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Computational drug-target affinity prediction has the potential to accelerate drug
discovery. Currently, pre-training models have achieved significant success in
various fields due to their ability to train the model using vast amounts of
unlabeled data. However, given the scarcity of drug-target interaction data,
pre-training models can only be trained separately on drug and target data,
resulting in features that are insufficient for drug-target affinity prediction. To
address this issue, in this paper, we design a graph neural pre-training-based
drug-target affinity predictionmethod (GNPDTA). This approach comprises three
stages. In the first stage, two pre-training models are utilized to extract low-level
features from drug atom graphs and target residue graphs, leveraging a large
number of unlabeled training samples. In the second stage, two 2D convolutional
neural networks are employed to combine the extracted drug atom features and
target residue features into high-level representations of drugs and targets.
Finally, in the third stage, a predictor is used to predict the drug-target affinity.
This approach fully utilizes both unlabeled and labeled training samples,
enhancing the effectiveness of pre-training models for drug-target affinity
prediction. In our experiments, GNPDTA outperforms other deep learning
methods, validating the efficacy of our approach.
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1 Introduction

Predicting drug-target affinity (DTAP) is a crucial research topic in drug development,
which can be. used for discovering drug on-target and off-target effects. However, due to the
increasing number of targets, it is difficult to fully validate the drug-target affinity (DTA) of
drugs using biochemical experiments. In recent years, with the development of artificial
intelligence technology, the use of computational methods for preliminary prediction of
DTA has become an economically effective method. Graph neural networks (GNN) can
extract features from graph-structured data and have been widely used in DTA, as drugs
and targets are typically graph-structured data.

These methods can be divided into four categories. Firstly, numerous graphs have
been created for drugs and targets, such as RDKit tool graph (Lin, 2020), sequence-
predicted 2D contact maps (You and Shen, 2022), residue protein contact map (Jiang
et al., 2020), R-radius subgraph (Tsubaki et al., 2019), weighted protein graphs (Jiang
et al., 2022), which Secondly, numerous attention mechanisms have been incorporated
into the GNN, such as the distance-aware molecule graph attention (Zhou et al., 2020),
triplet-attention (Liao et al., 2022), atom aggregated graph (Lin, 2020), self-attention
(Zhang et al., 2021; Liao et al., 2022), layer attention (Tang et al., 2023) and dynamically
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allocate attention (Meng et al., 2024). Thirdly, various deep
learning frameworks have been devised for GNN-based DTAP,
such as super-deep GNN (Yang et al., 2022), structure-aware
interactive GNN (Li Shuangli et al., 2021), graph within GNN
(Nguyen et al., 2022), hierarchical GNN (Chu et al., 2022), multiple
output GNN (Ye et al., 2021), Data augmentation and feature
fusion GNN (Fang et al., 2023), super edge GNN (Gu et al., 2023),
diffusion GNN (Zhu et al., 2023), Molecular graphs and binding
pocket graphs GNN (Wu et al., 2024), graph dilated convolution
networks (Zhang et al., 2024), Bi-directional fusing intention
network (Peng et al., 2024). Fourthly, GNNs have been utilized
in conjunction with other network architectures for DTAP, such as
recurrent neural network (Lin, 2020; You and Shen, 2022;
Mukherjee et al., 2022), multi-subspace deep neural networks
(Ye et al., 2023; Zhang Li et al., 2023).

Different graph can enhance understanding of atomic
connectivity and residue interactions. The strengths of attention
mechanisms lie in their ability to focus on relevant parts of the
graph, enhancing the model’s representational power. Various deep
learning frameworks offer diverse and innovative approaches for
DTAP. Combining GNNs with other network architectures provides
a comprehensive approach for DTAP, leveraging the strengths of
different network types. Although the above deep neural networks
based on GNNs can improve the performance of DTAP in various
ways, most of the methods cannot address the issue of the scarcity of
labeled training samples for DTA.

There have been some methods that have noticed this problem.
A pre-trained language model based on bidirectional encoder
representations from transformers is designed to extract semantic
features of SMILES molecules (Qiu et al., 2024). Multiple
Transformer-Encoder blocks were designed to capture and learn
the proteomics, chemical, and pharmacological contexts (Monteiro
et al., 2024). Transformer-based architecture was utilized to learn
representation for drugs (Rafiei et al., 2024). GCN-BERT utilized
two RoBERTa models to extract features for the drug and target
(Lennox et al., 2021). CPCProt divided protein sequences into fxed-
size segments and trained an autoregressor to distinguish
subsequent segments of the same protein from random protein
segments (Lu et al., 2020). SubMDTA proposed a self-supervised
pretraining model based on substructure extraction and multi-scale
features (Pan et al., 2023). ProtBert was utilized to extract the feature
for the target (Zhang Xianfeng et al., 2023). Two modalities
ProtBERT-BFD from ProtTrans2 and PSSM based descriptors are
used to represent the target (Liyaqat et al., 2023). Four contrastive
loss functions are considered to learn a more powerful model, such
as Max-margin contrastive loss function, Triplet loss function,
Multi-class N-pair Loss Objective, and NT-Xent loss function
(Dehghan et al., 2024). These methods use pre-training to extract
better features, but they fail to notice the significant difference
between the pre-training objectives and samples, and the training
objectives and samples for DTAP. Specifically, pre-training uses
samples of drugs or targets individually, while DTAP utilizes
samples of drug-target pairs for model training.

To overcome the beforementioned issues and further improve
the DTAP performance of GNNs, this paper proposes a graph neural
pre-training-based drug-target affinity (GNPDTA) prediction
method. This approach divides the feature extraction for DTAP
into two stages. In the first stage, a graph neural pre-training model

is employed to extract low-level features of drugs and targets
separately. During the process of drug-target affinity generation,
we observe that drug-target affinity is generally related to their local
fragments. Since target sequences tend to be longer, the pre-training
model primarily extracts features of target fragments. Drug SMILES
usually consist of 50 atoms, so the pre-training model focuses on
extracting features of drug graph nodes. In the second stage, a
convolutional neural network is utilized to combine the features of
adjacent target fragments and drug graph nodes, resulting in
features for predicting drug-target affinity.

GNPDTA has the following main contributions. One is that
GNPDTA can Minimize discrepancy between pre-training and
DTAP objectives. By devoting the initial stage exclusively to
feature extraction, the proposed method effectively bridges the
gap between pre-training objectives (which focus on individual
drug or target samples) and DTAP objectives (which consider
drug-target pairs). This ensures that the extracted features are
highly pertinent to the DTAP task. Another is that The
GNPDTA method introduces a two-stage approach tailored
specifically for drug-target affinity prediction (DTAP). This
strategy intelligently leverages distinct models and training
methodologies at each stage, maximizing the utilization of both
unlabeled and labeled data to enhance feature extraction
effectiveness.

2 Materials and methods

2.1 Datasets

The GNPDTAmethod consists of two stages. In the first stage, a
large amount of unlabeled data is used to train the pre-training
model. For targets, the Swiss-Prot dataset (Swiss-Port dataset) is
used for training the pre-training model, which includes
565,928 targets. For drugs, the CHEMBL dataset (Gaulton et al.,
2017) is used for training the pre-training model, containing
2,105,464 drugs.

In the second stage, the proposed model was evaluated on five
benchmark datasets of DTAP, namely, the Kiba (Tang et al., 2014),
Davis (Davis et al., 2011), DTC (Tang et al., 2018), Metz (Metz et al.,
2011), and Tox-Cast (US). The simple statistics for the sample
information of these datasets are given in Table.1. It can be seen
from Table.1 that there are only 2,111, 68, 5,983, 1,471, and
7,657 drugs and only 229, 442, 118, 170, and 328 targets on the
above datasets. As a result, the prediction model could be hardly well
trained only by these samples.

TABLE 1 Simple statistics for the sample information of five DTA datasets.

Data sets Drugs Targets Used drug-targets pairs

Kiba 2,111 229 118,254

Davis 68 442 30,056

DTC 5,983 118 67,894

Metz 1,471 170 35,307

Tox-Cast 7,657 328 342,869
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2.2 GNPDTA structure

The structure of GNPDTA is depicted in Figure 1. As can be
observed from Figure 1, GNPDTA comprises seven parts, including
pre-trained target graph isomorphism network (GIN), pre-trained
drug GIN, target graph features, drug node features, 2D convolutional
neural networks (CNN) Layers, drug-target features, and predictor.
The pre-trained target GIN and pre-trained drug GIN are trained
using a large number of unlabeled target training samples and
unlabeled drug training samples, respectively, to extract low-level
features of targets and drugs. Target graph features are the low-level
features of targets extracted by the pre-trained target GIN. Drug node
features are the low-level features of drugs extracted by the pre-trained
drug GIN. Two 2D CNNs are used to extract high-level features of
drugs and targets from target graph features and drug node features,
respectively. Drug-target features are obtained by concatenating target
graph features and drug node features. Predictor utilizes Drug-Target
Features to predict DTA.

2.3 Low-level features extracted by pre-
trained GIN

Pre-training models can utilize a large number of unlabeled
samples, which can be used to overcome the problem of insufficient
drug-target affinity data. Furthermore, the drug and the target are
two typical graph structure data, where they take atoms as nodes and
bonds as edges. Therefore, two graph pre-training GINs are
considered to extract drug and target features, where GIN is one

of the types of GNN. GIN is chosen, for the reason that GIN’s
complete graph convolution approach enables it to capture global
features in graph structures, resulting in stronger expressive power
when dealing with complex graph structures, where the drug and
target are all complex graph structures.

Pushing different molecules away by contrastive approaches and
randomly masking the discrete values and pre-training GNNs to
predict them by masked atoms modeling are two most used graph
pre-training models for molecules. Because drugs and targets are
mainly composed of a few atoms such as C, H, O, N, or S, and then
the ability to learn the drug and the target characteristics through
masked atoms modeling (MAM) may be relatively weak. Therefore,
an unsupervised graph-level representation learning via mutual
information maximization (INFOGRAPH) (Sun et al., 2020) is
used to learn the drug and the target representation, which
belongs to a contrastive approach.

The objective of INFOGRAPH is to maximize the mutual
information (MI) between the representations of entire graphs
and the representations of substructures of different granularity
(Sun et al., 2020).Given N training graphs [g1, g2,/, gN] ∈ G, the
node features hni of v-th node of gi can be defined as:

hnϕ � fg gn( ) (1)

where fg is a GIN, containing five graph convolutional layers.
The graph features of g can be defined as:

Hϕ g( ) � σ
1
N

∑N
n�1

hnϕ⎛⎝ ⎞⎠ (2)

FIGURE 1
GNPDTA structure.
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where σ(·) is an activation function.
And then the mutual information between hnϕ andHϕ(g) can be

defined as:

ϕ̂, φ̂ � argmax∑
g∈G

1
G| |∑u∈g Iϕ,φ �h

u

ϕ;Hϕ G( )( ) (3)

where Iϕ,φ( �h
u

ϕ;Hϕ(G)) is the Jensen-Shannon MI estimator, ϕ̂ is the
parameter of the GIN defined in Equation 1, φ̂ is the parameter used
in the Jensen-Shannon mutual information estimator.

The objective function defined by Equation 3 can be used to
optimize f̂g defined in Equation 1. Additionally, it can be
observed from Equations 1–3 that the optimization of f̂g does
not require sample labels, thus allowing the utilization of a large
number of unlabeled samples for optimization.

In numerous application domains, features derived from pre-
trained models often facilitate the direct execution of
downstream tasks. However, within the realm of drug-target
affinity prediction, directly applying features extracted from
pre-trained models poses challenges. This stems from the fact
that, in other domains, the pre-training samples align with those
of the downstream task. Conversely, in drug-target affinity
prediction, pre-training typically involves separate drug and
target samples, whereas the prediction itself necessitates drug-
target pair samples. This disparity in training samples hinders the
ability of pre-trained models to comprehensively represent drug-
target pairs. Consequently, pre-trained GINs are primarily
employed to extract low-level features for drugs and targets,
while the extraction of high-level drug-target pair features is
entrusted to supervised training objectives. This complex
learning objective is segmented into two stages, allowing for a
more effective utilization of the strengths of each stage.

A target sequence typically consists of hundreds to thousands of
amino acids. However, when this target interacts with a drug
molecule to generate affinity, it is usually a specific amino acid
fragment within the sequence that plays a major role. As a result, to
better extract low-level features from the target sequence, the
sequence is first divided into multiple fragments. The ideal
method would be to segment the sequence based on the
contribution of each fragment to affinity, but obviously, this is a
more challenging task than affinity prediction itself. Fortunately, as
this paper only utilizes pre-trained models to extract low-level
features, a precise fragment segmentation method is not required.
Therefore, a sliding window approach is adopted for fragment
segmentation.

For the training data of the pre-trained target GIN f �G(·), a
non-overlapping sliding window segmentation method is
employed to prevent information leakage from overlapping
sections during training. The Swiss-Prot dataset (Rafiei et al.,
2024) is used for training. After applying the non-overlapping
sliding window segmentation method to the targets on the Swiss-
Prot dataset (Swiss-Port dataset), millions of target fragments can
be obtained. After creating graphs for above fragments by using
the RDkit tool (Landrum, 2016), the pre-trained target GIN fG(·)
can be trained by using the objective function defined
in Equation 3.

After obtaining f �G(·), f �G(·) can be used to extract
low-level features of the target fragment. Given a target

sequence tj � [tj,1, tj,2,/, tj,pj] containing pi amino acids. To
extract low-level features, the target sequence tj needs to be first
divided into fragments. Unlike the segmentation method used
during the training of f �G(·), it employs an overlapping sliding
window approach. This approach increases the probability of
amino acid sequences that contribute to affinity being grouped
into the same fragment. After segmenting the target sequence
using overlapping sliding windows, the target graph features can
be extracted as:

�Oj � f �G s1j( ), f �G s2j( ),/, f �G sKj( )[ ] (4)

K represents the number of fragments the target is divided into.
It can be seen from Equation 4 that the graph features of all

segments of tj are concatenated to obtain the target graph features of
tj. Since tj is segmented using sliding windows, amino acid
fragments that produce affinity may be distributed across several
adjacent windows. Therefore, the output �Oj will be further
processed through a 2D CNN to obtain higher-level features that
are more effective for predicting drug-target affinity.

A drug molecule typically consists of a few to several dozen
atoms. When producing affinity with a target, most of the atoms
in the drug contribute to this process. Therefore, the drug is not
divided into multiple fragments but instead uses a pre-trained
GIN to extract features for each atom of the drug, leveraging a
large number of unlabeled training samples. The features that
capture the influence of atoms and their relationships on affinity
are further extracted by a supervised 2D CNN. For a large
number of unlabeled training drugs, Equation 4 learns the
pre-trained drug GIN f

G
�(·). f

G
�(·) is used to extract atomic

features from drug molecules. The CHEMBL dataset (Gaulton
et al., 2017) is used for training f

G
�(·).

Given a drug SMILES dj � [dj,1, dj,2,/, dj,pj] containing pj
atoms, the drug node features O

�
j can be extracted as following:

O
�
j � fG

�
dj( ) (5)

Equation 4 shows that the low-level feature extraction results of
targets are composed of fragments. Equation 5 shows that the low-
level feature extraction results of drugs are composed of drug nodes.
The pre- trained model is not directly used to extract the low-level
features of the entire target and the entire drug, whose main reasons
are as following. Firstly, Drug-target affinity is mainly determined by
the local parts of drugs and targets. Using pre-training to extract the
low-level features of the entire target and the entire drug will lose
many features that are effective for DTA. Secondly, the pre-trained
models in Equations 4, 5 are trained using a large number of
unlabeled targets and unlabeled drugs, respectively, while DTAP
uses drug-target sample pairs. In terms of training samples and
training objectives, the pre-trained models and DTAP are too
different. As a result, directly using the pre-trained entire low-
level features of targets and drugs cannot meet the
requirements of DTAP.

However, using Equations 4, 5 to extract the low-level features of
drug targets, the pre-trained model only needs to achieve the
training goal of maintaining the features of drugs and targets as
much as possible. The features that are beneficial to DTAP only need
to be handed over to the next step of extracting high-level features of
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drugs and targets. This is also the reason why our method performs
excellently.

Input: Pre-training drugs D
� � [d�1,d

�

2 ,...,d
�

n]T, pre-

training targets �T � [�t1, �t2,/, �tm]T, the length of the

fragment of the target �l.

Output: f �G(·) and f
G
�(·).

Algorithm:

Stage 1: Training f �G(·)
1: Divided fragments for �T � [�t1, �t2 ,/, �tm]T by non-

overlapping sliding windows, where the window

length is �l.

2: Used the RDKit tool to construct graphs [�g1 , �g2,/, �gM] ∈�G
for all target fragments

3: Used [�g1 , �g2 ,/, �gM] ∈�G to train target GIN f �G(·) by the

loss function that is defined by Equation 3.

Stage 2: Training f
G
�(·)

4: Used RDkit tool to construct graphs [g�1,g
�
2 ,/,g

�
n] ∈G

�
for

all drugs D
� � [d�1,d

�

2 ,...,d
�

n]T.
5: Used [�g1 , �g2 ,/, �gM] ∈�G to train target GIN f �G(·) by the

loss function that is defined by Equation 3.

Algorithm 1. Pseudo code of pre-training target GIN fG�(.) and pre-training

drug GIN fGh (.).

Pre-trained Target GIN and Pre-trained Drug GIN mainly
extract low-level features for targets and drugs. They are trained
using large amounts of unlabeled target samples and drug
samples based on the INFOGRAPH loss function defined in
Equation 3. These features aim to preserve as much
information about the targets and drugs themselves as
possible, but they do not have the direct capability to predict
drug-target affinity.

For drugs, the median lengths of SMILESs are approximately
46, 53, 48, 45, and 28 respectively on KIBA, Davis, DTC, Metz,
and Tox-Cast. Therefore, after pre-training, zero-padding and
truncation methods are adopted to fix the number of drug nodes
extracted from Formula 5 at 64, which can not only retain the
nodes of most drugs but also avoid introducing too many zero
paddings. For targets, the median lengths of sequences are
approximately 620, 632, 673, 631, and 479 respectively on
KIBA, Davis, DTC, Metz, and Tox-Cast. Therefore, after pre-
training, K in Formula 4 is set to 64, which can not only maintain
an appropriate overlap of sliding windows but also make the low-
level feature dimensions of drugs and targets the same. In
particular, this can remove a large amount of redundant data,
because the low-level features of the target are composed of
fragment features.

2.4 High-level features extracted by CNN
and DTA predicted by predictor

As can be seen from Equation 4, target graph features are
composed of linked graph features of adjacent amino acid
fragments, and drug-target affinity is mainly determined by a

subset of amino acid fragments, which exhibits a distinct local
receptive field, making it suitable for further feature extraction
from target graph features using convolutional neural networks.
Similarly, from Equation 5, drug node features are composed of
linked node features, and drug-target affinity is also primarily
determined by a subset of nodes, exhibiting a clear local
receptive field, thus suitable for further feature extraction
from drug node features using convolutional neural
networks. Additionally, convolutional neural networks
require fewer parameters to train, which is beneficial for
addressing the relatively small number of drug-target
pair samples.

Given O
�
i and �Oj of a drug-target pair, the high- level features of

O
�
i can be extracted by:

P
�
i � f

�
C
�

O
�

i( ) (6)

where f
�

C
�(·) is a shallow CNN that is used to extract high-level

features of the target.
The high- level features of O

�
i can be extracted by:

�Pj � �f �C
�Oj( ) (7)

where �f �C(·) is a shallow CNN that is used to extract high-level
features of the drug.

After extracting the high-level features of targets and drugs
using Equations 6, 7, the drug-target pair features can be
represented as:

Pk � P
�
i, �Pj[ ] (8)

After obtaining the drug-target pair features, a predictor can be
used to predict the drug-target affinity. The predictor is defined
as follows:

ak � fP Pk( ) (9)
where fp(·) is a shallow predictor, which is consisted by many fully
connected linear layers and active function.

f
�

C
�(·), �f �C(·) and fp(·) are trained by the mean-square error

between the prediction score and actual score, whichmust be trained
by the labeled drug-target affinity database.

2.5 The proposed GNPDTA model

GNPDTA is summarized in Algorithm 2, which comprises two
stages: supervised GNPDTA training and GNPDTA testing. In the
supervised GNPDTA training, the first six steps, introduced in
Section 3.2, are used to extract low-level features for training
samples. The final four steps, introduced in Section 3.3, are
responsible for extracting high-level features for the training
samples. During the GNPDTA testing, steps 11–16 are used to
extract low-level features, while steps 17, 18, and 19 are utilized to
extract high-level features and predict the DTA score for the test
sample. The code is available at https://github.com/
yeqing0713/GNPDTA.
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Input: Training drugs D � [d1 ,d2 ,...,dn]T, training

targets T � [t1,t2,/,tm]T, the DTA score Y, the length of

the fragment of the target �l, the number of fragments S, a

test drug d and a test target t, the pre-trained target

GIN f �G(·), the pre-trained drug GIN f
G
�(·).

Output: the predicted DTA score a of d and t.

Algorithm:

Stage 1: supervised GNPDTA training

1: Divide target fragments for T � [t1 ,t2,/,tm]T by using

overlapping sliding window method.

2: Used the RDkit tool to create graphs for all

target fragments.

3: Extracted low-level features for targets

by Equation 4.

4: Extracted high-level features for targets

by Equation 6.

5: Used the RDkit tool to create graphs for D �
[d1 ,d2 ,...,dn]T.

6: Extracted low-level features for drugs

by Equation 5.

7: Extracted high-level features for drugs

by Equation 7.

8: Calculated drug-target pair features by Equation 8.

9: Predicted drug-target affinity by Equation 9.

10: Trained f
�

C
�(·), �f �C(·), fp(·) by minimizing mean-square

error between A and Y.

Stage 2: GNPDTA testing

11: Divided target fragments by using an overlapping

sliding window method.

12: Used the RDkit tool to create graphs for all

target fragments.

13: Extracted low-level features for t by Equation 4.

14: Extracted high-level features for t by Equation 6.

15: Used the RDkit tool to create graphs for d.

16: Extracted low-level features for d by Equation 5.

17: Extracted high-level features for d by Equation 7.

18: Calculated the drug-target pair features for d and t

by Equation 9.

19: Predicted the DTA between d and t by Equation 9.

Algorithm 2. Pseudo code of GNPDTA.

Compared with other existing DTAP methods, GNPDTA
boasts the following advantage: GNPDTA employs a two-stage
strategy for DTAP feature extraction. The first stage employs a
self-supervised approach to learn low-level features, which can
leverage a large amount of unlabeled training samples. This
approach also helps overcome the large discrepancy between
the self-supervised training objective and the drug-target affinity
prediction objective. In the second stage, a supervised method is
used to learn high-level features and predict DTA, enabling the
utilization of limited samples to train the DTA predictor. It also
allows for better utilization of the low-level features extracted
from the self-supervised method. This two-stage methodology
maximizes the strengths of both models, ensuring the optimal
utilization of training samples. Notably, it minimizes the divide
between self-supervised learning and DTA prediction, thereby
enhancing the effectiveness of the features extracted through self-
supervised learning.

2.6 Architectural parameter

GNPDTA comprises a pre-trained drug GIN, a pre-trained
target GIN, two 2D CNNs, and a predictor. These neural
networks involve numerous architectural parameters. The pre-
trained drug GIN and the pre-trained target GIN primarily
require setting the number of hidden layers and hidden size,
which are set to 6 and 60 respectively, considering that the
numbers of tokens in the drug and target are only 62 and 25.
The 2D CNN needs to specify the number of hidden layers, the
numbers of filters, and the kernel sizes. Specifically, the number of
hidden layers is set to 3, with the numbers of filters for each layer
being 32, 64, 128, and the kernel sizes being 5, 5, 3. As can be seen,
this is a shallow 2D CNN. The reason for only using a shallow 2D
CNN is that the current labeled drug-target affinity databases are
still relatively small, making it difficult to support the training of
neural networks with a large number of parameters. The Predictor
also needs to define the number of hidden layers and hidden size,
where the number of hidden layers is set to 3, and the hidden size for
each layer is set to 512, 128, 1, because the scale of labeled training
data of DTA is relatively small, which can only support the training
of models with relatively few parameters. The training batch size is
set to 1,280, which is the largest size for my GPU, where my GPU
memory is 16 GB.

3 Results

3.1 Experimental setting

In this section, five datasets, Kiba, Davis, DTC, Metz, and Tox-
Cast, listed in Table 1 are used to validate the proposed method. The
same train/test splits as specified in (Wu et al., 2024) were adopted
for the experiments, with 80% of the data instances used for training
and 20% reserved for testing.

To evaluate the DTA predictions, the concordance index (CI)
and mean squared error (MSE) were employed as metrics.
Specifically, CI measures the ranking of the predicted binding
affinity, as described in (Wu et al., 2024), while MSE quantifies
the difference between the vector of predicted values and the vector
of actual values, as stated in (Liao et al., 2022).

3.2 Ablation study and statistical test

The main contribution of GNPDTA lies in bridging the gap
between pre-training and DTA objectives. By dedicating the first
stage solely to low-level feature extraction, GNPDTA successfully
narrows the gap between the pre-training objectives and the DTAP
objectives. This approach ensures that the features learned in the
pre-training phase are more relevant and useful for the
downstream DTAP task.

Therefore, this subsection will compare the experimental results
of the following methods: NO Pre-trained GIN+2D CNN, 2D CNN,
and Pre-trained GIN+1D CNN. Among them, NO Pre-trained
GIN+2D CNN has the same framework as GNPDTA, but the
GIN model is not trained using large-scale unlabeled training
data. The 2D CNN removes the GIN part from the framework
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TABLE 2 Results of DTA on Davis.

Method Drug Target CI↑ MSE↓

DeepCDA LSTM + 1D-CNN LSTM + 1D-CNN 0.891 (0.003) 0.245

ELECTRA-DTA ELECTRA + SE-CNN ELECTRA + SE-CNN 0.889 0.238

MRBDTA Transformer Transformer 0.901 0.216

DeepGLSTM GCN LSTM 0.895 0.232

GCN-BERT GCN BERT 0.896 0.199

MGraphDTA GCN 2D-CNN 0.900 (0.004) 0.207 (0.001)

DeepGS GCN, BiGRU 2D-CNN 0.882 0.252

MFR-DTA MLP 2D-CNN 0.905 0.221

MAM 2D-CNN 2D-CNN 0.891 0.183

WideDTA 1D-CNN 1D-CNN 0.886 (0.003) 0.262(0.009)

DeepDTA 1D-CNN 1D-CNN 0.878 (0.004) 0.261

MATT 1D-CNN 1D-CNN 0.891 (0.003) 0.227

AttentionDTA 1D-CNN 1D-CNN 0.887 (0.005) 0.262 (0.019)

SAG-DTA GCN 1D-CNN 0.903 0.209

GraphDTA GCN 1D-CNN 0.893 0.229

GSAML-DTA GCN GCN 0.896 0.201

GNPDTA Pre-trained GIN + 2D-CNN Pre-trained GIN + 2D-CNN 0.907 (0.004) 0.199 (0.003)

TABLE 3 Results of DTA on Kiba.

Method Drug Target CI↑ MSE↓

DeepCDA LSTM + 1D-CNN LSTM + 1D-CNN 0.889 (0.002) 0.176

ELECTRA-DTA ELECTRA + SE-CNN ELECTRA + SE-CNN 0.889 0.162

MRBDTA Transformer Transformer 0.900 0.130

DeepGLSTM GCN LSTM 0.897 0.133

GCN-BERT GCN BERT 0.888 0.149

MGraphDTA GCN 2D-CNN 0.902 (0.001) 0.128 (0.001)

DeepGS GCN, BiGRU 2D-CNN 0.860 0.193

MFR-DTA MLP 2D-CNN 0.898 0.136

MAM 2D-CNN 2D-CNN 0.898 0.135

WideDTA 1D-CNN 1D-CNN 0.875 (0.001) 0.179 (0.008)

DeepDTA 1D-CNN 1D-CNN 0.863 (0.002) 0.194

MATT 1D-CNN 1D-CNN 0.889 (0.004) 0.150

AttentionDTA 1D-CNN 1D-CNN 0.882 (0.004) 0.162 (0.003)

SAG-DTA GCN 1D-CNN 0.892 0.130

GraphDTA GCN 1D-CNN 0.891 0.139

GSAML-DTA GCN GCN 0.900 0.132

GNPDTA Pre-trained GIN + 2D-CNN Pre-trained GIN + 2D-CNN 0.906 (0.004) 0.126 (0.002)
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and only uses 2D CNN to extract features of drugs and targets. Pre-
trained GIN+1D CNN replaces the 2D CNN in the GNPDTA
framework with 1D CNN. NO Pre-trained GIN+2D CNN can
verify the effect of using pre-training. 2D CNN can validate the
effect of using GIN to extract low-level features. Pre-trained
GIN+1D CNN can verify the effect of using 2D CNN. The
experimental results are presented in Tables 2–4. In order to test
and compare the stability of algorithms, the mean and standard
deviation of experimental results are given on the histogram.

From the mean values on Figures 2–5, it can be observed that
GNPDTA’s CI is higher than 2D CNN’s CI by 0.015 and 0.008 on
the Davis and Kiba datasets, respectively. Meanwhile, GNPDTA’s
MSE is lower than 2D CNN’s MSE by 0.036 and 0.019 on the Davis
and Kiba datasets, respectively. This indicates that the use of GIN to
initially extract features is more effective than directly using one-hot
features for improving the prediction performance of DTA.
GNPDTA’s CI is also higher than NO Pre-trained GIN+2D
CNN’s CI by 0.004 and 0.004 on the Davis and Kiba datasets,
respectively, while GNPDTA’s MSE is lower by 0.006 and 0.007.
This demonstrates that using a large number of unlabeled training
samples helps improve the DTA prediction performance.
Additionally, GNPDTA’s CI is higher than Pre-trained GIN+1D
CNN’s CI by 0.002 and 0.003 on the Davis and Kiba datasets,

respectively, while GNPDTA’s MSE is lower than 2DCNN’s MSE by
0.005 and 0.002. This suggests that 2D CNN is better able to
comprehensively utilize the primary features extracted by Pre-
trained GIN. The reason is that 2D CNN not only extracts
features between sequences but also combines existing features to
create new ones.

TABLE 4 Results of DTA on DTC, Metz and Tox-cast.

Dataset Method Drug Target CI↑ MSE↓

DTC DeepGLSTM GCN LSTM 0.895 0.149

GraphDTA GCN 1D-CNN 0.876 0.176

GNPDTA Pre-trained GIN + 2D-CNN Pre-trained GIN + 2D-CNN 0.899 0.144

Metz DeepGLSTM GCN LSTM 0.810 0.294

GraphDTA GCN 1D-CNN 0.800 0.317

GNPDTA Pre-trained GIN + 2D-CNN Pre-trained GIN + 2D-CNN 0.812 0.283

Tox-cast DeepGLSTM GCN LSTM 0.919 0.313

GraphDTA GCN 1D-CNN 0.915 0.324

GNPDTA Pre-trained GIN + 2D-CNN Pre-trained GIN + 2D-CNN 0.921 0.301

FIGURE 2
CI of DTA on Davis dataset based on ablation experiments.

FIGURE 3
MSE of DTA on Davis dataset based on ablation experiments.

FIGURE 4
CI of DTA on Kiba dataset based on ablation experiments.
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From the variance on Figure 2, the standard deviations of CIs of
the four methods on the Davis dataset are respectively 0.003, 0.004,
0.004, and 0.004. From the variance on Figure 3, the variances of
MSEs of the four methods on the Davis dataset are respectively
0.003, 0.004, 0.003, and 0.003. From the variance on Figure 4, the
variances of CIs of the four methods on the Kiba dataset are
respectively 0.004, 0.004, 0.005, and 0.004. From the variance on
Figure 5, the variances of MSEs of the four methods on the Kiba
dataset are respectively 0.003, 0.003, 0.003, and 0.002. These data
indicate that our method’s experimental results are relatively stable
and have strong practical application capabilities.

3.3 Results of DTA on davis

In this subsection, GNPDTA is compared with numerous recent
studies on Davis, including DeepDTA (Öztürk et al., 2018), MATT
(Zeng et al., 2021), WideDTA (Öztürk et al., 2019), DeepCDA
(Karim et al., 2020), ELECTRA-DTA (Wang et al., 2022), MAM
(Aleb, 2021), MRBDTA (Zeng et al., 2023), AttentionDTA (Zhao
et al., 2019), SAG-DTA (Zhang et al., 2021), GraphDTA (Nguyen
et al., 2021), MGraphDTA (Yang et al., 2022), DeepGS (Lin, 2020),
DeepGLSTM (Mukherjee et al., 2022), GCN-BERT (Lennox et al.,
2021), GSAML-DTA (Nguyen et al., 2021), and MFR-DTA (Hu
et al., 2023).

According to the principles of the feature extraction of methods,
they can be broadly classified into several categories. Two-stage-
based methods include DeepCDA and ELECTRA-DTA. Pre-
training-based methods comprise DeepCDA, ELECTRA-DTA,
MRBDTA, DeepGLSTM, and GCN-BERT. 2D-CNN-based
methods are MGraphDTA, DeepGS, MFR-DTA, and MAM. 1D-
CNN-based methods are WideDTA, DeepDTA, MATT,
AttentionDTA, SAG-DTA, and GraphDTA. GCN-based methods
cover DeepGLSTM, GCN-BERT, MGraphDTA, DeepGS, SAG-
DTA, GraphDTA, GSAML-DTA, and DGraphDTA. The model
evaluations of the DTA on Davis are listed in Table 2, where the best
of each group on each dataset is shown in the bold font, “↑”
represents that the larger the value in this column is, the better it
is, “↓” represents that the smaller the value in this column is, the
better it is. The value outside the parentheses is the mean, and the
value inside the parentheses is the standard deviation. It can be seen

from Table 2 that GNPDTA is the best among all compared
methods on Davis.

Firstly, GNPDTA significantly outperforms two-stage-based
methods. Specifically, the CI of GNPDTA is 0.016 and
0.018 higher, respectively, compared to that of DeepCDA and
ELECTRA-DTA. Similarly, the MSE of GNPDTA is 0.046, and
0.039 lower, respectively, than that of DeepCDA and ELECTRA-
DTA. Notably, the CI of GNPDTA is 0.016 higher than the CI of
DeepCDA, which is the best-performing method among two-stage-
based methods. Moreover, the MSE of GNPDTA is 0.046 lower than
the MSE of DeepCDA. These results demonstrate that our method is
more effective than the compared two-stage-based
methods for DTAP.

Secondly, GNPDTA significantly outperforms pre-training-
based methods. Specifically, the CI of GNPDTA is 0.016, 0.018,
0.006, 0.012, and 0.011 higher, respectively, compared to that of
DeepCDA, ELECTRA-DTA, MRBDTA, DeepGLSTM and GCN-
BERT. Similarly, the MSE of GNPDTA is 0.046, 0.039, 0.017, 0.033,
and 0.0 lower, respectively, than that of DeepCDA, ELECTRA-DTA,
MRBDTA, DeepGLSTM and GCN-BERT. Notably, the CI of
GNPDTA is 0.0061 higher than the CI of MRBDTA, which is
the best-performing method among CNN-based approaches.
Moreover, the MSE of GNPDTA is 0.017 lower than the MSE of
MRBDTA. These results demonstrate that our method is more
effective than the compared two-stage-based methods for DTAP.

Thirdly, it is evident that GNPDTA surpasses 2D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses MGraphDTA, DeepGS, MFR-DTA, and MAM by
0.007, 0.025, 0.002 and 0.016, respectively. Similarly, its mean
squared error (MSE) is lower, specifically 0.008, 0.053,
0.022 and −0.016 less, compared to MGraphDTA, DeepGS,
MFR-DTA, and MAM. Notably, GNPDTA’s CI exceeds the CI of
MFR-DTA, the top-performing CNN-based approach, by 0.007.
Furthermore, GNPDTA’s MSE is 0.008 lower than MFR-DTA’s
MSE. These findings clearly indicate that our proposed method
exhibits superior efficacy compared to the examined two-stage-
based methods for DTAP.

Fourthly, it is evident that GNPDTA surpasses 1D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses WideDTA, DeepDTA, MATT, AttentionDTA, SAG-
DTA and GraphDTA by 0.021, 0.029, 0.016, 0.02, 0.004 and
0.014, respectively. Similarly, its mean squared error (MSE) is
lower, specifically 0.063, 0.062, 0.028, 0.063, 0.01 and 0.03 less,
compared to WideDTA, DeepDTA, MATT, AttentionDTA, SAG-
DTA and GraphDTA. GNPDTA’s CI exceeds the CI of SAG-DTA,
the top-performing CNN-based approach, by 0.004. Furthermore,
GNPDTA’s MSE is 0.01 lower than SAG-DTA’s MSE. These
findings clearly indicate that our proposed method exhibits
superior efficacy compared to the examined two-stage-based
methods for DTAP.

Fifthly, it is evident that GNPDTA surpasses 2D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses DeepGLSTM, GCN-BERT, MGraphDTA, DeepGS,
SAG-DTA, GraphDTA, GSAML-DTA, DGraphDTA by 0.012,
0.011, 0.007, 0.025, 0.004, 0.014, 0.011 and 0.003, respectively.
Similarly, its mean squared error (MSE) is lower, specifically
0.033, 0, 0.008, 0.053, 0.01, 0.03, 0.002 and 0.003 less, compared
to DeepGLSTM, GCN-BERT, MGraphDTA, DeepGS, SAG-DTA,

FIGURE 5
MSE of DTA on Kiba dataset based on ablation experiments.
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GraphDTA and GSAML-DTA. Notably, GNPDTA’s CI exceeds the
CI of GSAML-DTA, the top-performing CNN-based approach, by
0.003. Furthermore, GNPDTA’s MSE is 0.003 lower than GSAML-
DTA’s MSE. These findings clearly indicate that our proposed
method exhibits superior efficacy compared to the examined
two-stage-based methods for DTAP.

3.4 Results of DTA on Kiba

In this subsection, GNPDTA is also compared with numerous
recent studies on Davis, including DeepDTA (Öztürk et al., 2018),
MATT (Zeng et al., 2021), WideDTA (Öztürk et al., 2019),
DeepCDA (Karim et al., 2020), ELECTRA-DTA (Wang et al.,
2022), MAM (Aleb, 2021), MRBDTA (Zeng et al., 2023),
AttentionDTA (Zhao et al., 2019), SAG-DTA (Hu et al., 2023),
GraphDTA (Nguyen et al., 2021), MGraphDTA (Yang et al., 2022),
DeepGS (Lin, 2020), DGraphDTA (Lu et al., 2020), DeepGLSTM
(Mukherjee et al., 2022), GCN-BERT (Lennox et al., 2021), GSAML-
DTA (Pan et al., 2023), and MFR-DTA (Zhang Xianfeng et al.,
2023). The model evaluations of the DTA on Kiba are listed in
Table 3, where the best of each group on each dataset is shown in the
bold font, “↑” represents that the larger the value in this column is,
the better it is, “↓” represents that the smaller the value in this
column is, the better it is. It can be seen from Table 3 that GNPDTA
is the best among all compared methods on Kiba.

Firstly, GNPDTA significantly outperforms two-stage-based
methods. Specifically, the CI of GNPDTA is 0.017 and
0.017 higher, respectively, compared to that of DeepCDA and
ELECTRA-DTA. Similarly, the MSE of GNPDTA is 0.05 and
0.036 lower, respectively, than that of DeepCDA and ELECTRA-
DTA. Notably, the CI of GNPDTA is 0.017 higher than the CI of
ELECTRA-DTA, which is the best-performing method among two-
stage-based methods. Moreover, the MSE of GNPDTA is
0.036 lower than the MSE of ELECTRA-DTA. These results
demonstrate that our method is more effective than the
compared two-stage-based methods for DTAP.

Secondly, GNPDTA significantly outperforms pre-training-
based methods. Specifically, the CI of GNPDTA is 0.017, 0.017,
0.006, 0.009, and 0.018 higher, respectively, compared to that of
DeepCDA, ELECTRA-DTA, MRBDTA, DeepGLSTM and GCN-
BERT. Similarly, the MSE of GNPDTA is 0.05, 0.036, 0.004,
0.007 and 0.023 lower, respectively, than that of DeepCDA,
ELECTRA-DTA, MRBDTA, DeepGLSTM and GCN-BERT.
Notably, the CI of GNPDTA is 0.006 higher than the CI of
MRBDTA, which is the best-performing method among CNN-
based approaches. Moreover, the MSE of GNPDTA is
0.004 lower than the MSE of MRBDTA. These results
demonstrate that our method is more effective than the
compared two-stage-based methods.

Thirdly, it is evident that GNPDTA surpasses 2D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses MGraphDTA, DeepGS, MFR-DTA, and MAM by
0.004, 0.046, 0.008 and 0.008, respectively. Similarly, its mean
squared error (MSE) is lower, specifically 0.002, 0.067,
0.01 and −0.009 less, compared to MGraphDTA, DeepGS, MFR-
DTA, and MAM. Notably, GNPDTA’s CI exceeds the CI of
MGraphDTA, the top-performing CNN-based approach, by

0.004. Furthermore, GNPDTA’s MSE is 0.002 lower than
MGraphDTA’s MSE. They clearly indicate that our proposed
method exhibits superior efficacy compared to the examined
two-stage-based methods for DTAP.

Fourthly, it is evident that GNPDTA surpasses 1D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses WideDTA, DeepDTA, MATT, AttentionDTA, SAG-
DTA and GraphDTA by 0.031, 0.043, 0.017, 0.024, 0.014 and
0.015, respectively. Similarly, its mean squared error (MSE) is
lower, specifically 0.053, 0.068, 0.024, 0.036, 0.004 and 0.013 less,
compared to WideDTA, DeepDTA, MATT, AttentionDTA, SAG-
DTA and GraphDTA. GNPDTA’s CI exceeds the CI of SAG-DTA,
the top-performing CNN-based approach, by 0.014. Furthermore,
GNPDTA’s MSE is 0.004 lower than SAG-DTA’s MSE. These
findings clearly indicate that our proposed method exhibits
superior efficacy compared to the examined two-stage-based
methods for DTAP.

Fifthly, it is evident that GNPDTA surpasses 2D-CNN-based
methods in terms of performance. Specifically, GNPDTA’s CI
surpasses DeepGLSTM, GCN-BERT, MGraphDTA, DeepGS,
SAG-DTA, GraphDTA, GSAML-DTA, DGraphDTA by 0.009,
0.018, 0.004, 0.046, 0.014, 0.015 and 0.006, respectively. Similarly,
its mean squared error (MSE) is lower, specifically 0.007, 0.023,
0.002, 0.067, 0.004, 0.013 and 0.006 less, compared to DeepGLSTM,
GCN-BERT, MGraphDTA, DeepGS, SAG-DTA, GraphDTA and
GSAML-DTA. Notably, GNPDTA’s CI exceeds the CI of GSAML-
DTA, the top-performing CNN-based approach, by 0.004.
Furthermore, GNPDTA’s MSE is 0.002 lower than GSAML-
DTA’s MSE. These findings clearly indicate that our proposed
method exhibits superior efficacy compared to the examined
two-stage-based methods for DTAP.

3.5 Results of DTA on DTC, Metz and
Tox-cast

In this subsection, GNPDTA is compared against GraphDTA
and DeepGLSTM on the DTC, Metz, and Tox-cast datasets.
However, as only a limited number of deep learning methods
have been validated on these three databases, our comparison is
primarily focused on GraphDTA and DeepGLSTM. The resulting
comparisons are presented in Table 4, where the best of each group
on each dataset is shown in the bold font, “↑” represents that the
larger the value in this column is, the better it is, “↓” represents that
the smaller the value in this column is, the better it is. It can be seen
from Table 2 that GNPDTA is the best among all compared
methods on Davis.

From Table 4, it is evident that our proposed method
outperforms others. Firstly, the CI of GNPDTA is higher than
DeepGLSTM by 0.004, 0.002, and 0.002, respectively, while the
MSE of GNPDTA is lower by 0.005, 0.011, and 0.012, respectively,
on the DTC, Metz, and Tox-Cast datasets. Secondly, when
comparing GNPDTA with GraphDTA on the same datasets,
GNPDTA’s CI is higher by 0.023, 0.012, and 0.006, while its
MSE is lower by 0.032, 0.034, and 0.023, respectively. These
results demonstrate that combining pre-trained GIN with 2D
CNN to learn high-level features for drugs and targets is
beneficial for drug-target affinity prediction.
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4 Discussion

In this paper, we introduce GNPDTA as a novel approach for
predicting DTA, with the aim of addressing the significant
discrepancy between the pre-training objectives and samples
utilized in existing pre-training methods and their corresponding
DTAP methods. GNPDTA integrates a two-stage strategy for
feature extraction in the context of DTAP. Initially, a self-
supervised learning mechanism is employed to acquire low-level
features from unlabeled data, thereby bridging the gap between the
objectives of self-supervised learning and DTA prediction, as well as
the discrepancy in samples used for both purposes. Subsequently, a
supervised approach is leveraged to refine high-level features and
predict DTA using limited labeled samples, effectively incorporating
the low-level features obtained from the first stage. This two-stage
methodology maximizes the strengths of both models, ensuring the
optimal utilization of training samples. Notably, it minimizes the
divide between self-supervised learning and DTA prediction,
thereby enhancing the effectiveness of the features extracted
through self-supervised learning. Our findings demonstrate that
GNPDTA surpasses existing methods, indicating its potential for
more efficient applications in DTAP.

GNPDTA offers valuable insights into the complex interactions
between drugs and their targets. The ability to accurately predict
DTA has profound implications for drug discovery and
development. By identifying potential drug-target pairs with high
affinity, researchers can prioritize compounds for further
experimentation, thereby accelerating the drug development
process. Moreover, the self-supervised learning component of
GNPDTA captures information beyond direct DTA annotations,
potentially uncovering novel patterns and relationships within the
drug-target interaction landscape. The practical implications of
GNPDTA are significant. In the pharmaceutical industry, the
ability to accurately predict DTA could revolutionize drug
screening and optimization, reducing costs and time-to-market.
Furthermore, GNPDTA has the potential to facilitate the
discovery of novel drug indications by predicting off-target
effects and repurposing existing drugs for new therapeutic
applications. Additionally, in the context of precision medicine,
GNPDTA could aid in the selection of personalized treatment
options by predicting an individual’s response to various drugs
based on their unique genetic profile.

There are several interesting problems to be investigated in our
future work. As one of the further works, optimized and improved
the GNPDTA model by exploring more advanced graph neural
network structures andmore efficient feature fusion methods, which

aims to further enhance the accuracy and efficiency of drug-target
affinity prediction. As another further work, investigated and
developed visualization techniques for the model, which can
improve the interpretability of DTAP.
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