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Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues
and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic
pathology is the leading cause of death in patients with Marfan syndrome. The
fibrillin-1 gene (FBN1) is a major gene involved in the pathogenesis of MFS. It has
been shown that the aortic pathogenesis of MFS is associated with the
imbalances of the transforming growth factor-beta (TGF-β) signaling pathway.
However, the exact molecular mechanism of MFS is unclear. Animal models may
partially mimic MFS and are vital to the study of MFS. Several species of animals
have been used for MFS studies, including chicks, cattle, mice, pigs, zebrafishes,
Caenorhabditis elegans, and rabbits. These models were developed
spontaneously or in combination with genetic engineering techniques. This
review is to describe the TGF-β signaling pathway in MFS and the potential
application of animal models to provide new therapeutic strategies for patients
with MFS.
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1 Introduction

Marfan syndrome (MFS, OMIM: #154700) is a complex systemic connective tissue
disorder that is generally inherited in an autosomal dominant manner. Aortic pathology is
the primary factor causing death in patients with MFS (Lazea et al., 2021; Spencer, 2024).
Multiple bone defects were first reported in 1896 by French pediatrician Antoine-Bernard
and officially named MFS in 1931 (Lloyd, 1934). In McKusick. (1955) proposed that MFS is
a genetic disease of connective tissue from a clinical point of view. It was not until 1986 that
Sakai et al. (1986) isolated a new connective tissue protein called fibrillin-1 from human
fibroblast culture medium. Fibrillin was found abundant in tissues affected in MFS patients,
particularly in the aortic root, acute aortic coarctation, disproportionate growth of long
bones and lens ectasia (Lazea et al., 2021). The prevalence of MFS is 20/100,000, but there
isn’t any clinically confirmed MFS prevalence rates on the basis of Ghent-I or Ghent-II
nosology (Groth et al., 2015). First survey of MFS prevalence in the Danish Unified
Healthcare System was based on Ghent-II nosology. Groth et al. (2015) presented a
prevalence of MFS of 6.5/100,000 in Denmark in 2014, and the prevalence of MFS in
Denmark in 2014 is 41% higher than that of the Danish prevalence rate published almost
20 years ago. (4.6/100,000) (Fuchs, 1997). In the 1970s, the average life expectancy for MFS
patients was 32 years. The introduction of aortic root replacement therapy led to a rise in the
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average life expectancy of MFS patients to 41 years in 1995. Today,
most MFS patients can live to around 72 years with proper
management (Coelho and Almeida, 2020).

This disease can frequently lead to fatal cardiovascular disease in
the neonatal period or as progressively more severe cardiovascular
disease in adolescence and adulthood. Veiga-Fernandez et al. (2020)
demonstrated that the mortality rate within the initial 15 months of
prenatal suspected cases of early-onset MFS (EOMS) was 73.68%,
and the proportion of deaths in the first 5 years of postnatal
confirmed patients was 61.1%. Because cardiovascular
complications may not occur in early stages of MFS (Wozniak-
Mielczarek et al., 2019; van Elsacker et al., 2022), early diagnosis of
MFS is necessary though difficult.

Thoracic aortic disease in most patients with MFS begins as an
asymptomatic enlargement of the aortic root, which gradually
increases in size over time to form an aneurysm. The
enlargement of the aortic aneurysm may eventually lead to acute
ascending aortic dissection (called type A dissection) (Kraehenbuehl
et al., 2012). Type A dissection is a life-threatening complication of
MFS that can lead to a shortened life expectancy in MFS (Wang
et al., 2021; Asano et al., 2022; Farag et al., 2023). Remarkably, a
minority of MFS patients have type B aortic dissection. Typically,
type B aortic dissection occurs without significant enlargement of
the descending aorta and enlargement of the aortic root. Type B
aortic dissection is less acutely fatal than inMFS patients with type A
aortic dissection (Kraehenbuehl et al., 2012; Yildiz et al., 2023). Type
A aortic dissection correlates with high morbidity and mortality,
with the majority of people with MFS dying of complications of
aortic dissection or rupture until the advent of aortic surgery, mostly
before the age of 45 years ago (Silverman et al., 1994; Sharma, 2009).
Presently, proper diagnosis and treatment of thoracic aortic
aneurysms in patients with MFS can prevent most acute type A
aortic dissection. With the development of aortic root replacement
therapy since the 1970s, the life expectancy of patients with MFS
approaches that of the general population (Kuzmanovic et al., 2004;
Song et al., 2012; Asano et al., 2022).

In addition to thoracic aortic disease, MFS impacts other organs
and tissues of the patients. Symptoms include: tall stature,
disproportionately long limbs, abnormally curved spine,
protruding thorax, depressed sternum, atrophied lungs,
abnormally depressed acetabulum, enlarged spinal canal of the
lumbar vertebral segments, and tattooing of the skin (Loeys
et al., 2010; Pollock et al., 2021). Certain presentations of MFS
exhibit similarities with other conditions, such as Loeys-Dietz
syndrome (LDS) and Shprintzen-Goldberg syndrome (SGS)
(Verstraeten et al., 2016). The clinical diagnosis of MFS requires
the identification of features present throughout the system, which
can be assisted by genetic testing. TheMFS Ghent nomenclature was
revised in 2010 to emphasize the importance of FBN1 testing (Loeys
et al., 2010).

Approximately 3,077 mutations in FBN1 have been reported to
date, with 1815 missense mutations (http://www.umd.be/FBN1/).
More than 1,700 FBN1 mutations have been identified to be
potentially contributing to the development of MFS (Groth et al.,
2017). The NCBI database identifies 505 organisms that are
homologous to human FBN1 (https://www.ncbi.nlm.nih.gov/gene/
2200/ortholog/?scope=7776&term=FBN1), such as mouse, rat, pig
and zebrafish. Using these animals with specific pathogenic variants

as models is considered suitable for studying the early-onset and
severe symptoms of MFS(Tae et al., 2016; de Souza et al., 2021). It is
therefore critical to understand how alterations in FBN1 lead to this
multi-effect pathophysiology to determine appropriate therapies.
Basic research in animal models of MFS and clinical trials of
molecularly-targeted drugs have provided new therapeutic
strategies for patients with MFS.

2 MFS related genes

In Sakai et al. (1986) proposed the diagnostic criteria for MFS.
The initial set of criteria was formulated in Berlin in 1986. These
criteria were established primarily to help clinicians to determine
which patients should be categorized as suffering from this disease.
In 1996, new diagnostic criteria called Ghent-I nosology (Ghent I)
was established. FBN1 gene was identified as a susceptibility gene for
MFS (DePaepe et al., 1996). The Ghent-II nosology were modified in
2010. Loeys et al. (2010) underlined the importance of thoracic
aortic disease. The revised Ghent-II nosology specifically focus on
the significant overlap between Sphrintzene-Goldberg syndrome
(SGS), Loeyse-Dietz syndrome (LDS), and MFS, including
potentially similar involvement of bones, aortic roots, skin, and
dura mater. Occasionally, SGS and vascular Ehlerse-Danlos
syndrome (vEDS) overlap with that of MFS in the vascular
system, dura mater, skin, and bone. The difference between MFS
and related diseases is shown in Table 1. These diseases, along with
non-syndromic aneurysmal syndromes, are linked to abnormal
TGF-β signaling (Verstraeten et al., 2016).

2.1 FBN1 gene in MFS

The FBN1 gene is located at 15q21.1, the cDNA is about 200 kb
long and contains 65 exons with GC-rich sequences upstream of the
exons (Gong et al., 2019; Lin et al., 2021). The FBN1 precursor
consists of 2,871 amino acids and contains a total of 6 structural
regions FBN1 mutations have been observed in more than 90% of
the cases of MFS (Manuel Becerra-Munoz et al., 2018). Mutations in
FBN1 occur throughout most the gene. FBN1 missense mutations
account for 53%-56.1%, truncation variants 33%-36.8%, intronic
variants 7.1%-13%, and total genomic rearrangements 1.8%-2.9%
(Yang et al., 2018; Arnaud et al., 2021). Identification of FBN1
genotypes for specific MFS phenotypes is complicated by the
interfamilial and intrafamilial variability in the clinical features of
MFS. Missense mutations in exons 24 to 32 are associated with
severe EMOS (Milewicz and Duvic, 1994; Faivre et al., 2009).

2.2 FBN2 gene in MFS

The fibrillin-2 gene (FBN2, formerly known as Fib5) on
chromosome 5q23-q31 is inextricably linked to fibrillin-1. The
two proteins have the exact same structural domain structure as
well as the same number and order of sequence motifs. At the amino
acid level, structural domains B and D of fibrillin-1 and fibrillin-2 are
80% identical (Zhang et al., 1995; Dietz et al., 2005; Beene et al.,
2013). Studies have demonstrated that the developmental expression
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of FBN2 precedes that of FBN1 (Robinson and Godfrey, 2000). FBN2
is involved in the development of elastic fiber formations, while
FBN1 primarily preserves the functionality of elastic structures.
FBN2 is universally expressed in elastic tissues, but FBN1 is
primarily located in tissues that are subjected to stress and
weight-bearing. Gupta et al. found the FBN2 gene mutation sites
in a premature infant who met the diagnostic criteria for MFS and
her brother as well. Gupta et al. (2002), Gupta et al. (2004) presented
MFS due to FBN2 gene mutation in three children under 6 years in
Mexico, with persistent dilatation by aortic echocardiography for
more than 5 years.

2.3 TGFBR genes in MFS

Stheneur et al. (2008) showed that in 457 patients with MFS or
related disorders the detection rates of TGFBR1/2 mutated genes
were 6.2% and 4.8% in classical MFS and 6.2% and 4.6% in
incomplete classical MFS. De Cario et al. (2018) found in
75 patients with MFS that TGFBR2 had a total of
10 polymorphisms in TGFBR2 and 6 polymorphisms in TGFBR1.
TGFBR1 is located on chromosome 9q22.33 and consists of nine
exons encoding the TGFBR1 protein. Somers et al. (2016) proposed
that the 6Ala allele of the TGFBR1 could be regarded as a low-

frequency variant in MFS patients. TGFBR2 is located on
chromosome 3p24.1 (Mizuguchi et al., 2004). Mutations in the
TGFBR2 are tied to MFS in individuals who do not exhibit
significant ocular symptoms (Bitarafan et al., 2020). In nematode
models, mutations in TGFBR2 associated with MFS or MFS-like
syndromes might cause structural perturbations in TGFBR2, leading
to the exposure of surface structural domains, changes in subcellular
localization patterns, and effect the transport of TGFBR1 indirectly
(Singh et al., 2006; Lin et al., 2019).

2.4 LTBP genes in MFS

The underlying TGF-β binding protein (LTBP) is a protein that
targets TGF-β to the ECM by interacting with fibrillin-1 (Todorovic
et al., 2005). Fibrillin is structurally related to the LTBP gene family
out of which four have been identified (LTBP1, LTBP2, LTBP3, and
LTBP4). All of these genes contain multiple tandem copies of the cb-
EGF motif with two distinct 8-cysteine repeats in fibronectin and
LTBP. One of these is the LTBP motif, which contains 8 cysteine
residues that cluster internally in Marfan syndrome and associated
microfibrillar diseases (Rifkin et al., 2018).

Sticchi et al. (2018) identified a patient with MFS in aortic
symptoms of mutations in the FBN1, NOTCH1, LTBP1, and

TABLE 1 Differences between MFS and related diseases.

Disease
Gene Chromosomal

region
Features References

Loeyse-Dietz
syndrome (LDS)

TGFBR1
TGFBR1

9q22.33
3p24.1

Hypertelorism, bifid uvula or cleft palate, aortic aneurysm with
tortuosity

Williams et al. (2007),
Verstraeten et al. (2016)

Shprintzen-Goldberg
syndrome (SGS)

FBN1
SKI

15q21.1
1p36.33-p36.32

Facial dysmorphism, marfanoid features, craniosynostosis,
dolichocephaly, cardiovascular anomalies and mild to moderate
mental retardation

Sood et al. (1996), Kosaki
et al. (2006)

Congenital-contractural
arachnodactyly (CCA)

FBN2 5q23.3 Arachnodactyly; flexion contractures of multiple joints;
kyphoscoliosis; a marfanoid habitus; and abnormal “crumpled”
ears. Severe CCA with cardiovascular and/or gastrointestinal
anomalies

Zhang et al. (2023)

Weille-Marchesani
syndrome (WMS)

FBN1
LTBP2
ADAMTS10

15q21.1
14q24.3
19p13.2

Abnormalities of the lens of the eye, short stature, brachydactyly,
joint stiffness, and cardiovascular defects

Marzin et al. (2023)

Ectopia lentis syndrome FBN1
LTBP2AD
AMTSL4

15q21.1
14q24.3
1q21.2

Ectopia lentis Cui et al. (2023)

Homocystinuria CBS 21q22.3 Ectopia lentis and/or severe myopia, excessive height, long limbs,
scoliosis, and pectus excavatum, vthromboembolism, and
developmental delay/intellectual disability

Collard and Majtan (2023)

Thoracic aortic aneurysm
syndrome (TAA)

TGFBR1
TGFBR1
ACTA2

9q22.33
3p24.1
10q23.31

Lack of Marfanoid skeletal features, levido reticularis, irisfloccul Senser et al. (2021)

Arterial tortuosity
syndrome (ATS)

SLC2A10 20q13.12 Elongation and tortuosity of the aorta and mid-sized arteries,
focal stenosis of segments of the pulmonary arteries and/or aorta
combined, soft skin, joint hypermobility, inguinal hernia, and
diaphragmatic hernia. Skeletal findings include pectus excavatum
or carinatum, arachnodactyly, scoliosis, knee/elbow contractures,
and camptodactyly

Loeys et al. (2006)

Vascular Ehlers-Danlos
Syndrome

COL3A1
COL1A2
PLOD1

2q32.2
7q21.3
1p36.22

Arterial aneurysm, dissection and rupture, bowel rupture, and
rupture of the gravid uterus

Ritelli and Colombi (2020)
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FIGURE 1
TGF-β pathway signaling inMFS. FBN1 has a role in regulating TGF-β. (A) FBN1 binds to a large latent complex composed of LAP, LTBP and TGF-β and
regulates the concentration of activated TGF-β in thematrix. Upon activation of the complex, TGF-β binds TGF-β receptors and signals. This signal can be
transmitted from the cell membrane to the nucleus via Smad-dependent or Smad-independent pathways. (B) Mutations in FBN1 cause the release of
large amounts of active TGF-β1 from the extracellular matrix, leading to over-activation of the TGF-β signaling pathway and accelerating the
destruction of the extracellular matrix.
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TGFBR3 genes. Ramona et al. showed that c.1642C > T (p.Arg548*) of
LTBP2may be associated with ocular manifestations of MFS, MVP and
funnel chest. In 2010, Desir et al. observed that MFSmight be related to
mutations in the LTBP2 gene (Desir et al., 2010). In 2019, Morlino et al.
noted that two Romani individuals exhibited a phenotype resembling
MFS due to the presence of the homozygous p.R299X variant in the
LTBP2 (Morlino et al., 2019). Bertoli-Avella et al. indicated that patients
with LTBP3 gene mutations exhibited elastic fiber breakage, as well as
increased accumulation of collagen and proteoglycans within the aortic
wall tissue (Bertoli-Avella et al., 2015). They found that individuals with
mutations in this gene exhibited severe cardiovascular symptoms that
closely resembled those in MFS patients. Korneva et al. (2019) detected
that the absence of LTBP3 attenuated elastic fiber breakage and focal
dilatation in a mouse model of MFS lacking fibrillin-1. However, MFS
mousemodels with spinal deformities persisted in the absence of LTBP3
(Zilberberg et al., 2015). MFS mice lacking LTBP3 had increased
survival and suppressed Smad2/3 and Erk1/2 activation in the aorta.
Aortic aneurysms disappeared in MFS mice (Bertoli-Avella et al., 2015;
Zilberberg et al., 2015). These data suggested that the latent TGF-β
complex composed of LTBP3/TGF-βmay contribute to the progression
of aortic disease in MFS.

3 TGF-β pathway abnormalities in MFS

TGF-β family play critical roles in embryonic development, adult
tissue homeostasis and repair. Genetic studies in animals demonstrated
that the TGF-β signaling pathway was correlated with MFS (Goumans
and tenDijke, 2018; Gensicke et al., 2020). An integral role of the TGF-β
signaling pathway in the pathogenesis of MFS thoracic aortic
aneurysms was identified by knocking out the FBN1 gene in MFS
model mice (Gensicke et al., 2020). FBN1 protein modulates the levels
of activated TGF-β in the extracellular matrix through its interaction
with a complex comprising LAP, LTBP, and TGF-β. Extracellular
activation of this complex is an essential condition for the biological
activity of TGF-β regulation. Upon activation of this complex, TGF-β
transmits signals to two membrane-bound TGF-β receptors via
costimulatory binding. Furthermore, signals are transmitted from the
cell membrane to the nucleus via Smad-dependent or Smad-
independent pathways (Derynck and Zhang, 2003; Shi and
Massagué, 2003; Tang et al., 2018). FBN1 protein mutations causing
abnormal TGF-β pathway signalling in MFS are displayed in Figure 1.

3.1 SMAD dependent signaling

The inactive TGF-β precursor consists of 390–442 amino acids, and
the TGF-β precursor has three specialized regions consisting of an
N-terminal hydrophobic signal peptide region, a 249-amino-acid
latently relevant peptide region, and a C-terminal region (Shi and
Massagué, 2003; Goumans and ten Dijke, 2018; Tang et al., 2018).
Inactive TGF-β precursors are endopeptidase cleaved in the Golgi
apparatus, and thereby forms a small latent complex. The mature
TGF-β homodimer contained therein is formed by non-covalent
bonding with two latent peptides and is normally secreted by the
cell as a large latent complex together with LTBP. LTBP anchors
inactive TGF-β to the extracellular matrix. Inactive TGF-β releases
biologically active TGF-β from the latent complex through the

interaction of latent-associated peptides with a variety of proteins.
Upon binding of activated TGF-β to cell-surface receptors, TGF-β
ligands stimulate the assembly of serine/threonine kinase complexes,
which pass through the cytoplasm and protein phosphorylation initiates
signal transduction (Shi and Massagué, 2003; Akhurst and Hata, 2012;
Goumans and ten Dijke, 2018).

Activated TGF-βR1 specifically recognizes and phosphorylates
R-Smad (receptor-regulated Smads). The R-Smad substrate activates
the TGF-β receptor complex via the SMAD receptor activation anchor
(SARA). Phosphorylation of R-Smad reduces its affinity for SARA and
leads to the formation of a heterodimer with Smad4. Activated R-Smad
forms a heterodimeric complex with Smad4. The heterodimeric
complex then rapidly translocates to the nucleus. Upon entry into
the nucleus, this complex interacts with transcription factors containing
sequence-specific DNA-binding affinities at promoter sites to regulate
gene expression. Smad4 is translocated to the nucleus only when bound
to R-Smad, which can autonomously move from the cytoplasm to the
nucleus in the absence of Smad4. However, when Smad4 is blocked or
absent, R-Smad can translocate but lacks the ability to completely signal
the nucleus through gene expression. This implies that the primary role
of Smad4 is to regulate transcription rather than to transmit TGF-β
signaling from the cytoplasm to the nucleus (Johnsen et al., 2002; Ten
Dijke et al., 2002; Derynck and Zhang, 2003; Shi and Massagué, 2003).

3.2 SMAD independent signaling

In addition to Smad-independent transcription, TGF-β activates
Smad independent signaling cascades. Smad independent signaling
pathway includes the Erk, JNK, and p38 MAPK kinase pathways,
and the mechanisms by which TGF-β activates Erk, JNK or
p38 MAPK and their biological consequences remain to be
elucidated. JNK and p38 MAPK signaling is activated by various
MAPK kinases (MAPKKKs) in response to many stimuli. Rapid
activation of Ras by TGF-β is associated with the participation of Ras
in TGF-β induced Erk MAPK signaling (Derynck and Zhang, 2003;
Holm et al., 2011; Mu et al., 2012). Smad independent signaling such
as NO, angiotensin, WNT, NOTCH and PI3K/AKT are also related
to MFS progression (Nataatmadja et al., 2013; Dong et al., 2023).

Gensicke et al. (2020) analyzed the expression levels of the atypical
regulators ERK and p38 in cardiac tissues of the FBN1C1039G/+ MFS
mouse model by Western blotting. Rouf et al. (2017) measured mouse
aneurysms by thoracic echocardiography and determined levels of
phosphorylated Erk1/2 (p-Erk1/2) and pSmad2 in aortic tissue.
These results indicated that aneurysms in MFS model mice are
linked to Erk1/2 Smad and p38 signaling. Sato et al. (2018) showed
that the downstream protein of Ras, pRaf1, and pERK1/2 were
significantly elevated by Western blotting. Inhibition of the Ras-
induced Erk signaling pathway reduced aneurysm growth in mice.
These results showed that activation of Ras/Erk MAPK signaling could
induce TGF-β expression, being expected to result in aortic aneurysm
growth. Chung et al. (2007) were the first ones to demonstrate that
endothelial dysfunction in the thoracic aorta of patients with MFS was
probably due to downregulation of NOS-induced NO production by
Akt or endothelial cells. de la Fuente-Alonso et al. (2021) reported that
NO overactivation of sGC-PRKG signaling induced MFS thoracic
aortic disease. These pointed to the importance of NO in the
progression of thoracic aortic lesions. Angiotensin II (Ang-II)
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directly induced aortic dilatation in a mouse model of MFS, affecting
TGF-β synthesis and receptor expression. Ang-II interacts with TGF-β
signaling (Yu and Jeremy, 2018). Jespersen et al. (2022) detected Notch
3 expression in aortic tissue from the FBN1mgR/mgR MFS mouse
model and human MFS. Notch3 levels were elevated in both the MFS
mouse model and human MFS. Thus, aortic abnormalities in MFS are
combined with increased Notch3 activation. Granata et al. (2017)
modeled the vasculature of human induced pluripotent stem cells
(MFS-hipscs). Smooth muscle cells (SMCs) of MFS-hipscs origin
recapitulated the pathology of Marfan’s aorta with high levels of
KLF4 and P-p38, which was validated in patient samples. These
results suggested that krppel-like factor 4 (KLF4) controls the
p38 pathway to regulate SMC apoptosis. Activation of the
mechanistic target of rapamycin (mTOR) pathway is also thought to
play a role in aortic aneurysm formation in patients with MFS. The
mTOR signaling pathway was shown to be significantly activated
during aneurysm development, and inhibition of mTOR signaling
reduced the development of aortic coarctation in animal models
(Sarbassov et al., 2005; Laplante and Sabatini, 2012; Saxton and
Sabatini, 2017).

4 Treatment of MFS

Pharmacological treatments for MFS aim to limit the rate of
aortic dilatation and slow the progression of cardiovascular disease.
However, MFS cannot be completely cured, and research into drug
therapy remains a hot topic (Chiu, 2022).

β-blockers have been recommended as first-line therapeutic
agents for MFS(Bowman et al., 2019; Deleeuw et al., 2021). β-
blockers are classic drugs that selectively bind to β-adrenergic
receptors, thereby antagonizing the agonistic effects of
neurotransmitters and catecholamines on β receptors (Koo et al.,
2017). These drugs reduce heart rate and myocardial contractility by
blocking β1 and β2 receptors distributed in the heart and blood
vessels, thereby reducing myocardial oxygen consumption (Fici
et al., 2023). Furthermore, β-blockers inhibit the release of renin
and decrease the production of angiotensin II, thus reducing
systemic vascular resistance (Paolillo et al., 2021). This
mechanism of action not only helps to reduce cardiac afterload
and lower blood pressure, but also reduces dilatory pressure in the
aortic root (Messerli et al., 2023). In patients with Marfan syndrome,
dilatation of the aortic root is a serious problem that can lead to fatal
aortic coarctation or rupture. β-blockers mitigate the likelihood of
these complications by decelerating the rate of aortic root dilation
through the above mechanisms. Several clinical trials have
confirmed that β-blockers effectively reduce the rate of aortic
root dilation in MFS patients (Koo et al., 2017; Jondeau et al.,
2023). Although β-blockers have demonstrated efficacy in the
management of Marfan syndrome, they may be associated with
some side effects. Common cardiovascular adverse effects include
hypotension and bradycardia, which may lead to exacerbation of
heart failure in severe cases, especially in elderly patients or at high
doses (Richards and Tobe, 2014; Vargas et al., 2023). It may induce
or exacerbate bronchial asthma due to the blocking of β2 receptors
on bronchial smooth muscle. Hypogonadism, anaphylactic rash,
and gastrointestinal distress are also common side effects (Tatu et al.,
2019). Therefore, the challenge of using β-blockers as a primary

therapy for the prevention of aortic complications in patients with
MFS is enormous.

In mice model of MFS, angiotensin receptor enkephalin
inhibitors delay ascending aortic dilatation more than ARB alone
(Yu and Jeremy, 2018). Thus, angiotensin receptor enkephalin
inhibitor therapy may be a novel approach for the treatment of
MFS (Brooke et al., 2008; Habashi et al., 2011). Angiotensin-
converting enzyme inhibitors (ACEIs) reduce arterial pressure
and delay atherosclerosis. Mutations in the FBN1 gene enhance
TGF-β signaling, whereas ACEIs reduce TGF-β signaling
(Cavanaugh et al., 2017a). Therefore, ACEIs can be
recommended for the treatment of patients with MFS. The study
of animal models of MFS such as zebrafish, mice, pigs and in vitro
models of human induced pluripotent stem cells would also help to
determine the efficacy and safety of novel drugs for MFS.

“Bentall-de Bono” aortic root replacement has enhanced the
lifespan of MFS patients (Ornelas-Casillas and Garcia-Arias, 2022).
This surgery should be considered as early as possible when patients
with MFS are labelled as high risk for ascending aortic risk factors
(Dallan et al., 2021; Hlavicka et al., 2022; Ornelas-Casillas and
Garcia-Arias, 2022). Lens ectasia is a common manifestation of
ocular involvement in patients with MFS. Eye complications such as
glaucoma and long-term blindness can be prevented by early
surgical intervention. Sahay et al. described a microscope-guided
lens aspiration technique that can be applied to treat anterior lens
dislocation in children (Sahay et al., 2019). About 60% of patients
with MFS have scoliosis. When the condition is severe, it can cause
significant skeletal deformities, pain, and restrictive ventilatory
dysfunction. It is recommended that patients with MFS may be
treated surgically with symptoms (Lumban Tobing and Akbar, 2020;
Rava et al., 2020). In 2017, Wang et al. helped an MFS couple birth a
healthy newborn by using preimplantation genetic diagnosis
(PGD).The PGD approach can yield healthy offspring for
families at high risk for genetic disorders (Wang et al., 2017).

5 Animal models of MFS

At present, animal models for MFS are categorized into two
groups: spontaneous animal models and experimental animal
models. Animal models of MFS primarily mimic the aortic
coarctation phenotype of human MFS. Although many studies
have been conducted to investigate the molecular mechanisms of
TGF-β and other signaling pathways in MFS with the knockout
FBN1 mouse model, there are fewer reports on other homologous
animal models of MFS. The advantages and disadvantages of the
MFS animal model are highlighted in Table 2.

5.1 Spontaneous animal models

5.1.1 Cattle model of MFS
Bovine MFS is an inherited disease with many of the clinical and

pathologic manifestations of human MFS. The main manifestations
are lens ectasia, aortic dilatation, aneurysms and ruptures. In 1990,
Besser et al. described a phenotypically normal purebred bull that
produced 72 calves from 41 females. Seven of these calves were
infected. Clinical examination of siblings of infected calves revealed
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no skeletal, ocular or cardiovascular lesions. Neonatal calves affected
are known as bovine MFS(BMFS), which suffered from scoliosis,
distal limb overgrowth, and lens ectasia. These symptoms were
phenotypically similar to human MFS (Besser et al., 1990). In 1994,
Potter, K A and T E Besser tracked 10 BMFS cattle. Autopsy results
showed that six BMFS cattle died of severe cardiovascular lesions
(Potter and Besser, 1994). Morphological and ultrastructural
revealed severe degenerative elastic fiber disease in the aortic
tissue of BMFS. BMFS cattle with vvg-staining of sections
displayed an increased ultrastructural density of elastic fibers in
the skin, lungs and neck, and an increase in peripheral
microprogenic fibers.

Cardiovascular lesions in BMFS are close to humanMFS visually
and under microscope. Therefore, BMFS can be a valuable model for
exploring the molecular pathogenesis and therapeutic approaches to
human MFS. However, BMFS are costly and have long breeding
cycles. BMFS is rarely studied with MFS at present.

5.2 Experimental animal models

5.2.1 Chicks model of MFS
In 1980, Simpson et al. (1980b) observed aneurysms in

patients with MFS, chicks fed a copper-deficient diet and
turkeys fed b-aminopropionitrile (BAPN) by light and electron

microscopy. Broken elastic fibers and atrophied smooth muscle
cells in the abdominal aorta were detected by Orcein-Van Gieson
staining of sections and electron microscopy. The results
indicated similar aneurysm phenotypes in chicks and humans.
Nevertheless, this MFS-like Chicks model has not been widely
used ever since.

5.2.2 Mouse model of MFS
Most animal models of MFS have been created by gene editing

mice. The mice models includemgΔ, mgR, C1039G,mgN, H1Δ, and
mgΔloxpneo mice.

5.2.2.1 MgΔ mice
In Pereira et al. (1997) established the FBN1mgΔmice model. In

a C57BL/6J mice background, exons 19–24 of the 6 kb long FBN1
were replaced with a neomycin-resistant expression cassette (neoR)
using gene editing techniques. Expression analysis showed that the
transcript level of the mgΔ allele was 90% lower than that of the
normal FBN1 allele. Heterozygous mgΔ/+ mice had normal life
expectancy, but all mgΔ/mgΔ mice died around 3 weeks after
birth. FBN1mgΔ/+ animals were histologically indistinguishable
from wild-type mice. FBN1mgΔ/mgΔ mice had normal bones, but
all suffered from cardiovascular complications, such as AA/AD. The
transcript level of the mgΔ allele was 90% lower than that of the
normal FBN1 allele.

TABLE 2 Advantages and disadvantages of animal models of MFS.

Animal Technical Outcomes Advantage Disadvantage References

Chicks Drug feeding Death by AA Simple operation No human genes given Simpson et al. (1980a)

Cattle Multiply AA, lordosis, elongated
distal limbs, and lens
ectasia

Can be passed on from one
generation to the next

No human genes given Halper (2014)

Mouse Gene editing fbn1mgΔ mouse mgΔ/mgΔ mice showed
cardiovascular
abnormalities

Low extrinsic rate
Cannot produce offspring

mgR mouse mgR/mgR Mouse similar
to MFS.

Low extrinsic rate
Cannot produce offspring

Habashi et al. (2006), Cavanaugh et al.
(2017b), Gharraee et al. (2022), de Souza
et al. (2023), Weiss et al. (2023)

C1039G mouse C1039G/+ mouse similar
to MFS.

mgN mouse mgN/mgN mice
showed AA

Dead within 2 weeks

GT-8 mouse Heterozygous mice
showed AA

Homozygous mice die
early after birth

H1Δ mouse normal growth cycles Without aortic lesions or
microfiber defects

mgΔloxpneo mouse Typical MFS phenotype

Pigs Gene editing Glu433AsnfsX98 Similar to MFS Long breeding cycle Umeyama et al. (2016b)

Zebrafishes Gene editing fbn1+/-zebrafish Similar to MFS High fecundity and short
life cycle

Yin et al. (2021)

Caenorhabditis
elegans

Gene editing Mua-3 MFS and MFS-like
mutations in type II
receptors

Little research Fotopoulos et al. (2015b)

Rabbits Gene editing FBN1 Het rabbits Typical features of MPL
syndrome

Small sample size Chen et al. (2018)
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The neoR box sequence possibly interferes with the expression
of the mutant allele, thus limits the dominant-negative effect of the
mutation. Targeting experiments in mice suggest that the FBN1
protein is primarily involved in tissue homeostasis.

5.2.2.2 MgR mice
In Pereira et al. (1999) used gene editing in a C57BL/6 mouse

background to clone the targetmgR allele from the PGKneo cassette
into the region of exons 18 and 19 and replaced exons 19 to 24 with
the neomycin (neo) gene. Both mice with heterozygous and pure
mutants of mgR were born in the anticipated proportions and did
not exhibit any abnormal characteristics at birth. The mgR/mgR
mice exhibited clinically significant scoliosis and increased
thoracodorsal-ventral diameters and died of aortic coarctation in
early adulthood compared to mgR/+ mice (Pereira et al., 1999).
Similar Gene-targeted mutant mgR mice with low expression of
FBN1 resulted in MFS-like manifestations. Histopathological
analysis of aortic specimens demonstrated the presence of medial
calcification, inflammatory fibroproliferative response, and
inflammation-mediated lysis of the entrapped aneurysm.

5.2.2.3 C1039G mice
In Judge et al. (2004) overexpressed an FBN1 (C1663R) mutant

in a normal mouse background using yeast artificial chromosome
transgenesis. The C1039G mutation was localized to exon 25 of the
cb-EGF-like structural domain encoded by the mouse FBN1 gene
(Judge et al., 2004). The FBN1C1039G/C1039G mice often died
perinatally from vascular anomalies. The FBN1C1039G/+mice were
under a normal life cycle with abnormalities of the aorta and typical
skeletal abnormalities (Judge et al., 2004). Heterozygous mice with
characteristics similar to MFS in humans exhibit impaired
microfibre deposition, skeletal malformations and progressive
deterioration of aortic wall structure.

5.2.2.4 MgN mice
In Carta et al. (2006) created the FBN1 gene deletion (mgN)

mouse model. An exon of the FBN1 gene containing an ATG codon
and signal peptide coding sequence of approximately 700 bp was
replaced with a phosphoglycerol kinase neo cassette and an alkaline
phosphatase gene containing an internal ribosomal entry site.mgN/+

mice had a normal life cycle and phenotype. However, mgN/mgN
mice died within 2 weeks of birth from ruptured aortic aneurysms,
impaired lung function, and/or diaphragmatic collapse. Deletion of
one or both FBN1 alleles in the context of FBN1 deletion resulted in
embryonic death. This suggests that FBN1 is critical for substrate
assembly and the initiation of embryonic development.

5.2.2.5 H1Δ mice
In 2010, two novel knock-in mice were born. Charbonneau et al.

performed an experiment involving C57Bl/6 mice with Cre
recombinase inserted into the Rosa 26 locus, which was mated
with FBN1 mice tagged with an enhanced green fluorescent protein
(eGFP). The specific lox locus was integrated into the targeting
vector and the lox66 and lox77motifs were reversed by cre-mediated
recombination. eGFP coding sequence was inverted into the frame
after exon 32. cbEGF region was truncated. FBN1 was tagged with
eGFP. A mice strain named GT-8 was successfully established. GT-8
homozygous mice died early after birth. Heterozygous mice had

abnormal skin and dilated aorta but normal growth cycles
(Charbonneau et al., 2010). Another mice model called H1Δ
(heterozygous 1 structural domain deletion) was created through
cre-mediated removal of FBN1 exon 7 (bordered by loxP sites) in a
second generation of mice on a C57Bl/6 background. H1Δmice had
a normal growth cycle and no aortopathy or microfibrillar defects.

5.2.2.6 MgΔloxpneo mice
In Lima et al. (2010) modified the neoR (mgΔloxpneo) of the

mgΔ mouse model with lox-P sequences within the context of the
C57BL/6 and 129/Sv animal models by gene editing.mgΔloxpneo from
the C57BL/6 and 129/Sv backgrounds were mated with CD1 females
to produce the F1 generation. Heterozygous mgΔloxpneo of the
F1 generation displayed no significant phenotype. Subsequently,
the heterozygotes of the F1 generation were hybridized. The
heterozygous mgΔloxpneo mice all exhibited typical MFS
phenotypes, including aortic, skeletal (primarily retroconvex), and
respiratory (emphysema) phenotypes. Both crosses had normal
lifespan and reproduction (Lima et al., 2010). The phenotype of
the MFS model mice established by the gene editing techniques
described above was dominated by aortic lesions. Clinical variants in
the mice indicated that epigenetic factors were associated with
disease severity.The overall expression level of FBN1 was strongly
negatively correlated with the severity of the phenotype, and
thisconfirmed the relevant role of mutated FBN1 in the
pathogenesis of MFS.

5.2.3 Pigs model of MFS
The advancement of reproductive biology led to genetically

engineered pigs as models for human genetic diseases. Although
several models of monogenic diseases exist, replication of human
diseases caused by haploinsufficiency remains a major challenge.
Investigating the gene regulatory mechanisms associated with
haploinsufficiency can be of great practical value in establishing
reliable pig models of MFS.

In Umeyama et al. (2016a) created an FBN1 mutant (fbn1mut)
clone pig (+/Glu433AsnfsX98) by using genome editing and somatic
cell nuclear transplantation. This model exhibited phenotypes
similar to human MFS symptoms, as scoliosis, funnel chest, and
aortic anomalies. Second generation (G2) pure mutant pigs
exhibited typical MFS symptoms and survived for up to 28 days
(Umeyama et al., 2016a). In 2022, Jack et al. established the fbn1mut/+

(Glu433AsnfsX98/WT) porcine model by somatic cell nuclear
transfer (SCNT) technique. The first method involved
transferring blastocyst-stage SCNT embryos into recipient reserve
sows after 5 days of long-term culture. The symptoms ofMFS related
to scoliosis, concave chest, delayed epiphyseal mineralization and
aortic wall elastic fibre abnormalities were demonstrated in 4 of
8 fbn1mut/+ pigs. Many of these symptoms were observed in the
neonatal period. The second method of cloning pigs were SCNT
embryos transplanted at the early cleavage stage without prolonged
culture. There were two pigs that had no abnormalities in the
neonatal period and developed symptoms at maturity. In vitro
manipulation of embryos (including culture) can epigenetically
alter gene expression. In the fourth generation of cloned fbn1mut/+

male pigs, MFS symptoms were observed in G1 ~ G4 stage pigs at
662 days postnatal age. Cardiovascular lesions were the
predominant symptom in individuals in the G2 ~ G4 stages. The
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FBN1Glu433AsnfsX98/WT genotype were characterized by a later
onset of MFS. The phenotypic diversity and neonatal morbidity
observed in G0 cloned animals appeared to decrease after G1 (Jack
et al., 2022b). The fbn1mut/+ profile recapitulated the variable and
delayed pathogenesis of MFS. However, predicting and controlling
the kinetics of symptom onset in porcine models of MFS still
remains a major challenge for future investigations.

5.2.4 Zebrafishes model of MFS
Zebrafish models have the advantage of clear embryonic optics,

high fecundity, low rearing costs, short life cycles, ease of
experimental manipulation and the fact that approximately 70%
of human genes have functional homologues in zebrafish (Fontana
et al., 2018).

In Chen et al. (2006) produced knockout embryos by injecting
2 independent splice-site morpholino (MO) targeting the zebrafish
FBN1 gene into Tg (fli1/EGFP) embryos. Tg embryos exhibited
dilated caudal vessels, head and ocular vessels at 30–31 h after
fertilization (Chen et al., 2006). In 2021, the first fbn1+/− zebrafish
model was built by using CRISPR/Cas9 gene editing technology.
This model was designed to mimic the genetic defects in human
FBN1. The fbn1+/− zebrafish exhibited morphological and
cardiovascular abnormalities in the juvenile stage, with marked
pigmentation, increased body length, and body thinning (Yin
et al., 2021). Genomic DNA was extracted from F1 embryos
(hpf) 24 h after fertilization. F0 with genetic mutations were
selected for mating to produce F1 progeny. f1 fbn1+/− adults were
mated with Tg wild fish to produce F2 transgenic fish. f2 fbn1+/−

heterozygous fish carried the mutants, which indicated that the
fbn1+/− zebrafish transgenic line was successfully constructed. The
first fbn1+/− zebrafish model was successfully constructed using
CRISPR/Cas9 gene editing tools. This model manifested obvious
morphological and cardiovascular abnormalities similar to
those of MFS.

5.2.5 Caenorhabditis elegans model of MFS
Mua-3 is the mammalian homologue of fibrillin-1 in

Caenorhabditis elegans, the cause of MFS. Previous studies have
suggested that there were possible conserved interactions between
mua-3 and the TGF-β pathway in Crypto-bacterium nematodes.
Crypto-bacterium cryptic rod nematodes can be used to further
mimic MFS in worms (Fotopoulos et al., 2015a). In 2019, Lin et al.
identified MFS and MFS-like mutations in the type II (LTA motifs
including leucine, threonine, and alanine) receptor leading to
mistransportation of the receptor through the cryptic rod
nematode model of Hidradenitis elegans (Lin et al., 2019).

In MFS-like patients, three heterozygous missense mutations
W521R, R528H and R537P in the TGF-β type II receptor
correspond to W580R, R587H and R596P, respectively, in the
cryptic nematode type II receptor DAF-4. The three-dimensional
structure of the structural pairs of the c-terminal domains of the type
II TGF-β receptor was investigated. The LTA motif of the kinase
structural domain was exposed externally. It can interact with other
proteins. The structure and function of the human type II TGF-β
receptor were modelled using Pymol software. The modeling results
indicate that mutations in MFS-like symptoms interfere with the
structural domain located on the exposed surface of the type II TGF-
β receptor. This modifies its engagement with cytoplasmic transport

and/or regulatory proteins, or the activity of the receptor. This
model clearly demonstrates that the function of the type II receptor
carrying the MFS-like mutation is determined by somatic assays. In
a wild-type background, the increase in somatotype is similar to the
predominant nature of these mutations found in MFS-like patients.
Cryptobacterium cryptic nematode MFS-like syndrome model
provides a new paradigm for MFS-like syndrome receptor
transporter-disease linkage.

5.2.6 Rabbits model of MFS
Rabbits are a classic animal model species for cardiovascular

diseases such as atherosclerosis, and are frequently used animal
model for eye disease study.

Chen et al. (2018) truncated the C-terminal end of the FBN1
gene by trans cytoplasmic microinjection of Cas9 mRNA and single-
stranded rna (sgRNA) into fertilized embryos of rabbits using
CRISPR/Cas9 technology. The heterozygous rabbit model showed
muscular dystrophy, ocular syndrome, aortic dilatation and
lipodystrophy in the MPL syndrome clinically (Chen et al.,
2018). FBN1 rabbits had a high mortality rate, were prone to
lung infection, pneumothorax and dilated ascending aorta found
in the dead rabbits. The cause of death was probably aortic root
dilatation and MPL lung phenotype. The ascending aorta of FBN1
Het rabbits was less elastic and flattened compared to the normal
ascending aorta of the WT controls. In addition, the ascending and
abdominal aorta were dilated in the FBN1 Het rabbits compared to
the normal ascending aorta in the WT control group. FBN1 Het
rabbits displayed skin atrophy, skin laxity and slow hair growth
compared to WT rabbits. Gastrocnemius and quadriceps muscles
were significantly reduced in FBN1 Het rabbits. H&E staining and
statistical analysis illustrated significant thinning of muscle fibers in
FBN1 Het rabbits. FBN1 Het rabbit muscle atrophy, X-ray
examination of the FBN1 Het rabbit and the WT rabbit indicated
that the length and diameter of the femur and tibia of the FBN1 Het
rabbit were abnormal. In addition, H&E staining demonstrated a
decrease in bone marrow cells and bone marrow adipocytes in FBN1
Het rabbits. Toluidine blue staining showed that osteoblasts were
significantly reduced in the bone deposition area of FBN1 Het
rabbits. These observations indicated that FBN1 mutations
induced the typical phenotype of MPL syndrome in FBN1
Het rabbits.

The current animal models used to study MFS are mainly based
on mice. Mice reproduce quickly and in short cycles, and this model
is readily available and relatively low cost (Summers, 2024).
Although mouse models of MFS exhibit certain similarities to the
condition in patients, they do not precisely replicate the human
disease state, particularly in terms of long-term aortic dilatation and
the development of coarctation (Summers, 2024). Pigs and humans
share similarities in several anatomical and physiological
characteristics and have body sizes suitable for a variety of
surgical procedures and clinical evaluations (Jack et al., 2022a;
Salinas et al., 2022). The pig model with higher maintenance
costs and more resources and space are its drawbacks. Zebrafish
share a highly homologous genome with humans and have a short
reproductive cycle that takes up little space (Abrial et al., 2022). It
makes zebrafish an ideal model for studying the molecular
mechanisms and gene function of Marfan syndrome.
Nevertheless, the zebrafish cardiovascular system is anatomically
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different from humans, which may affect research on certain
cardiovascular disorders (Wang et al., 2024).

6 Prospectives

MFS is an inherited disorder that is rare but pathogenic. Fibrillin
1 mutations overactivate TGF-β, which leads to an imbalance in the
TGF-β signaling pathway and a signaling cascade. In addition to the
TGF-β signaling pathway, NO, angiotensin, WNT, NOTCH, PI3K/
AKT, and other signaling pathways are disregulated inMFS. PI3K/AKT
and mTOR have been associated with aortic lesion formation in MFS.
However, the specific molecular mechanism of MFS still remains
unclear. Treatment of MFS includes surgery and drug therapy,
which is necessary for patients with high risk factors in the aorta or
other organs, especially for neonatalMFS. Pharmacological treatment is
a current research hotspot, and the search for new targeted drugs is
predicated on the need to pass experiments withMFSmodel animals as
well as clinical trials, and the most used model is the MFSmouse model
at present. In addition to the mouse model, the rabbit model can be
modeled to study the ocular phenotype ofMFS, and the zebrafishmodel
has cardiovascular characteristics to study the cardiovascular
phenotype of MFS.

However, there are challenges in the research for MFS treatment.
First, certain animal models exhibit unusual clinical presentations, such
as no or mild AA/AC, disproportionate bone growth, lens ectasia and
other clinical symptoms. Second, only part of animal genomes is
available. Third, the applicability of findings from MFS animal
models to the human population is constrained. Although animal
models of MFS are diverse, only the rabbit model presented the
symptoms of lens ectasia. In addition, researchers should consider
factors such as minimal interference, reproducibility, and cost-
effectiveness while conducting animal experiments. Hence, a high-
quality MFS animal model should possess the following attributes:
(i) obvious cardiovascular abnormalities (e.g., aortic dilatation/
clamping); (ii) similarity to human MFS in skeletal malformations
(e.g., curvature of spine, disproportionate growth of bones); (iii) lens
ectasia similar to human MFS; and (iv) animal have homologs of
humanMFS-causing genes; (v) the animalmodel results specifically and
plausibly reflect the pathologic process of human MFS.

Animal models with diverse characteristics are critical for
exploring the pathophysiology and new therapeutic approaches
for MFS patients. Each animal model used to simulate human
MFS has pros and cons. Gene-edited animal models focus on the
study of clinical manifestations, pathologic alterations, and
therapeutic approaches for MFS, offering significant insights into
the outward appearance and management strategies for MFS. In
addition to FBN1 gene-edited animal models, other relevant gene-
edited animal models are necessary to study the molecular
mechanisms and gene therapies of human MFS, conjunct with
novel molecular methodologies aimed at modifying the
regulation of distinct genes in specific tissues in a targeted
manner. Genetic models of MFS have been examined from the
causative genes to the cellular and tissue levels, providing insights
into the progression of MFS pathology from embryonic stages
to adulthood.

The establishment of animal models of MFS can be used to
probe the pathogenesis, molecular mechanisms, and
pharmacological treatments of human MFS. The role of animal
models in MFS is essential due to variances in anatomy, physiology,
and genetics between humans and animals. These models are
employed to replicate particular disease characteristics and offer
significant insights to investigators. Hence, continuous endeavors
have concentrated on developing a more optimized animal model
that replicates the etiology and therapeutic effects associated with
MFS in humans. The future trend of animal models may provide
engaging insights into the comprehending of pathological and
genetic characteristics, as well as novel therapeutic
approaches for MFS.
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