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In contemporary breeding programs, typically genomic best linear unbiased
prediction (gBLUP) models are employed to drive decisions on artificial selection.
Experiments are performed to obtain responses on the units in the breeding
program. Due to restrictions on the size of the experiment, an efficient
experimental design must usually be found in order to optimize the training
population. Classical exchange-type algorithms from optimal design theory can
be employed for this purpose. This article suggests several variants for the gBLUP
model and compares them to brute-force approaches from the genomics literature
for various design criteria. Particular emphasis is placed on evaluating the
computational runtime of algorithms along with their respective efficiencies over
different sample sizes. We find that adapting classical algorithms fromoptimal design
of experiments can help to decrease runtime, while maintaining efficiency.
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1 Introduction

Plant breeding has been done by humans for centuries and has only grown in importance in
recent history due to increasing global demand for food. Nowadays, it is possible to incorporate
genetic information in breeding programs to improve decisions on artificial selection (Hickey et al.,
2017). Researchers have investigated different statistical modelingmethods for data analysis in this
field. However, there are still a number of open questions w.r.t. model-oriented experimental
design for phenotypic data collection in plant breeding programs. This problem is well-known in
the field as optimization of the training set for model fit in genomic selection. Particularly, the
search for optimum experimental designs under the genomic best linear unbiased prediction
(gBLUP) model has not been studied extensively.

This article provides insights into the optimal design problem in the gBLUP model that
is frequently applied in genomic selection. Section 2 is concerned with some preliminary
information about the gBLUP model and a review of the generalized coefficient of
determination, which is necessary for the introduction of the CDMin-criterion, an
established criterion in breeding experiments. The optimal design problem is specified
in Section 3 with emphasis on the particularities and differences to optimal design of
experiments in classical linear models. Subsequently, different algorithms for the heuristic
search of exact optimal designs are outlined in Section 4. A related discussion in a similar
context is provided in Butler et al. (2021). The algorithms mentioned in Section 4 are
applied to data and compared to algorithms provided in the TrainSel R package by
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Akdemir et al. (2021). The setup for this comparison is described in
Section 5 and results are stated w.r.t. criterion values achieved as well
as runtime in Section 6. A discussion on extensions of this work is
given in Section 7. We provide conclusions in the final Section 8.

2 The gBLUP model

The gBLUP model is a special case of a linear mixed model with
individual-specific random effects. Consider the following linear
mixed model

y � Xβ + Zγ + ε, (1)
where y is a n × 1-vector of observed values, X is an n × p matrix,
with corresponding p × 1-vector β of fixed effects, and Z � In being
the identity matrix of dimension n × n with corresponding
n × 1-vector γ of individual-specific random effects. The
n × 1-vector ε denotes the random errors. The vectors γ and ε
are independent of each other and follow a normal distribution with

γ
ε

( ) ~ N
0
0

( ), σ2gG 0
0 σ2eIn

( )( ).
It is assumed that the genomic relationship matrix (GRM)G and

the ratio λ � σ2e
σ2g

are known. Further, it is assumed that G is
nonsingular. For convenience, define V � σ2gZGZ′ + σ2eIn for
subsequent formulas.

The GRM quantifies the degree of relatedness between plant
lines in a breeding scheme. There are several ways to obtain such a
matrix from genetic marker data (e.g., single-nucleotide
polymorphism marker data). The calculation of the GRM is not
the subject of this article, thus, for further information on this, the
reader may want to refer to Clark and van der Werf (2013). For a
detailed introduction to the gBLUP model and its relationship to
other models in plant breeding, it is useful to refer to Habier et al.
(2007) and VanRaden (2008).

The fixed and random effects in model (1) can be estimated/
predicted via Henderson’s mixed model equations, see, e.g.,
Henderson (1975) and Robinson (1991). The estimators/
predictors can be written as

β̂
γ̂

( ) � D′σ−2e I−1n D + σ−2g B( )−1D′σ−2e I−1n y

� σ−2e D′D + σ−2g B( )−1σ−2e D′y,

with

D � XZ( ), B � 0 0
0 G−1( ).

The covariance matrix of the estimators/predictors is

E β̂ − β
γ̂ − γ

( ) β̂ − β
γ̂ − γ

( )′{ } � σ−2e D′D + σ−2g B( )−1

∝ D′D + λB( )−1 � H11 H12

H21 H22
( ), (2)

where H11 is of dimension p × p and it is the (proportional)
covariance matrix of the fixed effects and correspondingly for the
other submatrices.

The prediction variance of observed units is therefore

Var ŷ( )∝ diag D D′D + λB( )−1D′{ }.
Let the covariance between random effects of units xi and xj be

denoted by σ2gG(xi, xj) � Cov(γi, γj) andG(xi, xi) � G(xi)with the
appropriate extension to a covariance matrix of several individuals.

The prediction variance of an unobserved individual is

Var ŷ0( )∝ d0 D′D + λB( )−1d0′

where d0 � (x0 z0) is a row-vector of dimension n + p with z0 �
G(x0,X)G(X)−1.

After model-fitting, breeders are mainly interested in the
predicted random effects of all individuals potentially available
for breeding. The predicted effects are called estimated genomic
breeding values (GEBVs) and serve as a selection criterion, where
the ranking of the breeding values is important (Jannink et al., 2010).
The GEBVs of the individuals used for model fitting provide the
predicted random effects γ̂. For individuals not included in the fitted
model, the random effects must be rescaled to account for
relationships between individuals. Let z0 � G(x0,X)G(X)−1,
where x0 denotes the vector of fixed effects for an unobserved
individual. Then the GEBV of this individual is given by z0γ̂
(Clark and van der Werf, 2013).

Since breeders are mainly interested in the predictions of
random effects, the goodness of a model shall be evaluated on
the precision of the GEBVs in the sense that the ordering is most
accurate. Arbitrary rescaling of the predicted random effects does
not influence breeders’ selection decisions, hence, it is not
important. To utilize a measure that is most useful in this
respect, Laloë (1993) has introduced the generalized coefficient of
determination with the purpose of quantifying the precision of the
prediction.

Let the coefficient of determination (CD) of the random effect of
unit i be defined by

CD xi|X( ) � Var γ̂i( )
Var γi( ) � 1 − Var γi|γ̂i( )

Var γi( ) , (3)

where the design matrix in the model fit to predict γ̂ is X.
As can be seen in Equation 3, the CD of an individual effect is a

function of the variance ratio before and after the experiment.
Consequently, CD is in the range of [0, 1]. As described in Laloë
(1993), the CD measures the squared correlation between the
predicted and the realized random effect for an individual and
thus measures the amount of information supplied by the data to
obtain a prediction.

A matrix of CD values can easily be computed by

CD X0|X( ) � diag G X0,X( )Z′PZG X,X0( ){ } ⊘ G X0,X0( )[ ],
where ⊘ is the element-wise (Hadamard) division and P � V−1 −
V−1X(X′V−1X)−1X′V−1 (Akdemir et al., 2021; Isidro y Sanchéz and
Akdemir, 2021). Notice thatX is the matrix of fixed effects for model
fitting and X0 is a design matrix of individuals. The concept of CD
can be extended by introducing contrasts between individuals. For a
given contrast c with appropriate dimension and |c| � 0, the
respective CD values are given by

diag c′G X0,X( )Z′PZG X,X0( )c{ } ⊘ c′G X0,X0( )c[ ].
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3 Optimal design problem

The design problem in the gBLUP model can be viewed as a
selection of n experimental units out of N candidate units without
replicates. Denote the design space as X � {x1, . . . , xN}, i.e., it is the
set of all units that can potentially be included in the design. Note
that the design matrix Z is not included in this definition, since it is
the same regardless of the design for a given size n of the experiment,
and replication of units is not considered. However, it is the case that
the covariance of units xi in the model, with i � 1, . . . , n, is different
w.r.t. the design.

The exact design of size n<N is then written as ξn and fulfills
ξn ⊂ X , |ξn| � n. Define the remaining set as ζ � {xi ∈ X : xi ∉ ξn}
and notice that ξ ∪ ζ � X and ξ ∩ ζ � ∅.

Let the inverse of the (proportional) covariance matrix in
Equation 2 be called the information matrix and denote it
relative to a design ξn by

M(ξn) � D′ ξn( )D ξn( ) + λB ξn( ).
Due to the dependence of the GRMG on the exact design ξn, the

information matrix is not additive w.r.t. single experimental units.
This makes the application of well-known experimental design
theory on the classical linear model infeasible.

An optimal exact design ξn* of size n is typically defined as

ξn* � argmax
ξn

Φ M(ξn){ },

for some optimal design criterion given by a function Φ: Rq×q ↦ R

on the information matrix, where q � n + p.
Since breeders are mainly interested in the prediction of random

effects in the gBLUP model, we restrict ourselves to criteria on the
part of the covariance matrix that corresponds to random effects,
i.e., to H22. In accordance with the literature on optimal design of
experiments (cf. Atkinson et al., 2007), let the D-criterion on the
covariance of random effects be defined by

Φ1 M(ξn){ } � −ln|H22 ξn( )|. (4)
The D-criterion is a standard criterion, which minimizes the

generalized variance of the parameter estimates (i.e., predictions in
this application). Hence, it measures the precision of the predictors.
For a geometrical interpretation of the D-criterion, see, e.g.,
Atkinson et al. (2007), Fedorov and Leonov (2013).

Additionally, consider the so-called CDMin-criterion, defined as

Φ2 M(ξn){ } � min CD X |ξn( ){ }
Φ2 M(ξn){ } � min CD X |ξn( ){ }

� min diag G X , ξn( )Z′PZG′ X , ξn( ){ } ⊘ G X( )[ ]( ). (5)

The CDMin criterion is the default criterion in the R package
TrainSel (see Akdemir et al., 2021). As previously mentioned in
Section 2, the CD of an individual measures the amount of
information supplied by an experiment to predict the random
effect of an individual. The CDMin-criterion maximizes the
minimum CD value over all individuals. Hence, it is driven by
the intuition of controlling for the worst case. The generalization of
the CD was initially proposed by Laloë (1993) and has since gained
popularity in the field, see e.g., Rincent et al. (2012). There are other

criteria related to the CD, e.g., the CDMean criterion, which instead
optimizes for the average CD. Refer to Akdemir et al. (2021) for a
discussion on the CDMin-criterion versus other criteria. The
literature on optimization criteria for this task is very rich and
current, see e.g., also Fernández-González et al. (2023), where the
authors compare different criteria w.r.t. accuracy of the predicted
traits. However, the main focus of this manuscript is not on the
selection of a suitable criterion, but rather on the efficient
optimization once a criterion has been chosen.

In the following, we will concentrate on the two criteria stated
above for clarity, but our methodology and discussion may extend
well beyond those.

4 Heuristic search for an exact
optimal design

Experimental design optimization in the gBLUP model is
challenging in the sense that the covariance matrix of the
random effects is directly dependent on the design. In particular,
the information matrix is not a weighted sum of unit-specific
matrices, which does not allow for standard convex design theory
from the classical linear model to be applied directly. Due to this fact,
it seems most reasonable to consider only optimization methods for
exact designs rather than approximate designs (cf. Prus and
Filová, 2024).

Even though the information matrix in the gBLUP model is
quite different from the standard case, it may be sensible to adopt
some ideas on algorithms from the classical linear model. This
section reviews and alters algorithms for the application at hand.
Furthermore, a comparison to the algorithm and R package
TrainSel by Akdemir et al. (2021) will be made in the
subsequent section.

The optimization strategy proposed by Akdemir et al. (2021)
(implemented in TrainSel) combines a genetic algorithm with
simulated annealing to identify local maxima in a given design
region. It does so in a brute-force way without relying on theoretical
considerations w.r.t. the design of experiments. The TrainSel

algorithm provides flexibility by allowing for user-specified criteria,
which comes at the cost of perhaps more efficient optimization
strategies for specific criteria. The implemented function
TrainSel offers several parameters that can be modified for a
given situation; most relevant to this article are the maximum
number of iterations for the algorithm, as well as the number of
iterations without (significant) improvement until the algorithm is
considered to have converged.

The published article Akdemir et al. (2021) refers to the author’s
publicly available R package on Github. Since then, the authors have
made a major update to the repository in May 2024 (see Javier,
2024). The full functionality of the package is now under license,
with the possibility of obtaining a free license for public bodies. A
substantial part of the computations in this paper have been
performed on TrainSel v2.0, the previously publicly
available version on Github. To the best of our knowledge, this
version is no longer available for download. We have made
comparisons with the licensed version Trainsel v3.0, and
have observed some changes, which will be discussed in
subsequent sections. Most notably, the newest version permits
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the manipulation of even more hyperparameters in the optimization
algorithms and provides more user-friendliness in the specification
of these parameters by introducing settings related to the size and
complexity of the optimization problem. The optimization
algorithm itself seems to have improved as well.

In contrast to this approach, the literature on experimental
design typically proposes exchange-type algorithms in the search
for exact designs (cf. Atkinson et al., 2007). Exchange-type
algorithms start with an initial design ξn of size n (e.g., randomly
sampled) and iteratively improve the design by exchanging units
from the support and candidate set. In this case, the support and
candidate set are mutually exclusive, and their union is the whole
design spaceX . The units are exchanged either according to the best
improvement in the criterion (Fedorov exchange, see Fedorov, 1972)
or according to a greedy strategy (modified Fedorov exchange, see
Cook and Nachtsheim, 1980). In the classical Fedorov exchange
algorithm, the criterion value for all possible exchanges between the
candidate and the support set is calculated at each iteration. This
guarantees that the most beneficial exchange is made in each step,
which leads to quick ascension. The disadvantage is that the number
of computations in each iteration can be large depending on the size
of the support and candidate set. In the modified Fedorov exchange,
the exchange is performed as soon as an improvement is identified,
hence, the ordering of the support and candidate set has an impact
on the search. The advantage of the modified Fedorov exchange over

the classical one is the reduced computational effort in each iteration
if a beneficial exchange can be found quickly. The final exact designs
are dependent on the initial design, i.e., for randomly sampled
starting designs, the final designs are also subject to randomness.

Exchange algorithms have been applied in the field of plant
breeding, e.g., in Rincent et al. (2012) and Berro et al. (2019).
However, these articles have not included any guidance on
selecting potential instances for exchange. Rather, they have
randomly performed an exchange and recalculated the criterion
value. If an improvement could be observed, the exchange was kept.
We believe that exchange algorithms can be improved in two ways,
either the known best exchange can be made at each step, or the
chance of making a good exchange can be increased by ordering the
support and candidate set by some heuristic. These two approaches
will be discussed below.

Unfortunately, none of the algorithms can guarantee
convergence to the global optimum. Thus, it is reasonable to
restart the algorithms at different random seeds to obtain
multiple solutions, as is typically advised in the literature (see,
e.g., Atkinson et al., 2007). The design with the highest criterion
value over all random restarts should ultimately be chosen.

In the classical linear model, the most beneficial exchanges
under the D-criterion are performed by exchanging the unit with
minimum prediction variance in the support set with the unit with
maximum prediction variance from the candidate set (cf. Atkinson

FIGURE 1
Highest criterion value and runtime per restart of different algorithms.
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et al., 2007). The reasoning is not as clear-cut in the gBLUPmodel as
will be argued below. A modified Fedorov exchange can be
performed with different orderings of the candidate and support
set, which may lead to different resulting designs as well as
different runtimes.

As stated, the candidate set in the modified Fedorov exchange is
usually ordered w.r.t. decreasing prediction variance for the D-criterion,
i.e., candidates with a high prediction variance are considered first for
inclusion in the support set. Since the gBLUP model relies on
individual-specific random effects, the removal of a unit from the
support set has non-trivial consequences on the variance of other units.
This makes it relatively difficult to specify a sensible ordering of the
support set for exchanges. Since the D-criterion minimizes the
generalized variance of the predicted random effects in this
application, it seems reasonable to remove units (and thereby also
random effects in the model) that have a high prediction variance. As
this is completely converse to the reasoning in the classical linear (or
mixed effect) model, we will here vary the ordering of the support set to
increasing, decreasing, and random for the subsequent examples.

For the CDMin-criterion, following a similar thought process, it
seems reasonable to add units with a small CD from the candidate
set in the modified Fedorov exchange. In turn, units with a high CD
could be sensible candidates for removal from the support set. In an
effort to compare the ordering strategies, the ordering of the support
set is also performed in increasing, decreasing, and random order as
for the D-criterion in our examples.

The Fedorov exchange algorithm has a natural ending,
i.e., when no further improvement can be found for any
exchange of a unit from the candidate set with a unit from the
support set, the best solution obtained is returned. For the
modified Fedorov exchange, the same stopping rule is given,
but the path and solution obtained are not necessarily the same.
On the other hand the TrainSel algorithm does not have such
a natural ending. Instead, the user must specify a maximum
number of iterations for the algorithm and a number of iterations
without a (significant) improvement on the criterion value, which
will terminate the algorithm. The threshold for minimum
improvement must also be specified by the user. Termination
of this algorithm is defined as early stopping when no significant
improvement on the criterion value was attained for a specified
number of iterations.

5 Comparison of different algorithms

In the previous section, three algorithms have been introduced:
TrainSel, Fedorov exchange and modified Fedorov exchange,
where in the modified Fedorov exchange the support set can be
ordered in different ways.

A comparison between these algorithms is performed on a
dataset of N � 200 wheat lines given in the TrainSel R
package (see Akdemir et al., 2021). The data consists of

FIGURE 2
Convergence of algorithms over different sample size at one random seed (D-criterion).
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genotypes at 4,670 markers or as a precalculated relationship matrix
of the 200 available individuals. Akdemir et al. (2021) name https://
triticeaetoolbox.org as the original source of the data, which has
undergone some additional preprocessing by the authors. We
proceed with the GRM G over the 200 individuals as it is
provided since the calculation is not the subject of this article. In
this simulated design problem, we set the ratio of variances λ � 1
and R � In for a given sample size n. We further include an intercept
in the model, i.e., X � 1.

The comparison is performed over ten restarts with different
random seeds over the D-criterion in Equation 4 and the CDMin-
criterion in Equation 5. Overall, the algorithms are run at sample
sizes of n ∈ {10, 20, . . . , 80}. We eventually compare five different
search strategies w.r.t. the criterion value obtained and the runtime
of the algorithms.

Since there is no natural convergence of TrainSel, some arbitrary
parameters must be selected for comparison to the other algorithms.
There are conflicting goals in comparing criterion values and runtimes
between algorithms, so the parameterswere chosen such thatTrainSel
was not run unnecessarily long, but would converge to an appropriate
solution. In particular, the maximum number of iterations was chosen to
be 30 · n, and the number of iterations without (sufficiently large)
improvement before convergence was set to 100. All other parameters
were set to the default values.

The results in the subsequent section refer to Trainsel v2.0,
which is the algorithm described in the article Akdemir et al. (2021).

Since the corresponding R package has since undergone major
updates to version 3.0, we reproduce the plots in this section
for the newer version as well. The set of hyperparameters in the
newest version has increased in comparison to v2.0. First, we have
strived to set parameters as similarly to version v2.0 as possible.
Second, we have reproduced the design problems with the suggested
hyperparameters in TrainSel v3.0 for large high-complexity
designs. Only the maximum number of iterations and the number of
iterations without improvement before convergence have been
adjusted as in the computations with TrainSel v2.0. Since
results were better in the second configuration, we only discuss
this case in Section 6.1.

6 Results

Firstly, the criterion values of different algorithms are compared
to one another, secondly, runtimes are investigated and lastly, some
convergence plots are examined. We start with comparisons for the
D-criterion. The final criterion values and runtime per random
restart can be seen in Figure 1. It is most notable that the Fedorov
exchange algorithm does not performwell in terms of criterion value
in small sample sizes, while it does obtain a slightly larger criterion
value at n � 80 than the other algorithms. In general, for sample sizes
n≥ 30, the criterion values for the TrainSel and (modified)
Fedorov exchange algorithms are similar, while the runtime for

FIGURE 3
Convergence of algorithms over different sample size at one random seed (CDMin-criterion).
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the TrainSel algorithm as well as the Fedorov exchange exhibits
rapid growth over increasing sample size as opposed to the modified
Fedorov exchange.

Convergence was attained for all algorithms at all random
restarts and sample sizes.

Although the convergence plots of different algorithms do not
directly imply anything related to runtime, it is still interesting to
compare the ascension to criterion values, especially w.r.t. the
different orderings of the support set in the modified Fedorov
exchange algorithm. Therefore, Figure 2 displays criterion values
per iteration for the different algorithms.

Figure 2 depicts the criterion values over iterations for sample sizes
of n ∈ {20, 40, 60, 80} at one random seed. The reader should be made
aware that these graphs can look different at other random seeds, in
particular for small sample sizes, but we deem this plot representative for
showing some general properties. For a more comprehensive
understanding, some more convergence plots at all random seeds are
provided in the accompanying Supplementary material for this article.

One thing that is particular about the graphs is that the modified
Fedorov exchange with ordering according to increasing variance
(as is traditionally used in the classical linear model) displays a very
slow ascension of the criterion value. Ultimately, the resulting
criterion value at convergence is similar to the other algorithms,
but if the algorithm were to be stopped early, even just a random
ordering of the support set might result in higher criterion values.
This may seem counterintuitive, but as has been mentioned in

Section 5, by removing a unit from the support set, the whole
individual-specific effect of this individual disappears from the
model, hence units with high variance will be interesting
candidates for removal. Obviously, there is a trade-off w.r.t.
relationships (i.e., covariances) to other individuals, thereby
making this reasoning non-trivial.

Another interesting fact is that at this random seed, TrainSel
ascends rather quickly, but a plateau on the criterion value is
retained for several iterations before convergence. This is due to
the specified settings. Other settings would have resulted in different
behavior (e.g., earlier stopping). It is not straightforward to choose
settings a priori that will result in reasonable convergence behavior.

Now moving on to the CDMin-criterion, similar plots of
criterion values and runtime are provided in Figure 1.

The results in the CDMin-criterion are different compared to
the D-criterion in a number of ways. Firstly, it is very clear from
Figure 1 that the Fedorov exchange is not well-suited for this
problem, since it results in criterion values below the ones of all
other algorithms and it has bad runtime properties. The same
applies to the TrainSel algorithm, although it is still better
than Fedorov exchange w.r.t. criterion values. One may observe
that the modified Fedorov exchange yields similar criterion values
regardless of the ordering of the support set, but a decreasing
ordering of the support set w.r.t. CD results in a longer runtime.
In general, the modified Fedorov exchange requires a longer runtime
for the CDMin-criterion than for the D-criterion.

FIGURE 4
Highest criterion value and runtime per restart of different algorithms including TrainSel v3.0
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Convergence occurred for all algorithms at all random seeds and
sample sizes, except for TrainSel, where 3 out of 10 random
restarts did not converge for a sample size of n � 10, otherwise,
convergence was always attained.

Again, Figure 3 looks quite different from Figure 2, i.e, the
case of the D-criterion. In particular, the TrainSel algorithm
does not ascend as quickly and there are still large jumps in the
criterion value after a considerable number of iterations. It can
also be seen from the second graph in this figure that TrainSel
can be stuck in a local minimum that is not optimal and
converges too early. Interestingly, the modified Fedorov
exchange with the random ordering of the support set seems
to have good ascension properties. As for the D-criterion, refer to
the Supplementary Material to find convergence graphs for all
random seeds at different sample sizes.

6.1 Comparison to TrainSel v3.0

We have observed improvements of the optimization algorithm
in TrainSel in the last major update. Particularly, the
optimization over the D-criterion is considerably improved. We
reproduce Figures 1–3 subsequently to showcase the improvements.

We have included further computations for samples sizes
n ∈ {90, 100} for all algorithms except for the classical Fedorov

exchange since this algorithm is not competitive with the other
algorithms for large sample sizes.

From Figure 4 it seems that the runtime has improved
substantially, while the criterion value is still equally high as in
TrainSel v2.0 for the D-criterion. Looking at Figure 5, it is clear
that TrainSel v3.0’s best solution is attained very quickly and
the subsequent iterations are not necessary. While it is typically not
possible to know this before optimization of a design problem, we
can see a posteriori that the number of iterations until termination of
the algorithm could have been chosen much smaller, which would
improve runtime even further.

Seemingly, TrainSel v3.0 performs better than the previous
version on the CDMin-criterion as well, both in runtime and
criterion value attained. Nonetheless, even with these improved
properties, the criterion values for larger sample sizes are still short
of the ones attained with the modified Fedorov exchange algorithms.
Also, the runtime still increases rapidly with the sample size,
i.e., complexity of the design problem.

Comparing Figures 3, 6, one can conclude that the ascension to
the criterion value is quicker in the beginning of the optimization in
TrainSel v3.0, but the problem of getting stuck in a local
optimum seems to remain. As emphasized previously, the tuning
parameters could be adjusted to increase computational efforts put
into the optimization, but it seems unclear how much improvement
this can provide in general.

FIGURE 5
Convergence of algorithms over different sample size at one random seed (D-criterion) including TrainSel v3.0
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The reason for the performance improvement in TrainSel

is difficult to explain. As the latest version of it is under license, it
is not possible to directly access the base code to compare the
changes that have been made to the optimization algorithm. The
package is hosted in a GitHub project, which means that some
changes to the top level documents of this package are visible
between version 2.0 and 3.0. For example, the new version of
TrainSel includes new dependencies on the R packages
foreach and doParallel. As the names suggest, these
packages are used for parallel computing. Even though the
package parallel was previously used by TrainSel

v2.0, some changes in parallel computing could have led to
increased efficiency in the latest version. It is also possible that
refinement to the optimization algorithm itself have led to this
increased performance.

7 Discussion

This manuscript has showcased the application of different
algorithms to a design problem in a single-trait gBLUP model in
one environment. Naturally, in applications in plant breeding there
may be interest in extending the model in a number of ways. For
example, plant breeders are frequently intersted in performing
experiments in multiple environments. This extension can be
taken into account in the model, e.g., by including additional

variables in the fixed effects term Xβ in the model of Equation 1.
Additionally, there is special interest in modeling the interaction of
genomic effects and environmental effects (G x E effects). This is
important information for breeders, since it helps to evaluate the
quality of particular plant lines in different environments. E.g., some
may be very good in one particular environment, but perform badly
when exposed to a “stressful” environment, like one with
prolonged droughts.

There is a large interest in these effects, a motivational article
on modeling G x E effects is e.g., van Eeuwijk et al. (2016). Again,
the model can be extended to include this interaction term, which
would correspond to another random effect in the model of
Equation 1. The additional effect could be denoted Z2γ2, where Z2

is the matrix of interactions and γ2 is the vector of random
interaction effects. The random vector shall follow a normal
distribution with mean 0 and some appropriate covariance
matrix, e.g., ΣGxE � ΣE ⊗ G, where ΣE could be a diagonal
matrix with variances corresponding to the different
environments and ⊗ is the Kronecker product.

Another possible extension could be the joint modeling of
multiple traits that are of interest, either in one or multiple
environments. For an exemplary article with stipulation and
application of such a model to simulated and real data, see e.g.,
Montesinos-López et al. (2016).

The present manuscript was written such that the particularities
of experimental design could most easily be understood. Therefore,

FIGURE 6
Convergence of algorithms over different sample size at one random seed (CDMin-criterion) including TrainSel v3.0
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extensions of this kind were omitted and focus was centered on the
algorithmic optimization in such problems.

8 Conclusion

This article reviewed the optimal design problem in the gBLUP
model and the main differences to the classical linear model. Some
strategies for the search of exact optimal designs were discussed and
put to use in a fictitious optimal experimental design problem with
data from the TrainSel R package. A comparison w.r.t. criterion
values and runtime was performed on the D- and CDMin-criteria
over several sample sizes.

The results suggest that while TrainSel provides a lot of flexibility
for users to optimize various design problems, itmight bemore efficient to
rely on theoretical considerations andmore classical algorithms in at least
some applications on the gBLUPmodel. In particular, for the D-criterion,
all algorithms resulted in similarly efficient designs for a sample size of
n≥ 40, but a much larger runtime was necessary for TrainSel 2.0.
The newest licensed version of TrainSel has improved on runtime
properties and optimization results. In general, for increasing sample size,
TrainSel’s runtime growsmuchquicker than the ones for themodified
Fedorov exchange.

It is quite interesting to note that the ordering of the support set
in the modified Fedorov exchange according to decreasing variance
seems to be beneficial and leads to quick ascension, as opposed to the
traditional ordering by increasing variance.

For the CDMin-criterion (the default criterion in TrainSel),
the Fedorov exchange is not suitable, since it provides smaller
criterion values and has bad runtime properties. The TrainSel

algorithm results in smaller criterion values as well and runtime
increases rapidly and is much larger than for the modified Fedorov
exchange. In the modified Fedorov exchange, it seems that all
sortings of the support set provide similarly efficient designs, but
sorting by decreasing CD still takes slightly longer. It is interesting to
see that even random sorting of the support set for exchange seems
to work quite well.

Overall it was demonstrated that classical exchange-type
algorithms can typically obtain similarly efficient designs as
TrainSel while substantially saving computational runtime.
We expect this advantage to scale with respect to the increasing
complexity of the respective problem.
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