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Introduction: Idiopathic pulmonary fibrosis (IPF) is a severe chronic respiratory
disease characterized by treatment challenges and poor prognosis. Identifying
relevant biomarkers for effective early-stage risk prediction is therefore of critical
importance.

Methods: In this study, we obtained gene expression profiles and corresponding
clinical data of IPF patients from the GEO database. GO enrichment and KEGG
pathway analyses were performed using R software. To construct an IPF risk
prediction model, we employed LASSO-Cox regression analysis and the SVM-
RFE algorithm. PODNL1 and PIGA were identified as potential biomarkers
associated with IPF onset, and their predictive accuracy was confirmed using
ROC curve analysis in the test set. Furthermore, GSEA revealed enrichment in
multiple pathways, while immune function analysis demonstrated a significant
correlation between IPF onset and immune cell infiltration. Finally, the roles of
PODNL1 and PIGA as biomarkers were validated through in vivo and in vitro
experiments using qRT-PCR, Western blotting, and immunohistochemistry.

Results: These findings suggest that PODNL1 and PIGA may serve as critical
biomarkers for IPF onset and contribute to its pathogenesis.

Discussion: This study highlights their potential for early biomarker discovery and
risk prediction in IPF, offering insights into disease mechanisms and diagnostic
strategies.
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1 Introduction

Recent investigations have reported that the global incidence of idiopathic pulmonary
fibrosis (IPF) ranges from 1 to 13 cases per 100,000 individuals, with a prevalence of
3–45 cases per 100,000 individuals (Anna et al., 2023). The median survival time for patients
with IPF is approximately 3–5 years. Early diagnosis primarily relies on imaging
assessments; however, 20%–25% of patients exhibit atypical imaging features,
underscoring the limitations of current clinical diagnostic methods. According to the
clinical practice guidelines issued by the American Thoracic Society/European Respiratory
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Society/Japanese Respiratory Society/Asociación Latinoamericana
de Tórax (ATS/ERS/JRS/ALAT), no serum biomarkers are currently
recommended for monitoring IPF progression (Weiwei et al., 2024).
Recent clinical studies have demonstrated that the Envisia Genomic
Classifier (EGC) is an effective molecular diagnostic tool for
identifying usual interstitial pneumonia (UIP) patterns via
bronchoscopy, aiding in the accurate diagnosis and management
of IPF (Lisa et al., 2022). Additionally, several genes, including
IL18R1, m5CPS, and CYFRA 21–1, have been identified as potential
biomarkers for the diagnosis, prognosis, and treatment of IPF
(Philip et al., 2022; Tao and Hua-Fu, 2022; Kun et al., 2023). The
discovery and validation of new biomarkers are crucial for
accurately predicting disease outcomes, assessing disease severity,
and identifying patients with poor prognoses at early stages, which
will significantly benefit clinical practice.

Biomarker screening typically involves analyzing large-scale
datasets, including gene expression, protein, and metabolite data.
The high dimensionality of these datasets often poses challenges for
traditional statistical methods, which may struggle to handle
complex and nonlinear relationships between disease occurrence
and progression. In contrast, machine learning algorithms can
effectively identify such nonlinear patterns, offering a powerful
tool for discovering novel and effective disease biomarkers.
Machine learning, an automated data analysis method for
constructing predictive models, has seen widespread application
in clinical medicine (Wenxin et al., 2021; Reena et al., 2024).
Previous studies have shown that machine learning can predict
the risk of diseases such as breast and endometrial cancer, identify
histopathological features, and enrich related biological pathways
(Stephen-John et al., 2021; Woong–Chul and Sen, 2023).

In recent years, machine learning has also been applied
extensively to the diagnosis and treatment of various diseases
(Iain et al., 2023). For example, the Least Absolute Shrinkage and
Selection Operator (LASSO) logistic regression combines multiple
decision trees iteratively constructed from random subsets of
predictor and outcome variables to enhance predictive accuracy
(Shihu et al., 2021). Similarly, support vector machine recursive
feature elimination (SVM-RFE) is widely used to select optimal
variable combinations, leveraging its nonlinear discriminative
characteristics (Min et al., 2023). Using machine learning, Wu
et al. identified FHL2, HPCAL1, RNF182, and SLAIN1 as
potential biomarkers for IPF (Zenan et al., 2023). Given the
complexity of IPF as a multifaceted disease, discovering and
validating additional biomarkers will enhance our understanding
of its underlying mechanisms and improve diagnostic accuracy. In
summary, machine learning not only improves the efficiency and
accuracy of biomarker discovery but also offers novel insights for the
diagnosis, treatment, and prevention of diseases. The application of
machine learning to identify IPF biomarkers is, therefore, of
significant importance.

The study of the immune cell landscape in IPF holds substantial
scientific and clinical relevance (Eddy et al., 2024). The immune
system plays a pivotal role in the initiation and progression of
fibrosis, with immune cells such as macrophages, T cells, B cells, and
dendritic cells closely associated with the pathological changes
observed in IPF (Kevin et al., 2021; Cecilia et al., 2022). The
interactions, migration, and responses of immune cell subsets to
cytokines and growth factors may be central to the immune

dysregulation and fibrotic processes involved in IPF (Yahan
et al., 2023). Recent studies have further demonstrated the
complex behaviors of immune cells in the tumor
microenvironment, particularly in malignancies such as
hepatocellular carcinoma (HCC) and glioblastoma (GBM), where
immune dynamics significantly impact disease prognosis and
treatment outcomes (Guimei et al., 2020; Tianqi et al., 2021).
Thus, in-depth exploration of the immune cell landscape may
not only enhance our understanding of the immune mechanisms
underlying IPF but also identify novel biomarkers, thereby
improving early diagnostic capabilities and disease progression
predictions.

In this study, we developed risk prediction models based on
the key genes PODNL1 and PIGA. Gene Set Enrichment Analysis
(GSEA) was employed to investigate the biological characteristics
and molecular pathways associated with IPF. Additionally,
immune cell profiling was performed to examine the
relationship between hub genes and the immune landscape in
disease contexts. These findings were validated through in vivo
and in vitro experiments, offering further evidence supporting
the reliability of the IPF risk prediction model and advancing our
understanding of the molecular and immune mechanisms
underlying IPF.

2 Materials and methods

2.1 Data acquisition

Data were from the GEO dataset (GEO, https://www.ncbi.nlm.
nih.gov/geo/database). The GSE21369 dataset, consisting of 23 IPF
samples and 6 normal samples (Ji-Hoon et al., 2011), and the
GSE10667 dataset, consisting of 31 IPF samples and 15 normal
samples (Iván et al., 2008), were utilized in this study. Differentially
Expressed Genes (DEGs) were identified using the aforementioned
GEO dataset.

2.2 Differentially expressed genes
(DEGs) analysis

We used R 4.4.1 software for DEGs screening, data
processing, and DEG analysis, employing the “DESeq2”
package in R software (Zitao et al., 2022). Visualization of
DEGs was conducted using the “pheatmap” and “ggplot2”
packages, producing volcano plots and heatmaps, respectively
(Jiannan et al., 2024).

2.3 Functional enrichment analysis

To explore the potential mechanisms of DEGs in IPF, the
“clusterProfiler” package was utilized for Gene Ontology (GO),
Disease Ontology (DO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis (Wenyuan et al., 2023;
Dongliang et al., 2024). Statistical significance was defined as
PFDR values less than 0.05 for both KEGG and GO
enrichment analyses.
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2.4 Protein‒protein interaction (PPI)
network construction

DEGs and other genes were annotated with the help of the
Search Tool for the Retrieval of Interacting Genes (STRING) online
database (http://string-db.org) (Limin et al., 2022). The PPI network
was constructed using only those interactions that had been
empirically validated and had a total score that was higher than
0.4 (Changjin et al., 2024).

2.5 Candidate biomarker screening

This study employed two machine learning algorithms to
identify feature genes associated with IPF, including LASSO
logistic regression and SVM-RFE (Yizhong et al., 2019). LASSO
logistic regression analysis was performed using the “glmnet”
package in R software (Miduo et al., 2022); SVM-RFE algorithm
was implemented using the “e107”package in R software. Feature
genes identified by LASSO logistic regression and SVM-RFE
algorithms intersected to generate potential biomarkers.
Furthermore, the accuracy of biomarkers was evaluated through

ROC curve analysis on training and testing datasets using the
“pROC” package (Qiyu et al., 2023). GSE53845 and
GSE10667 are used as external data for the training and testing
datasets, respectively (Iván et al., 2008; Daryle et al., 2014).

2.6 Cell culture

A549 cells were purchased from the ATCC and maintained in
DMEM high-glucose medium (C7076-500mL, Bioss) supplemented
with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells
were cultured at 37°C in a 5% CO2 atmosphere. Cells were seeded at
a density of 2.5 × 104 cells and passaged regularly. Boermycin (11-
B608166, Boer).

2.7 Quantitative real-time PCR analysis

Total RNA was extracted from A549 cells and lung tissues using
TRlzol reagent (YZ-15596018, Acmec). The concentration of total
RNA was measured using a NanoDrop One ultramicro
spectrophotometer (Thermo). cDNA was synthesized using

FIGURE 1
Overview of the study design.
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Hifair® II Reverse Transcriptase (11110ES92*, Yeasen), and qPCR
was performed using Hieff® qPCR SYBR Green Master Mix
(11203ES08, Yeasen). β-Actin was used as an internal control,
and data were normalized to the control. Baijin Biotechnology
provided the primers that were used in this study. The normalizer
employed in this study was GAPDH. The following primers were
used for qPCR: Human GAPDH: 5′-GGAGCGAGATCCCTC
CAAAAT-3′ and 5′-GGCTGT TGTCAT ACT TCT CAT GG-
3′; Human PODNL1: 5′-AGACATCATCCCCCAGCTCT-3′ and
5′-GCTCGGCCACTGGGTG-3′; Human PIGA: 5′- GCCATG
GAACTCACCGGTAATAGA -3′ and 5′- AGAGTGTAGCTG
AGGCACGG -3′; Human Sftpc: 5′- GCTACAGCCTAAGGG
CAACA -3′ and 5′- GGGATCACACCTGCTCACC -3′; Human
Sftpa1: 5′- ACTTGGAGGCAGAGACCCAA -3′ and 5′- GGCTTC
CAACACAAACGTCC -3′; Human Collagen1a1: 5′- CGAGGC
TCTGAAGGTCCCC -3′ and 5′- CCAGGAGCACCATTGGCA
-3′; Human Fibronectin: 5′- AAGAAGGGCTCGTGTGACAG
-3′ and 5′- TCTTGTCCTACATTCGGCGG -3′.

2.8 Western blot analysis

Total protein was extracted using RIPA lysis buffer with
protease and phosphatase inhibitors. Protein concentrations
were determined using the BCA assay (BX-2142728, Pierce).
Proteins were separated by SDS-PAGE and transferred to PVDF
membranes. The membranes were blocked with 5% skim milk,
incubated with antibodies overnight at 4°C, washed, and
incubated with secondary antibodies. Band intensities were
detected using a chemiluminescence imager (Biorad). The
primary antibodies used included PODNL1 (1:500, AP12207c,

ABGENT), PIGA (1:2000, ab69768, Abcam), Sftpc (1:1000,
ab312851, Abcam), Sftpa1 (1:1000, ab190087, Abcam),Collagen1a1
(1:1000, ab138492, Abcam) and Fibronectin (1:1000,
ab2413, Abcam).

2.9 Plasmid and cell transfection

The overexpression plasmid vector was designed and provided
by GenePharma Technologies (China). When the cultured cell
density reached 70%, the cells were washed with serum-free
medium and then serum-free medium was added, followed by
the addition of a transfection reagent. After 24 h of incubation,
the transfection solution was poured out and replaced with complete
medium for continued cultivation. Three days later, mRNA and
protein levels were measured, and subsequent experiments
were conducted.

2.10 Animals

This study utilized male C57BL/6 mice (6 weeks old) obtained
from the Experimental Animal Center of Xiamen University. The
animal study was reviewed and approved by Animal Ethics Committee
of Xiamen University (Ethical code: XMULAC20240136). Mice
were anesthetized with 1% pentobarbital sodium (60 mg/kg),
followed by intratracheal administration of 2 mg/kg bleomycin
(11-B608166, Boer) dissolved in 40 μL of sterile saline to induce
pulmonary fibrosis model. Subsequently, mice were euthanized on
the 20th day post-bleomycin administration, and lung tissue
specimens were collected.

FIGURE 2
Identification of differentially expressed genes in idiopathic pulmonary fibrosis: (A) Volcano plot of the GSE21369 and GSE10667 dataset. (B)
Heatmap visualization of the DEGs between idiopathic pulmonary fibrosis and normal samples. PFDR < 0.05.

Frontiers in Genetics frontiersin.org04

Ding et al. 10.3389/fgene.2024.1464471

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1464471


2.11 Immunohistochemistry (IHC)

Lung tissues were obtained from mouse models. Following paraffin
embedding, the samples were cut into 5-µm-thick slices with a
microtome and IHC was performed. The primary antibodies against
PODNL1andPIGAwere diluted and incubated overnight at 4°Cwith the
tissue sections. Following that, the tissue sections were treated with an
immunohistochemical reagent (KIT-9720,MXB, China) according to the
manufacturer’s instructions. After staining the slice with
diaminobenzidine (DAB) solution (Servicebio, China), the slides were

mounted and examined under a light microscope (Nikon SMZ 1000).
The primary antibodies used included PODNL1 (1:50, AP12207c,
ABGENT) and PIGA (1:50, 13679-1-AP, Proteintech).

2.12 Assays of immune cellular patterns in
microenvironment

CIBERSORT is a deconvolution algorithm employed to estimate the
infiltration of immune cells in both the IPF and control groups (Zitao

FIGURE 3
Functional enrichment analysis of DEGs: (A) DO analysis of DEGs. (B) GO analysis of DEGs. (C) KEGG pathway enrichment analysis of DEGs. (D) PPI
network and hub gene identification. PFDR < 0.05.
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et al., 2022). A P value of less than 0.05 was considered statistically
significant. Group comparisons were conducted using theWilcoxon rank
sum test. To visualize the differences in immune cell infiltration, a violin
plot was generated using the “ggplot2” package (Chong et al., 2023).
Additionally, the “corrplot” package was utilized to create a correlation
heatmap illustrating the relationships between immune infiltrating cells
(Zhiwei et al., 2022). For our analysis, we used the LM22 matrix in
CIBERSORT, which was selected due to its suitability for deconvoluting
immune cell composition in immune-related studies.

2.13 Correlation analysis between
biomarkers and infiltrating immune cells

The association between the biomarkers and the
levels of immune infiltrating cells was analyzed using

Spearman’s rank correlation in R software. The results
were visualized using the “ggplot2” package. P values less
than 0.05 were considered statistically significant (Zhiwei
et al., 2022).

2.14 Statistical analysis

R software 4.4.1 was employed in this study. DEGs screening,
data processing, and DEG analysis between IPF and normal samples
using a threshold of PFDR < 0.05 and |log2 Fold Change (FC)| > 1. In
the volcano plot, DEGs with log2FC < 0 were considered
downregulated, while those with log2FC > 0 were considered
upregulated.

The SPSS 20.0 software (SPSS Inc., Chicago, IL,
United States) was used for statistical analysis. The data are

FIGURE 4
Establishment and predict value of risk model: (A) Characteristic genes selection via LASSO algorithm. (B) Characteristic genes selection via SVM-
RFE algorithm. (C, D) Box plots of the expression of biomarkers (PODNL1 and PIGA) between normal and IPF samples in the training set (con represents
normal samples, and treat represents IPF samples). PFDR < 0.05.
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represented by the mean ± SD. Statistical analyses were applied
using the Student’s t-test and one-way analysis of variance to
determine statistical significance. Asterisks denote statistical
significance (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001,
ns indicates no significance). Before performing the t-test, we
conducted the Shapiro-Wilk test to assess the normality of the
data distribution.

3 Results

3.1 Identification of differentially expressed
genes in idiopathic pulmonary fibrosis

To visualize this study, the workflow is illustrated in
(Figure 1). The differences between the two groups of samples

FIGURE 5
Diagnostic effectiveness of biomarkers: (A, B) ROC analysis was conducted for PODNL1 and PIGA in training sets. (C, D) ROC analysis was conducted
for PODNL1 and PIGA in test sets. PFDR < 0.05.
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were evaluated, identifying 2359 upregulated genes and
1299 downregulated genes (p < 0.05) (Figure 2A). Among them,
the expression profiles of the top 50 differentially expressed genes
were presented in the form of heatmap (Figure 2B).

3.2 Functional enrichment analysis of DEGs

We conducted functional analysis to further investigate the
biological functions of the differentially expressed genes (DEGs).
The results of DO analysis revealed that these DEGs were linked
to lung disease, coronary artery disease, integumentary system
disease, skin disease, retinal disease, etc. (Figure 3A). The GO
enrichment analysis results indicated that the DEGs were
primarily enriched in biological processes such as extracellular
structure organization, extracellular matrix organization,
collagen fibril organization, etc. (Figure 3B). KEGG pathway
enrichment analysis showed that DEGs were significantly
enriched in in 19 pathways, such as cytoskeleton in muscle

cells, cytokine−cytokine receptor interaction, human
papillomavirus infection, Protein digestion and absorption,
etc. (Figure 3C). Moreover, we analyzed DEGs using the
STRING database, there were 41 nodes and 218 edges
enriched in the PPI network (Figure 3D).

3.3 Establishment and predict value of
risk model

Two validated machine learning algorithms, LASSO and SVM-
RFE, were utilized to pinpoint key feature genes linked to IPF. The
LASSO algorithm identified 19 feature genes (Figure 4A), while the
SVM-RFE algorithm identified six feature genes as biomarkers
(Figure 4B). Only the intersecting genes (PODNL1, PIGA) were
ultimately selected as biomarkers for IPF. Additionally, the selected
biomarkers showed good differential expression in the training sets,
showing decreased expression levels of PODNL1 and PIGA in the
IPF group (Figures 4C, D).

FIGURE 6
Gene Set Enrichment Analysis (GSEA): (A, B) The top 5 KEGG pathways enriched in the control group and IPF group. (C, D) The top 5 KEGG pathways
enriched in the PODNL1 group and PIGA group. PFDR < 0.05.
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FIGURE 7
In vivo and vitro experiments: (A) RT-qPCR analysis of PODNL1 and PIGA gene expression levels in A549 cells (con represents PBS-treated group,
treat represents BLM-treated group). (B)Western blot analysis and quantification of PODNL1 and PIGA protein levels in A549 cells. (C) IHC determination
of PODNL1 and PIGA expression in mouse lung tissues. (D) The overexpression efficiency of PODNL1 and PIGA were verified by qRT–PCR in A549 cells.
(E) The overexpression efficiency of PODNL1 and PIGA were verified by Western blot in A549 cells. (F, G) qRT-PCR was used to detect the effect of
PODNL1 and PIGA overexpression on the mRNA levels of Sftpc and Sftpa1 in A549 cells. (H, I)Western blot was used to detect the effect of PODNL1 and
PIGA overexpression on the expression levels of Sftpc and Sftpa1 in A549 cells. (J, K) qRT-PCR was used to detect the effect of PODNL1 and PIGA
overexpression on themRNA levels of Col1a1 and Fn in A549 cells. (L, M)Western blot was used to detect the effect of PODNL1 and PIGA overexpression
on the expression levels of Col1a1 and Fn in A549 cells. Scale bars = 50 µm *P < 0.05, **P < 0.01, *** P < 0.001.
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3.4 Diagnostic effectiveness of biomarkers

To further evaluate the diagnostic value of the identified genes in
IPF, ROC analysis was performed on the four key genes in both the
training and test sets. The results indicated that the four diagnostic
biomarkers identified by the machine learning algorithms exhibited
strong diagnostic capabilities in the training set. The AUC for
PODNL1 was 0.931 (95% CI 0.866–0.981) (Figure 5A), and the
AUC for PIGA was 0.882 (95% CI 0.772–0.964) (Figure 5B).
Furthermore, an extra dataset (GSE53845) was used to verify the
above result as a testing group. The AUC for PODNL1 was 0.881
(95% CI 0.753–0.978) (Figure 5C), and the AUC for PIGA was 0.669
(95% CI 0.487–0.831) (Figure 5D). As illustrated in the figures
above, all four genes exhibited strong discriminatory ability for
idiopathic pulmonary fibrosis.

3.5 Gene set enrichment analysis (GSEA)

To investigate the functional characteristics of the risk model,
this study performed the GO enrichment and KEGG pathway
analyses between the two groups by GSEA. The top five
pathways that are more prevalent in the control group include
Graft versus host disease, JAK-STAT signaling pathway, MAPK
signaling pathway, Terpenoid backbone biosynthesis, and Tight
junction (Figure 6A), while Chemokine signaling pathway,
Cytokine-cytokine receptor interaction, ECM receptor interaction,
Focal adhesion, and Leishmania infection enriched in the treatment
group (Figure 6B). Furthermore, to explore the roles of key genes in
biological functions, we conducted KEGG pathway for
PODNL1 and PIGA. In KEGG pathway analysis,
PODNL1 significantly enriched pathways including
Glycosaminoglycan biosynthesis heparan sulfate, Homologous
recombination, Focal adhesion, Progesterone mediated oocyte
maturation, Porphyrin and chlorophyll metabolism, and Primary
bile acid biosynthesis (Figure 6C). PIGA enriched pathways such as
Circadian rhythm - mammal, Terpenoid backbone biosynthesis,
Glycosaminoglycan biosynthesis heparan sulfate, Regulation of
autophagy, and Spliceosome (Figure 6D).

3.6 In vivo and vitro experiments

To enhance the reliability of our research findings, we developed
both animal and cell models. qRT-PCR results revealed a significant
decrease in the mRNA expression levels of PODNL1 and PIGA in
BLM-treated A549 cells (Figure 7A). This downward trend was
further confirmed by Western blot analysis, which showed reduced
protein expression levels of PODNL1 and PIGA in the same cell line
(Figure 7B). In the mouse model, IHC results highlighted a marked
reduction in the expression of PODNL1 and PIGA in the lung tissue
of IPF mice compared to the normal group (Figure 7C). Next, to
verify the biological effects of PODNL1 and PIGA in A549 cells, we
overexpressed the target genes respectively, and performed qRT-
PCR and Western blot to assess the transfection efficiency (Figures
7D, E). Epithelial-mesenchymal transition (EMT) is a key process
involved in the occurrence of IPF, characterized by insufficient
regeneration of epithelial cells and increased interstitial cells. We

found that overexpression of PODNL1 and PIGA can improve the
reduced levels of alveolar epithelial markers Sftpc and Sftpa1 caused
by BLM treatment (Figures 7F–I), while effectively inhibiting the
upregulation of EMT markers Collagen1a1 (Col1a1) and
Fibronectin (Fn) (Figures 7J–M). Collectively, our in vivo and
in vitro experiments further substantiate the role of
PODNL1 and PIGA genes in the pathogenesis of IPF, suggesting
their potential as biomarkers for disease diagnosis.

3.7 Immune infiltration

The infiltration status of 25 types of immune cells between
idiopathic pulmonary fibrosis group and control group were
assessed with CIBERSORT algorithm. The percentage of the
25 types of immune cells between idiopathic pulmonary fibrosis
group and control group was shown in the bar plot (Supplementary
Figure S1A). The correlation of 25 types of immune cells revealed
that Plasma cells was negatively related with Monocytes (r = −0.53),
RMSE was negatively related with Correlation (r = −0.98), whereas
RMSE was positively related to P-value (r = 0.53), P-value was
positively related with T cells regulatory (Tregs) (r = 0.67)
(Supplementary Figure S1B). The violin plot of the immune cell
infiltration difference demonstrated that patients with idiopathic
pulmonary fibrosis had a higher level of B cells memory, Plasma
cells, T cells CD4 naive, Macrophages M0, Macrophages M2 and
Mast cells resting compared with the control group
(Supplementary Figure S1C).

3.8 Correlation analysis between biomarkers
and immune cells

As indicated from the correlation analysis, PODNL1 was
positively correlated with Correlation, Macrophages Mo, Plasma
cells, B cells memory, etc., and negatively correlated with
Eosinophils, etc. (Supplementary Figure S2A). PIGA was
positively correlated with T cells CD4 memory resting,
Eosinophils, Dendritic cells activated, Neutrophils, etc., and
negatively correlated with T cells CD4 naive, etc. (Supplementary
Figure S2B). PODNL1 displayed a positive correlation with Plasma
cells (r = 0.28, p < 0.05), Monocytes (r = −0.33, p < 0.01),
Macrophages M0 (r = 0.3, p < 0.01), B cells naive (r = −0.24, p <
0.05), Correlation (r = 0.3, p < 0.01), Eosinophils (r = −0.39, p <
0.001), B cells memory (r = 0.24, p < 0.05), T cells follicular helper
(r = −0.24, p < 0.05), T cells CD4 memory resting (r = −0.25, p <
0.05), RMSE (r = − 0.25, p < 0.05), P-value (r = − 0.28, p < 0.05)
(Supplementary Figure S3A–K). PIGA displayed a positive
correlation with B cells memory (r = −0.35, p < 0.01), T cells
CD8 (r = −0.3, p < 0.01), T cells CD4 naive (r = −0.38, p <
0.001),Plasma cells (r = −0.26, p < 0.05), Macrophages M2
(r = − 0.27, p < 0.05), NK cells resting (r = 0.23, p < 0.05),
Neutrophils (r = 0.39, p < 0.001), Eosinophils (r = 0.49, p <
0.001), Mast cells resting (r = − 0.3, p = 0.01), T cells
CD4 memory resting (r = 0.54, p < 0.001), B cells naive (r =
0.25, p < 0.05), Dendritic cells activated (r = 0.44, p < 0.001)
(Supplementary Figure S3A–I). It can be concluded that
PODNL1 and PIGA were correlated with immune cells.
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4 Discussion

IPF is a progressive parenchymal lung disease that is challenging
to reverse once diagnosed. The lack of sensitive diagnostic tools for
early detection significantly hampers timely intervention (Richard
andDavid, 2019). Investigating potential biomarkers involved in IPF
pathogenesis could provide critical diagnostic insights during the
early stages of the disease and aid in monitoring its progression.
These findings will enable clinicians to identify reliable biomarkers
and offer novel perspectives for future clinical research and
applications in IPF diagnosis.

In this study, the GSE dataset was obtained from the GEO
database to identify DEGs between IPF and normal lung tissues. GO
and KEGG analyses were performed to explore the biological
functions and pathways associated with these DEGs. Through a
combination of LASSO logistic regression and SVM-RFE
algorithms, we identified two potential biomarkers, PODNL1 and
PIGA, for IPF. The diagnostic accuracy of these biomarkers was
evaluated using ROC curve analysis. Furthermore, immune cell
infiltration was analyzed using the CIBERSORT algorithm,
revealing the relationship between infiltrating immune cells and
the identified biomarkers. Expression levels of PODNL1 and PIGA
were further validated in cell and mouse models, providing
additional evidence for the robustness of our machine
learning analysis.

Previous studies have shown that PODNL1, a member of the
small leucine-rich proteoglycan family, is a potential tumor matrix-
mediated biomarker and is strongly associated with glioma
prognosis (Geyang et al., 2023; Shanqiang et al., 2023).
Additionally, PODNL1 expression is significantly linked to the
EMT pathway in bladder cancer (Xiao et al., 2022). PIGA, an
enzyme involved in GPI anchor biosynthesis, has been implicated
in juvenile hemochromatosis and paroxysmal nocturnal
hemoglobinuria (Gregor et al., 2021). While these biomarkers
have been characterized in other diseases, their high diagnostic
accuracy in both the training and testing sets of our model highlights
their potential utility as diagnostic targets for IPF. However, given
their involvement in multiple diseases, these findings suggest
potential shared pathophysiological mechanisms. Therefore,
further studies are needed to elucidate their specific roles in IPF
and to establish their value as disease-specific indicators.

In this study, the expression levels of PODNL1 and PIGA were
validated in vivo and in vitro. Notably, their expression levels were
significantly reduced in BLM-induced A549 cells and in lung tissues
of BLM-induced mouse models of IPF. These results underscore the
reliability of our prognostic model. Although the precise etiology of
IPF remains unclear and likely multifactorial, fibrosis is consistently
accompanied by innate and adaptive immune responses. Using
CIBERSORT, we observed significant alterations in 25 immune
cell subsets between IPF and normal tissues, further emphasizing
the role of immune responses in IPF pathogenesis. In conclusion,
identifying key genes involved in IPF pathogenesis not only
facilitates early diagnosis and prognosis but also lays the
groundwork for targeted therapeutic development. By identifying
genes closely linked to disease progression, clinicians can design
more effective treatment strategies and develop personalized
treatment plans for IPF patients.

Despite the significant contributions of this study, some
limitations remain. The molecular mechanisms underlying the
identified biomarkers in IPF have not been fully elucidated and
require further experimental validation. Additionally, as this study
did not include clinical patient samples, the diagnostic potential of
the identified biomarkers was assessed indirectly. Furthermore, the
relatively weak correlation observed between certain immune cells
and target genes indicates a need for larger cohorts to confirm these
findings and validate the relationship between target molecules and
immune responses experimentally. Future prospective studies are
essential to translate these findings into clinical practice and to
enhance our understanding of the molecular and immunological
mechanisms underlying IPF.

5 Conclusion

In summary, this study identified PODNL1 and PIGA as
potential biomarkers for the diagnosis of IPF and explored their
possible roles in its pathogenesis. These findings contribute to a
deeper understanding of the mechanisms underlying IPF and offer
promising avenues for developing novel diagnostic and therapeutic
strategies.
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