, while females had an
average genome size of 3,428Mb. These findings alignwith the known
chromosomal differences: females possess two X chromosomes,
whereas males have one X and one Y chromosome.
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