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Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive
malignancy characterized by a dismal prognosis. Treatment outcomes exhibit
substantial variability across patients, underscoring the urgent need for robust
predictive models to effectively estimate survival probabilities and therapeutic
responses in PDAC.

Methods:Metabolic and immune-related genes exhibiting differential expression
were identified using the TCGA-PDAC and GTEx datasets. A genetic prognostic
model was developed via univariable Cox regression analysis on a training cohort.
Predictive accuracy was assessed using Kaplan-Meier (K-M) curves, calibration
plots, and ROC curves. Additional analyses, including GSAE and immune cell
infiltration studies, were conducted to explore relevant biological mechanisms
and predict therapeutic efficacy.

Results: An 8-gene prognostic model (AK2, CXCL11, TYK2, ANGPT4, IL20RA,
MET, ENPP6, and CA12) was established. Three genes (AK2, ENPP6, and CA12)
were associated with metabolism, while the others were immune-related. Most
genes correlated with poor prognosis. Validation in TCGA-PDAC and
GSE57495 datasets demonstrated robust performance, with AUC values for 1-,
3-, and 5-year OS exceeding 0.7. The model also effectively predicted responses
to adjuvant therapy.

Conclusion: This 8-gene signature enhances prognostic accuracy and
therapeutic decision-making in PDAC, offering valuable insights for clinical
applications and personalized treatment strategies.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality, with a
5-year overall survival rate of merely 11% (Siegel et al., 2024). Late diagnosis due to the lack
of early symptoms means that most cases (about 80%) are unresectable at presentation (Ma
et al., 2019; McGuigan et al., 2018). Even with surgery, more than 80% of patients experience
recurrence or metastasis (Barnes et al., 2019; Huang et al., 2019). As a result, comprehensive
treatment following multidisciplinary management should be prioritized alongside surgical
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intervention. Additionally, a small percentage of patients
unexpectedly survive beyond 5 years, but the factors contributing
to this prolonged survival remain unknown.

Reprogramming cellular energy metabolism, a hallmark of
cancer, has garnered increasing attention over the past decade. In
pancreatic cancer, malignant cells extensively alter the metabolic
processing of key nutrients, including glucose, amino acids, and
lipids, to support their survival, proliferation, and growth (Halbrook
and Lyssiotis, 2017; Qin et al., 2020). A growing number of studies
have demonstrated that the metabolic characteristics of pancreatic
cancer present promising therapeutic opportunities for novel and
personalized treatments (Martinez-Outschoorn et al., 2017; Mehla
and Singh, 2020). For instance, Zheng et al. discovered that the
Fzd5-mediated Wnt/β-catenin signaling pathway in RNF43-mutant
PDAC regulates tumor growth in both in vitro and in vivo settings by
modulating cholesterol levels. Furthermore, they found that 25-
hydroxysterols could have therapeutic potential for PDAC by
blocking the fzd5-cholesterol interaction (Zheng et al., 2022).
Another study revealed that pancreatic cancer cells with low
expression of carbonic anhydrase 12 (CA12) can regulate the
oxidative stress response through the NF-κB signaling pathway,
making the cancer cells more susceptible to Auranofin treatment
(Deben et al., 2024). Additionally, an increasing number of studies
have demonstrated that T-cell-mediated immunotherapy can be
optimized by modulating cellular metabolism (Kishton et al., 2017).
Immune checkpoint inhibitors have also shown the ability to
enhance lymphocyte metabolism in tumors and augment their
antitumor effects. Therefore, considering the connection between
metabolism and immunotherapy, integrating metabolic modulation
into conventional immunotherapy is a viable strategy (Chang et al.,
2015; Sengupta et al., 2010).

Existing prognostic models, while helpful, fail to adequately link
genetic signatures to treatment efficacy. This study aims to develop a
robust model that predicts both prognosis and therapeutic
outcomes in PDAC.

Materials and methods

PDAC dataset collection

The TCGA database was utilized to retrieve the latest RNA
sequencing data and clinical follow-up information for 183 PDAC
patients (Supplementary Table S1). Corresponding mRNA
expression profiles and clinical data for 88 normal samples were
acquired from the Genotype-Tissue Expression (GTEx) database.

Human tissues

Tissue samples were collected from patients who underwent
surgery from January 2023 to March 2024 at The Third Affiliated
Hospital of Nanjing Medical University. The study protocol was
approved by the Institutional Ethics Review Board of the hospital.
Fifteen pairs of PDAC and their adjacent non-tumor tissues, totaling
30 cases, were selected for testing.

Establishment of the 8-gene signature

Only patients with a follow-up period of longer than 1 month
were included for the survival analysis. Prognostic genes were
identified using univariable Cox regression analysis (p < 0.001).
Patients were then randomized into training and test sets. Lasso Cox
regression analysis was used to further select prognostic genes for OS
in PDAC patients. The prognostic gene signature was then
constructed as a linear combination of the regression coefficients
of the lasso Cox regression model coefficients (β) and their mRNA
expression (Tibshirani, 1997; Wang et al., 2022). Risk score = (β
mRNA1 * mRNA1 expression level) + (β mRNA2 *
mRNA2 expression level) + (βmRNA3 * mRNA3 expression
level) +/+ (β mRNAn * mRNAn expression level). Patients
were classified into high- and low-risk groups based on optimal
risk score thresholds calculated using the “Survminer” R package.
The predictive value of prognostic genetic signature for OS was
assessed by the time-dependent ROC curve. Survival differences
between high- and low-risk groups were compared using K-M
survival curves combined with log-rank tests using the R package
(Heagerty et al., 2000). The predictive value of prognostic genetic
signature was then further investigated in the test cohort and the
full cohort.

External validation of the 8-gene signature

The GSE14520 dataset was downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Risk scores were calculated for
each included patient using the same prognostic gene model. Next,
ROC curves and K-M curves were used to test the predictive value of
prognostic gene signature.

Independent prognostic role of the
gene signature

To investigate whether prognostic genes could be independent
of other clinical parameters (including gender, age, tumor grade, and
TNM stage), Cox regression modeling method was used for
univariate and multivariate analyses. p < 0.05 was considered as
statistically significant difference.

Building and validating a
predictive nomogram

Incorporating all independent prognostic factors identified by
multivariate Cox regression analysis, a nomogram was constructed
to investigate the probability of 0.5-, 1-, and 2-year OS occurring in
PDAC (Iasonos et al., 2008). The calibration curve of the nomogram
was plotted to compare the nomogram prediction probabilities
against the observed rates. Decision curve analysis (DCA)
(Vickers and Elkin, 2006) was used to compare the nomogram
containing all factors with the nomogram containing only one
independent prognostic factor. Calculate the best model.
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Gene set enrichment analysis

To explore the underlying molecular mechanisms of the
constructed prognostic gene signature, GSEA (Gene Set
Enrichment Analysis) (Subramanian et al., 2005) was used to
look for KEGG enrichment terms, and FFDR < 0.05 was
considered significantly enriched.

Estimation of tumor immune infiltration

The relative proportions of different immune cell infiltrates were
estimated using the deconvolution algorithm CIBERSORT (Binbin
et al., 2018). The number of permutations was set to 1000, and p <
0.05 was considered significant.

Immunohistochemical staining

Tissue sections were incubated with affinity-purified anti-
AK2 antibody (Absin Bioscience Inc., Shanghai, China,
abs111556) for 2 h. The antigen-antibody complexes were
visualized using diaminobenzidine (DAB) as the chromogen.
Following DAB staining, the sections were counterstained
with hematoxylin to visualize cell nuclei. The slides
were then dehydrated through a graded ethanol series,
cleared in xylene, and mounted with coverslips.
Quantitative analysis of AK2 staining was performed using
ImageJ software.

Statistical analysis

All the statistics, except descriptive analysis, were conducted by
R language (version 4.2.1) Data are presented as mean ± SD.
Comparisons between groups were made using Student’s t-test or

the Mann-Whitney U Test. When the p < 0.05, results were
considered statistically significant.

Results

Identification of differentially expressed
metabolic and immune related gene and
molecular subtypes

The study followed the flow chart outlined in Figure 1. A total of
1372 metabolic and immune-related genes displayed significant
differences in mRNA expression levels between tumor tissues
(n = 179) and normal tissues (n = 92) (Supplementary Table S1).
The corresponding heatmap can be seen in Supplementary Figure
S1. Among these genes, 1023 were found to be significantly
upregulated and 349 were found to be significantly
downregulated in mRNA levels (Figure 2A).

Based on indicators such as cophenetic, dispersion, and
silhouette, it was determined that the optimal number of clusters
for classification was three (Figure 2B). Supplementary Figure S1
illustrates the expression of relevant genes within these three
subclasses.

Furthermore, the prognostic relationship between the three
groups was analyzed. The results indicated that the C2 subtype
exhibited the most favorable prognosis. Meanwhile, there was no
statistically significant difference in the prognosis between the
C1 and C2 subtypes. However, there was a significant difference
observed among the three groups in terms of both progression-free
survival (PFS) and OS (p < 0.05; Figures 2C, D).

To assess the tumor microenvironment of the three subtypes,
scoring was performed using ESTIMATE (Figure 2E). The results
revealed significant discrepancies in immune and stromal scores
between the three subtypes, with the C2 subtype displaying the
lowest scores in both categories. Additionally, the infiltration of
immune cells within the three subtypes was analyzed using the MCP

FIGURE 1
The flow chart showing the scheme of this study.
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FIGURE 2
Identification of differentially expressed metabolic and immune related gene and molecular subtypes (A) Volcano plot showing significant
differential genes, |logFC| > 1.0, fdr < 0.05. (B)NMF cluster analysis of typing heatmaps. (C,D) K-M survival curves of OS (C) and PFS (D) for different typing
samples. (E,F) Violin plots of tumour microenvironment scores (E) and differences in immune cell infiltration (F) for different typing, green represents C1,
red represents C2, blue represents C3, *p < 0.05, **p < 0.01, ***p < 0.01.
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counter algorithm (Figure 2F). The findings showed that the
C2 subtype was primarily infiltrated by centrocytes and
endothelial cells, while B lymphocytes, CD8+ T cells, and
fibroblasts predominantly infiltrated the C1 and C3 subtypes.

Construction and validation of the
prognostic gene signature

Patients with a follow-up period longer than 1 month were
included in the follow-up survival analysis. These patients were then
randomly assigned in a 7:3 ratio to a training set (n = 126) and a test
set (n = 53). The baseline characteristics of the patients are presented
in Table 1. No significant differences in clinical parameters were
found between the training and test sets. Univariate Cox regression
models were used to identify genes that were significantly associated
with OS. Subsequently, lasso regression analysis was performed on
the training set to further narrow down the genes of interest (Figures
3A, B). Eight genes were identified: AK2, CXCL11, TYK2, ANGPT4,

IL20RA, MET, ENPP6, and CA12 (Figure 3C). These genes were
then used to construct a prognostic gene signature.

The risk score for each patient, based on the expression levels of
these eight genes, was calculated. Patients were stratified into high-
risk and low-risk groups based on the optimal risk score threshold
identified through the “Survminer” R package. Notably, the high-
risk group exhibited markedly worse OS compared to the low-risk
group, underscoring its association with poor prognosis (Figure 3D).
The prognostic ability of the 8-gene signature was evaluated using
ROC curves and K-M curves for 1-, 3-, and 5-year survival in both
the test set and the training set. The area under the ROC curve
(AUC) for the training set was 0.715, 0.963, and 0.941, respectively,
while for the test set, the AUCs were 0.872, 0.852, and 0.944 (Figures
3D, E). To validate the predictive value of the prognostic model, the
risk scores were calculated for patients in the GSE57495 dataset
(Supplementary Table S2) using the same formula. Consistent with
the results from the TCGA cohort, patients in the high-risk group
had significantly poorer OS compared to those in the low-risk group
(p = 0.011). The AUCs for 1-, 3-, and 5-year OS in the

TABLE 1 Baseline characteristics of TCGA-PDAC patients.

Covariates Type Total Test Train p-value

Age ≤65 94 (52.81%) 30 (56.6%) 64 (51.2%) 0.6197

Age >65 84 (47.19%) 23 (43.4%) 61 (48.8%)

Gender FEMALE 80 (44.94%) 29 (54.72%) 51 (40.8%) 0.1231

Gender MALE 98 (55.06%) 24 (45.28%) 74 (59.2%)

Grade G1 31 (17.42%) 13 (24.53%) 18 (14.4%) 0.3503

Grade G2 95 (53.37%) 26 (49.06%) 69 (55.2%)

Grade G3 48 (26.97%) 14 (26.42%) 34 (27.2%)

Grade G4 2 (1.12%) 0 (0%) 2 (1.6%)

Grade unknow 2 (1.12%) 0 (0%) 2 (1.6%)

Stage Stage I 21 (11.8%) 6 (11.32%) 15 (12%) 0.9959

Stage Stage II 147 (82.58%) 43 (81.13%) 104 (83.2%)

Stage Stage III 3 (1.69%) 1 (1.89%) 2 (1.6%)

Stage Stage IV 4 (2.25%) 1 (1.89%) 3 (2.4%)

Stage unknow 3 (1.69%) 2 (3.77%) 1 (0.8%)

T T1 7 (3.93%) 2 (3.77%) 5 (4%) 0.9713

T T2 24 (13.48%) 6 (11.32%) 18 (14.4%)

T T3 142 (79.78%) 42 (79.25%) 100 (80%)

T T4 3 (1.69%) 1 (1.89%) 2 (1.6%)

T unknow 2 (1.12%) 2 (3.77%) 0 (0%)

M M0 80 (44.94%) 28 (52.83%) 52 (41.6%) 1

M M1 4 (2.25%) 1 (1.89%) 3 (2.4%)

M unknow 94 (52.81%) 24 (45.28%) 70 (56%)

N N0 49 (27.53%) 13 (24.53%) 36 (28.8%) 0.7265

N N1 124 (69.66%) 38 (71.7%) 86 (68.8%)

N unknow 5 (2.81%) 2 (3.77%) 3 (2.4%)
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FIGURE 3
Construction and validation of the prognostic gene signature (A) Trajectories of the respective variables, with the horizontal coordinates indicating
the logarithmic values of the independent variable lambda and the vertical coordinates indicating the coefficients of the independent variables. (B)
Confidence intervals at different values of lambda. (C) Histogram of the 6-gene prognostic model with vertical coordinates indicating prognostic genes
and horizontal coordinates indicating gene coefficients. (D–F) Time-dependent ROC analyses and Kaplan-Meier analyses for TCGA-train (D),
TCGA-test (E), and GSE57495 (F).
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FIGURE 4
Independent prognostic role of the model and building a predictive nomogram (A, B) Forest plots of univariate (A) and multivariate (B) Cox
regression analyses. (C)Nomogram based on age, sex, age, TNM stage, and risk score. (D)Correction curves for nomograms predicting 6-month, 1-year,
and 2-survival rates. (E) AUC values for different clinical features, risk scores, and nomograms. (F) Decision curve analysis (DCA) for different clinical
characteristics, sub-risk scores, and Nomogram, with the x-axis representing the threshold probability of mortality and the y-axis representing the
net benefit.

Frontiers in Genetics frontiersin.org07

Ni et al. 10.3389/fgene.2024.1475378

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1475378


FIGURE 5
Differentiating performance of the prognostic signature (A) K-M curves of sub-risk score for patients with stage I-IIA pancreatic cancer. (B) K-M
curves of sub-risk score for patients with stage IIB-IV pancreatic cancer. (C, D) Differences in prognostic models with age and race were not statistically
significant. (E, F) Statistically significant differences in prognostic models associated with grading and T-staging.
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FIGURE 6
Gene set enrichment analysis and validation of the AK2 (A) GO-based GSEA analysis for the high-risk group. (B) Representative
immunohistochemical images. (C) Statistical analysis showing relative levels of AK2 in 15 paired tumor and adjacent samples. Statistical analysis was
performed by paired Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.01.
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GSE57495 dataset were 0.638, 0.808, and 0.869, respectively
(Figure 3F). In summary, this 8-gene signature accurately
predicts overall survival in patients with PDAC.

Independent prognostic role of the model
and building a predictive nomogram

To determine the independence of this model in clinical
application, we utilized clinical information from the TCGA
cohort. We calculated the associated hazard ratios (HRs), 95%
confidence intervals (CIs) of HRs, and p-values through
univariate and multivariate Cox regression analyses. We
systematically analyzed clinical factors including patient age,
gender, grade, clinical stage, and risk score. The results of the
univariate Cox regression analysis indicated that clinical factors
such as risk score, age, and grade were independent prognostic
factors for OS (Figure 4A). However, the multivariate Cox
regression analysis showed that only risk score (HR = 1.085,
95% CI 1.060–1.112, p < 0.05) and age were independent
prognostic risk factors (Figure 4B). These findings suggest that
this model demonstrates good predictive performance in clinical
applications.

Next, we constructed a nomogram (Figure 4C) to predict
6-month, 1-year, and 2-year OS in PDAC patients. The
nomogram incorporated the patient age, gender, grade, clinical
stage, and risk score. The calibration plot indicated that the
nomogram (combined model) may slightly underestimate or
overestimate mortality. The C-index for the combined model was
0.769 (95% CI 0.688–0.851; Figure 4D) and the AUC for the
nomogram was 0.864. Comparatively, the combined model
exhibited the largest AUC when compared to nomograms that
only included age, sex, grading, TNM, or prognostic gene
signature (Figure 4E). The DCA showed that the combined
model for OS offered the best net benefit (Figure 4F). In
conclusion, these results suggest that the nomogram constructed
by the combined model may be the most effective tool for predicting
short-term survival in PDAC patients. This stands in contrast to
nomograms constructed using a single prognostic factor and may
provide valuable insights for clinical management.

Differentiating performance of the
prognostic signature

The risk scores of PDAC patients with different clinical
features were compared to explore the diagnostic capability of
the prognostic signature. Both early and advanced stage patients
with high-risk scores had significantly poorer OS (p < 0.001;
Figures 5A, B). Unlike age and gender, patients with a higher
tumor grade had significantly higher risk scores (Figures 5C–E).
Moreover, subgroup analyses of different stages also demonstrated
modest diagnostic power (Figure 5F). These results collectively
indicate the great potential of this 8-gene signature in the
differential diagnosis of PDAC.

Gene set enrichment analysis and validation
of the AK2

To investigate the potential molecular mechanisms of the
signature, we performed GSEA by comparing the high-risk group
with the low-risk group in the TCGA cohort. In the high-risk
group, the enriched GO terms primarily focused on cell
proliferation and differentiation (Figure 6A). Among the eight
genes in this model, AK2 plays a vital role in AK-AMP-AMPK
signaling, cell proliferation, and energy transfer in cellular
processes. Furthermore, studies have shown that
AK2 overexpression may influence the sensitivity of tumor
cells to adjuvant therapy (Cai et al., 2021). Consequently, we
chose AK2 for further validation based on the results of our
bioinformatics analysis. As shown in Figures 6B, C, the expression
of AK2 was significantly higher in pancreatic cancer tissues
compared to para-carcinoma tissues (p < 0.05). However, no
KEGG terms showed significant enrichment. Conversely, in the
low-risk group, the enriched KEGG pathways and GO terms were
mainly associated with intracellular signaling and primary
immunodeficiency, such as steroid hormone biosynthesis and
calcium signaling pathways (Supplementary Figure S2A–B).

Relationship between risk scores and
immune cell infiltration and response to
adjuvant chemotherapy

CEMIP2 and NDUFB8 have been shown to be associated with
sensitivity to adjuvant chemotherapy in patients with PDAC
(Jiang et al., 2024). Further analysis of the relationship
between the high-risk and low-risk groups and these two genes
revealed that CEMIP2 expression was significantly higher in the
low-risk group compared to the high-risk group in advanced
PDAC patients (Figure 7A). Conversely, the expression level of
NDUFB8 did not show a significant difference between the two
groups. The IPS score with CTLA4 blockers, IPS with CTLA4, and
PD1 blockers in the low-risk group was significantly higher than
in the high-risk group (Figure 7B). Because of the differences in
IPS scores between high-risk and low-risk group, we further
analyzed the relationship between the risk score and immune
cell infiltration to explore the possible reasons for this difference
(Figure 7C). In the TCGA cohort, the abundance of neutrophils
was significantly higher in the high-risk group, while endothelial
cell and T-cell infiltration were significantly reduced
(Supplementary Figure S3A). It is well known that the
expression levels of immune checkpoint-related genes are
closely related to the clinical efficacy and prognosis of
immunotherapy in PDAC patients. Therefore, we also
investigated the relationship between the risk score and
checkpoint-related genes (Figure 7D). CD274, LOXL2, MSH2,
POLD3, and POLE2 expression were significantly elevated in the
high-risk group (Supplementary Figure S3B). In summary, this
risk model can predict the effect of adjuvant therapy in advanced
PDAC patients to some extent.
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Comparison with other prognostic models

Three prognostic gene models of pancreatic cancer
(Feng et al., 2021; Gu et al., 2021; Luo et al., 2021) were
chosen to assess their prognostic ability by comparing the

AUC and C-index over different time periods. Table 2
demonstrates that this model had the highest AUC in the
ROC curves for 1-, 3-, and 5-year OS. Likewise, when
comparing the C-index of the four models, the new model
outperformed the other three models (Table 2).

FIGURE 7
Relationship between risk scores and immune cell infiltration and response to adjuvant chemotherapy (A) Difference in CEMIP2 in high and low risk
groups. (B) IPS scores in high and low risk groups, *p < 0.05, **p < 0.01, ***p < 0.01. (C, D) Correlation of risk score with immune cells (C) and immune
checkpoint-associated genes (D); red represents positive correlation and blue represents negative correlation.

TABLE 2 Comparison with other prognostic models.

Models 1-year AUC 3-year AUC 5-year AUC C-index

IMRG 0.828 0.881 0.947 0.774

Feng 0.723 0.687 0.8 0.672

Luo 0.744 0.757 0.745 0.698

Gu 0.578 0.707 0.803 0.582
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Discussion

PDAC is a highly lethal disease that exhibits significant
molecular heterogeneity. Currently, the TNM staging system
serves as the primary means for prognostic assessment of PDAC
patients. However, this system is insufficient in accurately predicting
treatment effectiveness and survival outcomes, particularly among
patients in the same stage (van Roessel et al., 2018). The variability
within staging can be attributed to tumor heterogeneity. With the
advancement of precision medicine in cancer treatment, addressing
molecular heterogeneity has become a critical focus in cancer
research (Juiz et al., 2019; McGranahan and Swanton, 2017).
Thus, there is an urgent need to translate genetic and genomic
studies of tumors into prognostic genetic models for clinical use.

In this study, we have developed and validated an 8-gene
signature that has a strong prognostic capacity for predicting OS
in PDAC. These eight genes are unique and do not overlap with any
other prognostic genes in PDAC. To begin, we selected a total of
2,638 genes related to metabolism and immunity from the TCGA
and GTEx cohorts. From this group, we identified 1,372 genes that
showed significant differential expression at the mRNA level.
Subsequently, we performed univariate Cox regression analysis to
identify the eight genes that best predicted OS in the training cohort.
The AUC values for our model were equal to or greater than 0.7,
indicating good prognostic prediction performance not only in the
TCGA cohort, but also in the GSE57495 cohort. The high accuracy
of this risk model in predicting OS suggests that it can serve as a
valuable supplement to the existing TNM staging system for
prognostic assessment and treatment decision-making.
Additionally, when compared to previous genetic prognostic
models for PDAC, the model demonstrated higher AUCs in the
1-, 3-, and 5-year ROC curves. This indicates that this model has
better predictive ability and accuracy compared to previous models.

Adenylate kinase (AK) is highly conserved in a wide range of
organisms. It is a key enzyme in the monitoring of homeostatic
metabolism of cellular adenine nucleotides (Klepinin et al., 2020).
Additionally, it plays a crucial part in AK - AMP - AMPK signaling,
cell cycle regulation, cell proliferation, and energy transfer during
cellular processes, including ATP distribution from mitochondria.
Growing evidence suggests that the AK isoform network also
controls several cellular processes such as cell motility and cell
differentiation (Panayiotou et al., 2014). Adenylate kinase 2 (AK2) is
located in the space between the membrane and the slit and is
essential for ATP export and mitochondrial nucleotide exchange
(Dzeja and Terzic, 2009). A study discovered that the expression of
AK2 is upregulated in metastatic pancreatic endocrine tumors,
leading to tumor formation (Hansel et al., 2004; Kim et al.,
2014). Another study showed that AK2 overexpression activates
the TGF-β/Smad3/Smad2/Smad4 signaling pathway, enhancing
invasion and affecting the effectiveness of adjuvant therapy
through EMT (Cai et al., 2021). Additionally, AK2 has been
shown to regulate the survival, proliferation, and effector
functions of immune cells by maintaining cellular energetic
homeostasis through the conversion of ATP and AMP to
adenosine diphosphate. It is crucial for B cell activation and
survival and may serve as a potential target for new therapeutic
approaches in which B cells play a central role (Campos Codo and
Moraes-Vieira, 2020; O’Neill et al., 2016; Six et al., 2015). Based on

these findings, AK2 has been selected for further study in this
research. Immunohistochemistry of collected pathological section
specimens confirmed that the expression level of AK2 is increased in
PDAC compared to normal tissues. However, the specific role and
mechanism of AK2 in PDAC still require verification through
additional experiments.

For patients with PDAC, it is crucial to identify predictive
biomarkers that can maximize survival benefits and minimize
side effects. This study aimed to determine whether an 8-gene
signature score could assist in the development of personalized
treatments for PDAC patients. Alongside surgery, adjuvant
chemotherapy is a vital treatment option for PDAC patients (Xu
et al., 2016). A study conducted by Jiang et al. discovered a strong
correlation between DUFB8 and CEMIP2 and the sensitivity to
adjuvant chemotherapy. These findings may also apply to
neoadjuvant chemotherapy in general (Jiang et al., 2024). In this
study, we observed that the expression of CEMIP2 was significantly
higher in the low-risk group compared to the high-risk
group. According to Jiang’s research, this suggests that the low-
risk group exhibited greater sensitivity to adjuvant chemotherapy,
particularly to gemcitabine. On the other hand, the expression level
of NDUFB8 did not show a significant difference between the two
groups. This may be attributed to several factors: the cohorts in this
study were relatively small, and there may be differences in patient
composition-such as racial composition-between this study and the
cohort used in Jiang’s research. Consequently, patients with lower
PDAC scores may experience better outcomes with adjuvant
chemotherapy than those with higher scores.

In addition to chemotherapy and radiotherapy, immunotherapy
and targeted therapies are emerging as important strategies for
treating cancer (Colli et al., 2017; Lee et al., 2018; Sung et al.,
2021; Sanmamed and Chen, 2019). However, while
immunotherapies have been successful in treating other types of
cancer, they have not been as effective in pancreatic cancer
treatment (Akce et al., 2018; Feng et al., 2017). Research has
shown that tumor-infiltrating lymphocytes (TINs) in the tumor
microenvironment play a role in promoting tumors and metastasis
by suppressing effector T cells and natural killer cells. This suggests
that a decrease in the number of TINs may overwhelm anticancer
immunity in the PDAC and suggests that it can be used to predict
immunotherapy response (Li et al., 2020; Veglia et al., 2021; Zhao
et al., 2023) ]. In the TCGA cohort, it was found that the high-risk
group had a significantly higher abundance of neutrophils, while the
infiltration of endothelial cells and T cells was significantly reduced.
Additionally, the high-risk group showed significantly elevated
expression of immune checkpoint-related genes CD274, LOXL2,
MSH2, POLD3, and POLE2, whereas the low-risk group did not
show significant expression of these genes. CD274, also known as
PD-L1 (programmed death-ligand 1), is a transmembrane protein
encoded by the CD274 gene. It plays a critical role in immune system
regulation by binding to its receptor PD-1 (programmed death-1)
on T cells. The expression level of CD274 is often used as a potential
biomarker to predict the efficacy of patients on PD-1/PD-
L1 inhibitors (Gou et al., 2020). Lysyl oxidase-like 2 (LOXL2) is
a secreted enzyme involved in extracellular matrix (ECM)
remodeling through the cross-linking of collagen and elastin. A
Study has shown that LOXL2 promotes fibrosis and enhances
immune escape in PDAC, which is an important factor limiting
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the effectiveness of immunotherapy (Alonso-Nocelo et al., 2023).
MSH2, POLD3, and POLE2 are all involved in DNA repair and are
often used as markers to predict the efficacy of ICIs. In summary, the
prognostic model developed in this study can be useful in guiding
personalized immune therapy. For patients with advanced
pancreatic cancer, the low-risk subgroup showed significantly
higher IPS scores when treated with CTLA4 blockers alone or a
combination of CTLA4 and PD1 blockers, compared to the high-
risk group. This indicates that the low-risk subgroup may respond
better to immunotherapy with these agents. In summary, this model
not only has the potential to predict patients’ sensitivity to adjuvant
chemotherapy, but also to predict their responsiveness to
immunotherapy to some extent. This information can assist
clinicians in formulating more optimal individualized treatment
strategies.

To further understand why the 8-gene signature is linked to a
poor prognosis, we conducted an analysis on functional annotation
and pathway enrichment. We found that several oncogenic
pathways, which are known to be involved in tumor progression,
chemoresistance, and immune cell infiltration, were significantly
enriched. These results shed light on how the risk scores can impact
patient survival and overall outcomes.

Despite the improved prediction of OS compared to previous
models and the ability to predict treatment efficacy to some extent,
this study is still limited by its retrospective data and several other
factors. First, the clinical utility of genetic prognostic models for
PDACmanagement necessitates validation in additional prospective
studies. Second, the relatively small cohort size in this study warrants
confirmation of findings in larger, more diverse populations. Finally,
further in vivo and in vitro investigations are essential to elucidate
the biological functions and underlying mechanisms of these eight
genes, with a particular focus on AK2 in PDAC tumorigenesis.
Follow-up studies will be conducted to build upon these findings in
future research.

In conclusion, this study introduces an 8-gene prognostic model
that enhances predictions of OS and potential response to adjuvant
chemotherapy and immunotherapy. We have conducted an initial
investigation into the clinical significance and biological relevance of
the model, which can contribute to personalized treatment decision-
making. However, the predictive accuracy of this prognostic model
should be verified in larger cohorts and prospective studies, and
further improved through additional relevant in vitro or in vivo
experiments.
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