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Residual feed intake (RFI) is an important trait of feed efficiency that has been
increasingly considered in the breeding objectives for dairy cattle. The objectives
of this study were to estimate the genetic parameters of RFI and its component
traits, namely, dry-matter intake (DMI), body weight (BW), and energy-corrected
milk (ECM), in lactating Holstein cows; we thus developed a system for genomic
evaluation of RFI in lactating Holstein cows and explored the associations of the
RFI of heifers and cows. The RFI values were calculated from 2,538 first (n = 2,118)
and second (n = 420) lactation Holsteins cows between 2020 and 2024 as part of
the STgenetics EcoFeed

®
program. Of the animals, 1,516 were heifers from the

same research stationwith previously established RFI values . After quality control,
61,283 single-nucleotide polymorphisms were used for the analyses. Univariate
analyses were performed to estimate the heritabilities of RFI and its components
in lactating cows; bivariate analyses were then performed to estimate the genetic
correlations between the RFI of heifers and lactating cows using the genomic
best unbiased linear prediction method. Animals with phenotypes and genotypes
were used as the training population, and animals with only genotypes were
considered the prediction population. The reliability of breeding values was
obtained by approximation based on partitioning a function of the accuracy of
the training population’s genomic estimated breeding values (GEBVs) and
magnitudes of genomic relationships between the individuals in the training
and prediction populations. The heritability estimates (mean ± SE) of the RFI, DMI,
ECM, and BW were 0.43 ± 0.07, 0.44 ± 0.04, 0.40 ± 0.05, and 0.46 ± 0.04,
respectively. The average reliability of the GEBVs for RFI from the training and
prediction populations were 44% and 30%, respectively. The genetic correlations
for the RFI were 0.42 ± 0.08 between heifers and first lactation cows and 0.34 ±
0.06 between heifers and first and second lactation cows. Our results show that
the genetic components of RFI are not fully carried over from heifers to cows and
that there is re-ranking of the individuals at different life stages. Selection of
animals for feed efficiency on a lifetime basis thus requires accounting for the
efficiencies during animal growth and milk production as a lactating cow.
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1 Introduction

Feed efficiency (FE) has a large impact on the profitability of the
dairy industry as feed accounts for approximately 50% of the total
farm cost (USDA, 2022). Improved FE could reduce the land use and
other resources used for feed production (Lovendahl et al., 2018),
which would help producers improve the overall production
efficiency. In addition, improving FE improves the environmental
sustainability of farming as more nutrients are directed toward milk
production instead of being lost in manure and methane production
(Basarab et al., 2013).

Residual feed intake (RFI) has been identified as one of the
suitable traits for use in selection programs to improve FE
(Stephansen et al., 2023). RFI is a heritable (Tempelman and Lu,
2020) trait and is defined as the difference between an animal’s
actual feed intake and its expected intake calculated from different
energy sinks (e.g., milk production, body weight, and changes in
body weight) (Tempelman et al., 2015; VandeHaar et al., 2016).
Efficient animals are those that consume less than expected and have
negative RFI values, whereas inefficient animals consume more than
expected and have positive RFI values. The reduced intake of low-
RFI dairy cows has important implications for on-farm profitability;
given the strong relationship between intake and methane emission
(Mills et al., 2003), selection of low-RFI cows has also been described
as an opportunity to positively impact methane emission reduction
(Knapp et al., 2014).

Improvements in the net FE have been limited by the high costs
and difficulties associated with measuring individual feed intake.
Recording of individual feed intake is generally restricted to
research farms and nucleus breeding herds, for which the available
data are limited. Genomic selection allows the inclusion of important
economic traits that are difficult tomeasure in breeding programs that
could be cumulative across generations (Pryce et al., 2015; Li et al.,
2020). RFI has been included in the lifetime net merit index used to
evaluate dairy cows in the United States for total genetic merit in the
national genetic evaluation (Li et al., 2020; VanRaden et al., 2021).
Although genomic selection is an appealing method to estimate the
breeding values of FE, collecting accurate phenotypes to create a large
reference population and provide high-accuracy predictions on such a
population is challenging (Pryce et al., 2015).

The cost of raising dairy heifers constitutes approximately 25%
of the total production expenses on a farm, with the feed costs
accounting for roughly 50% of the overall expenditure for heifer
rearing (Akins and Science, 2016). Numerous studies have
documented that selection for RFI in heifers can persist as they
mature into cows (Davis et al., 2014; Macdonald et al., 2014).
However, a study by Connor et al. (2019) revealed a modest
phenotypic correlation of only 0.37 between the RFI of growing
heifers and their subsequent RFI as lactating cows in the
United States during the first 100 days of lactation. Furthermore,
Pryce et al. (2014a) reported lower accuracy of genomic estimated
breeding values (GEBVs) for the dry-matter intake (DMI) of cows
when heifers were used as the reference population and higher
accuracy when using lactating cows as the reference population.

To develop a comprehensive selection strategy for enhancing the
overall FE in dairy farming, it is imperative to obtain accurate
genetic and phenotypic correlation estimates between the RFI of
growing heifers and lactating cows. Thus, the long-term goal of this

study is to improve dairy FE. The main objectives of this study are as
follows: i) to estimate the genetic parameters of RFI and its
component traits in Holstein cows in the United States, ii) to
develop a system for genomic evaluation for RFI in Holstein
cows in the United States, and iii) to explore the associations
between the RFI values of heifers and cows.

2 Materials and Methods

This study did not require approval from an Animal Care
Committee because all required information was obtained from
preexisting databases.

2.1 Data and phenotypes for heifers

The animal management, diets, data collection, and data quality
control procedures were as described in Khanal et al. (2023). In brief,
data were collected from 7,623 growing Holstein heifers across
204 trials conducted between 2014 and 2024 at the STgenetics
Ohio Heifer Center (South Charleston, Ohio). Upon reaching 6 to
8 months of age, the heifers were moved to the feed conversion testing
facility and placed in warm-up pens, where they began adaptation to a
corn-silage-based test ration (Net energy gain; NEG = 0.95 Mcal/kg
Dry matter (DM); Crude protein (CP) = 12.0% DM). During
adaptation, the heifers were evaluated for health and body size to
establish groups of 40–64 animals exhibiting good health and
adequate body sizes to freely consume feed from specialized feed
bunks in the testing pens. Once a group was established, they were
moved to a testing pen equipped with eight electronic feed bunks
(GrowSafe Systems Ltd., Airdrie, AB, Canada). Once the heifers
consumed the test rations for a minimum of 21 d, the feed intake
and performance were measured daily for a minimum of 70 d.
Throughout the adaptation and testing periods, the heifers were
allowed ad libitum access to feed and clean drinking water. During
each trial, the body weight (BW) was recorded using a chute weighing
system (Tru-Test Inc., Mineral Wells, TX, United States) either
biweekly (every 2 weeks) or twice during the first and last weeks
of the testing period. For each animal, the DMI was recorded daily
during the testing period. Individual feed intake was then computed
using a subroutine of GrowSafe 4000E software, as described by
Parsons et al. (2020). A linear regression of the serial BW on the day of
the trial was calculated for each animal using JMP (SAS Inst. Inc.,
Cary, NC, United States) to determine the average daily gain (ADG)
(Williams et al., 2011). The average DMI and metabolic BW (MBW)
were determined as the averages of all daily DMI andMBWs over the
measurement period, respectively. RFI was then computed for each
trial as the difference between the actual and predicted DMI values
using the following model:

yDMIh � µ + b1 ADG + b2 MBW + b3 age + eDMIh,

where yDMIh is the average DMI over the trial period; µ is the overall
mean effect for each trial; b1, b2, and b3 are partial regression
coefficients; ADG and MBW are the corresponding values
averaged over the trial period; age is the average age of the heifer
fitted as a covariate; and eDMIh is the residual and considered
as RFIheifer.
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2.2 Data and phenotypes for lactating cows

Data were collected from 2,538 first (n = 2,118) and second (n =
420) lactation Holsteins cows between 2020 and 2024 at the
STgenetics Ohio Heifer Center. Upon calving, the cows were
placed in pens equipped with automatic milking systems (AMS;
Lely Astronaut A5). Upon reaching 100 days of lactation, the cows
were moved to two pens (225 head capacity per pen) equipped with
84 electronic feed intake bunks (GrowSafe Systems Ltd., Airdrie, AB,
Canada). Individual animal records for the DMI, milk yield (MY),
milk fat percentage (F%), milk protein percentage (P%), and BW
were recorded daily from 100 to 240 days of lactation. Throughout
the trials, the cows were fed a corn-silage-based ration (NEl =
1.65 Mcal/kg; CP = 13.7%) and clean drinking water ad libitum.
Only those cows that were determined to be ≥90% Holstein through
genomic testing were included in this study, and all the cows were
housed in free stall barns with no access to pasture.

The individual animal feed intake was computed using a
subroutine of the GrowSafe 8000E software (process feed intakes),
as described by Parsons et al. (2020). The MY, milk components, and
BW data were recorded for each milking and transformed into daily
values per cow using the AMS software. Energy-correctedmilk (ECM)
was then calculated as outlined by Orth (1992):

ECM � 0.327*Milk yield + 12.95* Fat Yield + 7.2* Protein Yield.

If more than one lactation record was available for a given animal,
only the records from the first lactation were used. The animal records
were removed if an animal had less than 30 daily records of BW, DMI,
or ECM available between 100 and 240 days of lactation. Then, the
daily BW, DMI, and ECM records were included or excluded for
individual animals based on residuals from the linear regression of
BW, DMI, or ECM on the days of lactation for each animal if the
values were more than three standard deviations (SD) above or below
the mean residuals with one exception, i.e., the residual was greater or
lower than three SDs for both DMI and MY in the same direction.
This exception was allowed to include the obvious biological outliers
in the data. Less than 5% of the daily BW, DMI, and ECM records
were removed as outliers in this study, and these exclusions were
random throughout the testing period. When these data were
removed, the remaining values were used in the linear regression
estimation of trait based on days of lactation using JMP. The average
BW, DMI, and ECM values were determined as the mean of all daily
BW, DMI, and ECM records, respectively, over the measurement
period. Change in the body weight (ΔBW) of a cow was calculated as
the difference in BWbetween the start and end of the trial (Pryce et al.,
2015). Across both primiparous and multiparous cases, there were a
total of 2,538 unique cows. A detailed summary of the average BW,
DMI, ECM, F%, and P% values is presented in Table 2. Of the cows
analyzed, 1,516 animals also had previous RFI phenotypes as heifers.

The statistical model used to estimate the RFI of a lactating cow
was as follows:

yDMIc � µ + trial + lactation + b1DIM + b2 DIM2 + b3age

+ b4 age
2 + b5BW + b6ECM + b7ΔBW + eDMIc,

where yDMIc is the average DMI over the 140-d experimental period;
µ is the overall mean; trial is the fixed effect of a trial (concatenation
of pen, year, and season: 26 levels); lactation is the fixed effect of

lactation (2 levels); DIM is a continuous covariate of the average
days of lactation with regression coefficient b1; DIM2 is the
continuous covariate of the quadratic average days of lactation
with regression coefficient b2; age is a continuous covariate of the
average age with regression coefficient b3; age2 is the continuous
covariate of the quadratic average age with regression coefficient b4;
BW is a continuous covariate of the average BW with regression
coefficient b5; ECM is a continuous covariate of ECM with a
regression coefficient of b6; ΔBW is the continuous covariate of
change in the body weight of a cow with regression coefficient b7;
and eDMIc is the random residual effect that was considered RFIcow.

2.3 Genetic information

Animals from the research and commercial herds were
genotyped with the STgenetics 70k customized chip (VM2;
proprietary information). Quality control procedures were then
applied by removing the sex chromosomes and single-nucleotide
polymorphisms (SNPs) that had call rates of less than 95% or minor
allele frequencies less than 5% and all animals with SNP call rates
less than 95%. As a result, a total of 61,283 SNPs remained for the
downstream analyses. Next, the genotypes were prephased using
Eagle v2.4.1 (Loh et al., 2016). Then, minimac 4.1.0.2 (Das et al.,
2016) was used to impute the missing genotypes. The imputed VCF
files were then converted to plink files.

2.4 Estimation of variance components

Univariate analyses were performed to estimate the heritabilities
of RFI and its component traits (DMI, BW, and ECM) for the
lactating cows using LMT software (Boerner, 2022). The variance
components were estimated using the following model:

yijklm � µ + triali + lactationj + b1DIMk + b2DIM2
k + b3agel

+ b4age
2
l + animalm + eijklm,

where yijklm is the component trait of RFI (DMI, BW, and ECM) for
each animal; µ, triali, lactationj, b1, DIMk, b2, DIM2

k, b3, agel, b4,
and age2l are the same as the variables explained earlier; animalm is
the random additive genetic effect that has been assumed to be
normally distributed with animal ~N (0, A σ2a), where A is the
pedigree relationship matrix built on pedigree traced back
10 generations and σ2a is the estimated additive genetic variance;
and eijklm is the vector of random residuals with e ~ N (0, I σ2e),
where σ2e is the residual variance and I is the identity matrix. In the
pedigree, the base population was considered to be unrelated.

The RFI was modeled only as a function of the genetic effects (a),
second residual (e), and overall mean (µ) to estimate the variance
components because the other effects are already accounted for in
the estimation of the RFI.

2.5 Genomic prediction of lactating cows

Genomic prediction was performed in a two-step approach. The
variance components obtained from the pedigree relationship

Frontiers in Genetics frontiersin.org03

Khanal et al. 10.3389/fgene.2024.1462306

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1462306


matrix were fixed, and the genomic relationship matrix G was
created according to VanRaden (2008) and used to estimate the

genomic breeding values. Here, G = (M−2Π)(M−2Π)′
2∑

m

j�1pj(1−pj) , where Π is a

matrix with all the elements in column j containing the frequency of
the second allele for the SNP marker j in the base population. M
represents the ng × nm matrix of nm genotypes for the ng genotyped
animals, which are coded as 0, 1, and 2 for the number of copies of
the reference or first allele for each genotype. The predictions of the
GEBVs for the training population (lactating cows with genotype
and phenotype) were obtained by solving the mixed model
equations. Once the GEBVs of the training population were
estimated, the GEBVs of the prediction population (lactating
cows with only genotype but not phenotype) were estimated as

explained previously by VanRaden (2008). In brief, ûp = GPTG−1
TTûT,

where ûp is the vector of breeding values of the prediction

population, ûT is the vector of GEBVs of the training population,
GPT is the relationship between the training and prediction

populations, and G−1
TT is the inverse of the genomic relationship

of the training population. The reliability was then calculated
as follows:

rel ûp( )� GPTG
−1
TT GTTσ2a − C22σ2e[ ]G−1

TTGTP,

where C22 is a part of the inverse of the left-hand-side matrix of the
mixed model equation (Taylor, 2014).

To illustrate the validity of the predicted breeding values on
other populations with different relatedness to the training
population, we selected four groups of prediction populations
from commercial partner herds, with 5,000 animals in each
group based on genetic relationship with the training population.
Here, Group 1 includes animals that share the same sires as those of
the training population, Group 2 includes animals that only share
the same grandsires but not sires as those of the training population,
Group 3 includes animals that only share the same great-grandsires
but not sires and grandsires as those of the training population, and
Group 4 includes animals that do not share sires, grandsires, or
great-grandsires as those of the training population. To investigate
the impact of genetic distancing from the training population on
the reliabilities of the predicted breeding values, we estimated
the number of close relatives in the training population for each
animal in the defined groups. We assumed close relatives with
genomic relationship values of 0.45 or more, which is equivalent
to a first-degree relationship (e.g., 0.5 for parent–offspring or
full siblings), by accounting for an estimation error of ±0.05.
The associations between reliability and estimated number of
close relatives was then evaluated through a non-linear
regression analysis.

2.6 Association between RFI of heifers and
lactating cows

Bivariate analyses (RFIheifer, RFIcow) were performed among the
animals having phenotypes of both RFIheifer and RFIcow to estimate
the genetic correlations between i) RFI of heifers and cows with first
lactation (n = 1,360) as well as ii) RFI of heifers and cows with both
first and second lactations (n = 1,516). The variance components
from the bivariate analysis were obtained using the following model:

yT � XTbT + ZTgT + eT ,

where yT is the matrix of vectors of RFIheifer and RFIcow; bT is the
matrix of fixed effect solutions (mean of each trait); XT is the
incidence matrix for the fixed effects for both traits; ZT is the
incidence matrix mapping random animal effects for RFIheifer and
RFIcow; gT consists of the random animal effects for RFIheifer and
RFIcow; and eT is the vector of random residuals for RFIheifer and
RFIcow. The additive effects were normally distributed as N (0, A ⊗
K), where K is a 2 × 2 matrix of additive genetic (co)variances
between RFIheifer and RFIcow, andAwas constructed in the same way
as in the univariate analysis. The residual variance is V (eT) = R ⊗ I,
whereR is a 2 × 2 matrix of error (co)variances between RFIheifer and
RFIcow and I is the identity matrix. The standard errors (SE) of the
variance components were estimated as the SD of
100,000 multivariate normal random vectors drawn from a
multivariate normal distribution with a mean vector based on the
estimated variance components and variances from the asymptotic
(co)variance matrix obtained from the inverse of the average
information matrix (Meyer and Houle, 2013).

3 Results and discussion

3.1 Phenotypic data

Summary statistics of the RFI of heifers and its component traits
averaged over the trial period are summarized in Table 1, and the
corresponding data for the lactating cows grouped by parity are
presented in Table 2. A histogram of the RFI for all cows (Figure 1)
shows that RFI is normally distributed and ranges from −9.75 to
9.67 kg/d. The observed phenotypic SD of RFIcow was 1.85 kg of
DM/d (8.5% of average DMI), which is in agreement with the values
reported by Connor et al. (2013) (1.63 kg of DM/d or approximately
7% of average DMI) and Cavani et al. (2022) (1.99 kg of DM/d or
approximately 7% of average DMI) in US Holstein lactating cows.
Notably, the SD of RFI in lactating cows is more than twice the
phenotypic SD of RFIheifer (0.86 kg of DM/d, Khanal et al. (2023)).

To illustrate the significant level of variance in the RFI within
our cow population and highlight the potential value of selecting
high-performing animals, we compared the top and bottom 10% of
cows for RFI, as shown in Table 3. The average RFI for the most
efficient and least efficient first-parity cows were −2.26 kg and
2.37 kg of DM/d, respectively (difference of 4.6 kg of DMI/d/
cow), and those for second-parity cows were −2.43 kg and

TABLE 1 Summary statistics of the residual feed intake (RFI) values of heifers
and the component traits averaged over the trial period.

Traita Mean Min Max SD

RFI (kg of DM/d) 0 −4.69 4.21 0.76

DMI (kg/d) 7.98 3.14 14.42 1.54

Age (d) 307 206 437 43

MBW (kg) 60.0 35.22 84.59 7.5

ADG (kg/d) 1.09 0.24 2.70 0.24

aDMI, dry-matter intake; MBW, metabolic body weight; ADG, average daily gain.
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2.61 kg of DM/d, respectively (difference of 5.0 kg of DMI/d/cow).
These results show the large phenotypic variations in RFI that could
be used for genetic selection among Holstein cows. As expected,
there was a significant difference (p < 0.001) in DMI between the
most and least efficient cows (17.30 vs. 23.30 kg/d for first lactation
and 20.40 vs. 27.50 kg/d for second lactation); however, there were
no differences in ECM, BW, and ΔBW values between the cows with
divergent RFI. This result is attributed to the fact that these variables
were already accounted for in the model to estimate the RFI. There
were no differences in the MYs, fat and protein concentrations, and
ages of first calving between cows with divergent RFI. Similar results

have been reported for heifers analyzed at the same research station
(Khanal et al., 2023). These results demonstrate the independence of
RFI with respect to production, body size, and growth performance
as well as the potential ability to select for improved FE independent
of all other important production traits. However, it should be noted
that the model used to derive RFIcow in this study did not include all
the potential energy sinks, such as physiological growth in
pregnancy, body condition score, change in the body condition
score, or energy spent through locomotion or movement.

3.2 Genetic parameters

The variance components, heritability, and SE estimates from
the univariate analyses of RFIcow, DMI, ECM, and BW are presented
in Table 4. The estimated heritability of DMI was 0.44 ± 0.04, similar
to those of other FE studies that range from 0.28 to 0.57 for different
cattle breeds (Manzanilla Pech et al. (2014) for Dutch Holstein;
Negussie et al. (2019) for Nordic Red; Khanal et al. (2022) for US
Holstein). The estimated heritability of ECM was 0.40 ± 0.04, which
was within the range of results reported in the literature for Holstein
cows as ranging from 0.2 (Manzanilla Pech et al., 2014) to 0.46
(Khanal et al., 2022). Similarly, the estimated heritability of BW was
0.46 ± 0.04, which was in agreement with previous results reported
by Manzanilla Pech et al. (2014) (0.38) and Khanal et al. (2022)
(0.67). Lastly, the estimated heritability for RFIcow was 0.43 ± 0.08,
which aligns with the result of 0.36 ± 0.06 reported by Connor et al.
(2013) across the entire lactation.

It should be noted that the RFI in the current study was based on
average feed intake from all records collected during the

TABLE 2 Summary statistics by parity of the component traits of residual feed intake of lactating cows averaged over the trial period.

Traitsa Mean Min Max SD

Parity 1

DMI (kg) 20.0 12.0 28.8 2.25

BW (kg) 677 444 915 75

ECM (kg) 35.1 4.6 53.0 6.7

ΔBW (kg) 0.47 −9.16 9.59 1.09

Fat (%) 4.27 2.54 6.23 0.57

Protein (%) 3.33 2.77 3.89 0.16

Age (d) 945 690 1,377 87

Parity 2

DMI (kg) 23.9 16.1 36.6 2.81

BW (kg) 749 559 934 67

ECM (kg) 41.4 15.7 63.2 8.0

ΔBW (kg) 0.32 −3.84 9.81 0.81

Fat (%) 4.33 2.77 6.48 0.67

Protein (%) 3.31 2.83 3.83 0.16

Age (d) 1,435 916 1918 152

aDMI, dry-matter intake; BW, body weight; ECM, energy-corrected milk; ΔBW, change in body weight.

FIGURE 1
Distribution of the phenotypic residual feed intake (RFI) values of
lactating cows.
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experimental period, which decreased the noise across the testing
period and likely yielded a slightly higher heritability. Indeed, weekly
heritability estimates of the RFI in US Holstein cows reported in
previous studies (Lu et al., 2015; Li et al., 2017, 2020) were lower and
ranged from 0.14 to 0.29. Moreover, our data were collected from a
single research station, as opposed to multiple research stations in
other studies, which could be another reason for having less noise in
the data and higher heritability. Heritabilities of the lactation-wise (or
averaged) measures should be greater than those of their individual
daily or weekly data, especially if the genetic and permanent
environmental correlations between different DIMs for the
corresponding traits deviate substantially from unity (Khanal et al.,
2022). Different studies (Manzanilla Pech et al., 2014; Li et al., 2017;
Negussie et al., 2019) have reported that the genetic correlations for
DMI, ECM, and RFI across different DIMs deviate substantially from
unity. The moderate heritability of RFIcow in our study suggests that
the RFI can be used in dairy cattle breeding to improve FE.

3.3 Genomic prediction of lactating cows

The GEBVs and their reliabilities for RFIcow were estimated for
different groups of animals with different genetic distances between
the training and predicted populations. The distributions of the
GEBVs and reliabilities are presented in Figure 2. The SD and
range of GEBVs of the training population were higher than those
of different groups of the prediction populations (0.68 kg vs. 0.57 kg
and −2.14 to 3.14 kg vs. −2.23 to 2.37 kg). The average reliability of the

training population was 14% higher than that of the prediction
populations. As expected, the average reliability of the prediction
populations decreased from Group 1 that shared sires with the
training population to Group 4 that was at least four generations
removed from the genetic base of the training population. The
decrease in reliability from Group 1 to Group 4 was due to the
increase in relationship distance with the training population. Lower
reliability for animals that were distant from the reference population
was also reported by Li et al. (2020) in US Holstein bulls and Khanal
et al. (2023) in US Holstein heifers. The reductions in average
reliability compared to the training population were 18.2%, 31.8%,
36.4%, and 38.6% for Groups 1–4, respectively (Figure 2). These
reductions were explained adequately by genetic distancing with the
training population (Figure 3). Despite the small effective population
size of the Holstein breed (Makanjuola et al., 2020; Ne = 43 to
66 individuals) that results in high population-wide linkage
disequilibrium and common haplotypes across many generations,
the results illustrate the value of including a contemporary population
in the training set for accurate predictions of the breeding values.

Owing to the limited data size, the average genomic reliability of
RFI for the prediction population in our research was slightly lower
(~30%) than the current traits included in the lifetime net merit
(NM$) index for Holstein cattle in the US (VanRaden et al., 2021).
Despite the limited data size, the average genomic reliability of RFI in
our study was comparable to those reported in Australia (~40%) and
US (~18%) national genetic evaluations for Holstein cows (Pryce et al.,
2014b; Li et al., 2020; Gaddis et al., 2021). The size of the training
population and its relationship with the prediction population play

TABLE 3 . Characteristics in terms of average (SD) of 10% of the lactating cows across lactations with the lowest (most efficient) and highest (less efficient)
residual feed intake (RFI) rankings.

Lactation 1 Lactation 2

Traita Lowest 10% (n = 124) Highest 10% (n = 131) Lowest 10% (n = 45) Highest 10% (n = 39)

RFI (kg of DM/d) −2.26 (1.05) 2.37 (0.86) −2.43 (1.15) 2.61 (1.10)

DMI (kg/d) 17.30 (2.11) 23.30 (1.89) 20.40 (1.97) 27.50 (2.54)

Milk yield (kg) 30.84 (6.31) 31.91 (6.41) 36.71 (6.00) 38.15 (7.58)

Fat yield (kg) 1.37 (0.31) 1.30 (0.29) 1.62 (0.26) 1.59 (0.37)

Protein yield (kg) 1.02 (0.20) 1.06 (0.21) 1.20 (0.19) 1.24 (0.25)

ECM (kg) 34.40 (7.84) 35.5 (7.07) 40.7 (7.34) 40.8 (8.16)

BW (kg) 684 (117) 679 (69) 713 (67) 774 (55)

ΔBW (kg) 0.47 (1.98) 0.47 (0.68) 0.14 (0.53) 0.22 (0.82)

AOFC (days) 760.97 (78.20) 758.92 (78.15) 854.87 (167.55) 850.16 (114.81)

aDMI, dry-matter intake; ECM, energy-corrected milk; BW, body weight, ΔBW, change in body weight; AOFC, age of first calving.

TABLE 4 Heritability estimates (±SE) of the residual feed intake (RFI) and its component traits in lactating Holstein cows.

Traita Additive genetic variance Residual variance Heritability estimate

RFI (kg of DM/d) 1.16 ± 0.20 1.55 ± 0.13 0.43 ± 0.07

DMI (kg) 2.65 ± 0.66 3.38 ± 0.44 0.44 ± 0.04

ECM (kg) 21.00 ± 5.92 30.94 ± 4.13 0.40 ± 0.05

BW (kg) 2403.72 ± 152.14 2836.34 ± 125.33 0.46 ± 0.04

aDMI, dry-matter intake; ECM, energy-corrected milk; BW, body weight.
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significant roles in the reliability estimates. Therefore, efforts should
focus on increasing the number of individuals in the training
population, i.e., collecting more feed intake data. Collection of feed
intake data should be a continual effort to prevent reductions in
genomic prediction reliabilities owing to the distant relationships
between currently recorded cows and future commercial animals.

3.4 Association between RFI of heifers and
lactating cows

To evaluate the potential genetic differences in RFI values among
heifers and different lactations of cows, we estimated the genetic
correlations between the RFI of heifers and first lactation cows and
the RFI of heifers and all cows (both first and second lactations). The

estimated genetic correlations for RFI were 0.42 ± 0.08 between heifers
and first lactation cows as well as 0.34 ± 0.06 between heifers and all
cows. The genetic correlations in our study were lower than those
reported by Pryce et al. (2015) and Bolormaa et al. (2022) in Australian
cattle populations (0.67 and 0.47). However, both research groups
reported high SEs, where the mean value indeed decreased with the
addition of more animals in the analysis conducted by Bolormaa et al.
(2022). Connor et al. (2019) reported a phenotypic correlation of
0.37 between the RFI values of growing heifers and cows in the US.

Our results show that the underlying genetic components of RFI
are not fully carried over across the stages of life and that there is
reranking of individuals when comparing the RFI values for heifers
and lactating cows. Out of the 1,516 animals that had phenotypes of
both RFIheifer and RFIcow, we ranked heifers as the least (upper 10%;
n = 155), medium (between 80%; n = 1,210), or most efficient (lower

FIGURE 2
Distribution of the genomic estimated breeding values (GEBVs) and their reliabilities of RFI for Holstein lactating cows for different population
groups. Training refers to the population with both genotypes and phenotypes; Panel (A) Group 1 includes animals that share the same sires as those of
the training population Panel (B); Group 2 includes animals that only share the same grandsires but not sires as those of the training population; Group
3 includes animals that only share the same great-grandsires but not sires and grandsires as those of the training population; Group 4 includes
animals that do not share sires, grandsires, and great-grandsires as those of the training population.

FIGURE 3
Scatter plot of the reliability of genomic prediction as a function of the number of close relatives that the predicted animals had with the training
population. Each dot is an animal from a given prediction group (represented by different colors and as described in Figure 2), and its close relatives were
defined on the basis of genomic relationship >0.45. The line shows a non-linear regression fitted to the data by assuming a power curve model.
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10%; n = 151) according to the breeding values of RFIheifer. We found
that 20.5%, 75%, and 4.5% of the most efficient heifers were ranked as
most, medium, and least efficient as lactating cows, respectively.
Conversely, 3%, 72%, and 25% of the least efficient heifers were
ranked as most, medium, and least efficient as lactating cows,
respectively. In essence, when examining the two extreme groups,
only 4.5% of the high-performing group as heifers were classified
within the bottom 10% as cows, while 3% of the least efficient animals
as heifers were identified to be among the top 10% as cows. Similar
results of reranking were reported in previous studies (Macdonald
et al., 2014; Connor et al., 2019). Our results show that the genetic
components of RFI of the heifers were not fully carried over as they
matured into lactating cows. This indicates that evaluating the FE over
a lifetime requires consideration of the varying energy needs at
different life stages. Therefore, to select individuals based on the
lifetime feed conversion efficiency, a comprehensive study involving
the RFI of growing heifers and lactating cows is necessary.

3.5 Implications

Previous research (Tempelman et al., 2015; VandeHaar et al., 2016)
has indicated RFI as a trait for selection as it has a direct impact on two
major issues affecting the dairy industry today, namely feed cost and
greenhouse gas emissions. The findings from our research support the
conclusion that low-genomic-RFI dairy females were found to have
reduced DMI with no impacts on other economically relevant traits.
Given the strong associations between DMI and CH4 emissions (de
Haas et al., 2012; Richardson et al., 2021), reduction of the DMIwith no
impact on productivity will result in reduced CH4 emissions from the
animals. Utilizing equations published by the Intergovernmental Panel
on Climate Change (IPCC 2019), improving the RFI of cows and
heifers by 1 SD of GEBVs (RFIheifer SD = 0.28 kg/d; RFIcow SD =
0.57 kg/d) could reduce emissions by 422 kg of CO2 across their
lifetime. Therefore, selection for RFI has significant implications for
helping the industry achieve various emission reduction targets.

Reduced DMI achieved from selection for RFI also aids in driving
on-farm profitability as the feed costs account for over 50% of the total
input costs (USDA, 2022). By reducing the input costs and
maintaining the output revenues, farmers can directly impact their
net profits. If a farmer achieves a 1 SD improvement in heifer and cow
RFI, they can reduce feed costs by $251.00 per animal based on the
ration costs of US$263/ton DM for heifers and US$381/ton DM for
cows, assuming a heifer rearing period of 580 d and productive life of
854 d for cows. While the lactating cow period has a higher economic
impact on the net profit of a farm, ignoring the feed costs associated
with heifer RFI would reduce the lifetime feed cost savings by US$
38.70 per cow. Accordingly, by combining selection for both heifer
and cow RFI, producers can maximize their feed and greenhouse gas
savings while continuing to drive selection for output traits, such as
MY as well as fat and protein percentages, for sustainable farming.

4 Conclusions

We explored the genetic basis of RFI and estimated its genetic
parameters and component traits for Holstein cows in the US. The
heritability of RFI of lactating cows was high, which indicated the

possibility of selection of efficient animals. Themean reliability of RFI of
lactating cows was low; however, we expect that this will improve as we
strategically increase the number of RFI phenotypes from the relatives of
elite bulls that have greater contribution to the training population. We
found a low genetic correlation of RFI between cows and heifers; this
indicates that the underlying genetic control of RFI is not fully carried
over to different stages of life owing to differing energy requirements.
We would recommend considering the RFI of growing heifers in
addition to those of lactating cows in the genetic evaluation system
to select highly feed-efficient animals on a lifetime basis.
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