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Small cell carcinoma of the esophagus (SCCE) is a rare and
aggressively progressing malignancy that presents considerable clinical
challenges.Although chemotherapy can effectively manage symptoms during
the earlystages of SCCE, its long-term effectiveness is notably limited, with
theunderlying mechanisms remaining largely undefined. In this study,
weemployed single-cell RNA sequencing (scRNA-seq) to analyze SCCE
samplesfrom a single patient both before and after chemotherapy treatment.
Our analysisrevealed significant cellular plasticity and alterations in the
tumormicroenvironment’s cellular composition. Notably, we observed an
increase intumor cell diversity coupled with reductions in T cells, B cells, and
myeloid-likecells. The pre-treatment samples predominantly featured carcinoma
cells in amiddle transitional state, while post-treatment samples exhibited an
expandedpresence of cells in terminal, initial-to-terminal (IniTerm), and
universally alteredstates. Further analysis highlighted dynamic interactions
between tumor cells andimmune cells, with significant changes detected in
key signaling pathways, suchas TIGIT-PVR and MDK-SDC4. This study
elucidates the complex dynamics of cellplasticity in SCCE following
chemotherapy, providing new insights and identifyingpotential therapeutic
targets to enhance treatment efficacy.
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Introduction

Esophageal cancer is a leading cause of morbidity and mortality
among gastrointestinal malignancies globally (Lagergren et al., 2017;
GBD 2017 Oesophageal Cancer Collaborators (2020); Yang et al.,
2024). Small cell carcinoma of the esophagus (SCCE), a particularly
virulent subtype, represents only 0.4%–2.8% of all esophageal cancer
cases (Wang et al., 2018; Ji et al., 2020). SCCE is distinguished by its
rapid progression and pronounced predisposition for early
metastasis, frequently presenting with extensive metastatic spread
at diagnosis, which significantly restricts treatment options and
outcomes. The median survival time post-diagnosis is merely
8–13 months, indicative of a severe prognosis for affected
individuals (Chen et al., 2011). Furthermore, survival rates are
bleak, with the majority of patients dying within 2 years (Chen
et al., 2011; Ji et al., 2020; Zemerly et al., 2023). Treatment protocols
for SCCE are largely adapted from those established for small cell
lung cancer (SCLC) (Wang et al., 2019) and although initial
chemotherapy responses are initially promising, they are
generally fleeting, with rapid recurrence as a frequent
consequence. The reduced efficacy of follow-up treatments
exacerbates the challenge of managing SCCE, underscoring the
urgent need for advanced understanding and development of
more effective therapeutic strategies (Bennouna et al., 2000;
Pantvaidya et al., 2002; Wu et al., 2024).

Cancer cell plasticity, defined as the capacity of cancer cells to
alter their phenotypic traits and behaviors in response to
environmental stimuli, plays a pivotal role in oncogenesis and
cancer progression (Marjanovic et al., 2020; Salcher et al., 2022).
Chemotherapy, a key therapeutic intervention, can induce marked
phenotypic changes in cancer cells, including alterations in
morphology, size, and surface marker expression (Pomeroy et al.,
2022; Lyman et al., 2014). These changes often lead to a transition
towards more stem-like states, which can enhance resistance to
therapeutic agents and facilitate metastatic spread (Han et al., 2022).
Despite considerable research, the specific impact of chemotherapy
on the plasticity of ESCC cells has not been sufficiently explored.
Additionally, the tumor microenvironment (TME) significantly
influences cancer cell plasticity. Post-chemotherapy, modifications
in both the cellular composition and the extracellular matrix of the
TME can convey signals that promote survival, adaptation, and
invasiveness of the remaining cancer cells (Wang et al., 2019;
Hinshaw and Shevde, 2019; Bader et al., 2020). Recent studies
have demonstrated that chemotherapy can trigger significant
immunological shifts within the TME, such as the proliferation
of regulatory T cells and an increase in the expression of immune
checkpoint molecules like TIGIT and PD-L1 (20–22). These
findings underscore the dual role of the TME in both mediating
therapeutic responses and facilitating resistance. However, the
precise characteristics and dynamics of the TME in SCCE remain
poorly understood.

Recent advancements in single-cell transcriptomics have
substantially enhanced our understanding of cancer’s cellular
heterogeneity, the oncogenic mechanisms that drive its
progression, and the immunosuppressive landscape of the TME
(Krämer et al., 2020). For instance, single-cell analyses have revealed
previously unrecognized tumor cell states linked to therapy
resistance in breast cancer and have elucidated complex

interactions between cancer cells and immune cells within the
TME (Fang et al., 2024). In this study, we explore the cellular
dynamics within esophageal small cell carcinoma (SCCE) following
chemotherapy with irinotecan and cisplatin. Our results
demonstrate significant plasticity in SCCE cells, marked by
notable reductions in T cells, B cells, and myeloid-like B cells
after treatment. Additionally, we detail the intricate interactions
between tumor cells and the immune components of the TME in
SCCE, thereby deepening our understanding of the tumor’s adaptive
responses to chemotherapeutic interventions.

Methods and materials

Sample collection and preparation

Esophageal carcinoma specimens, comprising both pre-
treatment and post-treatment paired samples, were procured
from a 66-year-old male diagnosed with small cell carcinoma
of the esophagus (SCCE). The diagnosis was initially established
via esophagogastroduodenoscopy, which identified a significant
lesion located between 24 and 28 cm from the incisors on the
anterior side of the esophagus. The lesion displayed cauliflower-
like erosion and spanned approximately one-third of the
esophageal circumference. Histopathological examination
confirmed the lesion as small cell carcinoma, staged as T4N +
M0, consistent with Stage III disease. All procedures performed in
the study were approved by the Ethics Committee of Guangdong
Provincial People’s Hospital (Ethics Approval Number: KY-Z-
2021-507-02).

Treatment regimen and response
evaluation

From 19 September 2022, to 17 January 2023, the patient
received five cycles of chemotherapy comprising irinotecan and
cisplatin. A CT scan conducted on 31 October 2022, demonstrated a
Partial Response (PR) to the treatment. On 15 February 2023, the
treatment strategy was augmented to include concurrent
chemoradiation therapy, utilizing volumetric modulated arc
therapy (VMAT) which delivered a total radiation dose of 41 Gy
across 23 fractions to the planning clinical target volume (PCTV),
with an additional 20 Gy administered over 10 fractions targeting
the planning gross tumor volume (PGTV). The chemoradiation
regimen was complemented by two cycles of etoposide and
lobaplatin.

Continued surveillance through a CT scan on 12 May 2023,
confirmed the maintenance of PR. Subsequently, from 13 May 2023,
to 27 September 2023, the patient underwent seven cycles of
teriparatide monoclonal antibody therapy. Despite these extensive
therapeutic efforts, a CT scan on 27 September 2023, indicated
Progressive Disease (PD). The patient’s progression-free survival
(PFS) was recorded at 11 months.

Despite the initial benefits from the comprehensive treatment
strategy, the patient’s health deteriorated rapidly following disease
progression, resulting in an overall survival (OS) of
only 14 months.
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Immunofluorescence staining

Formalin-fixed, paraffin-embedded (FFPE) tissue sections
underwent antigen retrieval using citrate buffer (pH 6) in a
microwave oven for 30 min following deparaffinization.
Subsequent to rinsing with phosphate-buffered saline (PBS), the
sections were permeabilized and blocked with a solution of Tris-
buffered saline (TBS) containing 0.3% Triton X-100% and 5%
donkey serum (D-TBST) for 1 h at room temperature. The tissue
sections were then incubated overnight at 4°C with primary
antibodies diluted in D-TBST solution.

Post-primary antibody incubation, the sections were
washed thrice with TBS containing 0.05% Tween-20,
followed by incubation with the secondary antibody and
Hoechst stain (1:1,000) diluted in D-TBST for 1.5 h at room
temperature. Primary antibodies used included CD3 (ab16669)
and CD68 (ab955).

scRNA-seq library preparation and
sequencing

Single-cell suspensions were derived from the collected samples
through a dual process of enzymatic digestion and mechanical
dissociation, meticulously designed to preserve cellular integrity
and viability. These prepared cells were subsequently processed
utilizing the 10x Genomics Chromium Single Cell 3′platform,
adhering stringently to the manufacturer’s protocols. The
resulting libraries were sequenced using an Illumina NovaSeq
6000 system, generating high-throughput, paired-end reads of
150 base pairs each.

Initial quality control and data integration

The scRNA-seq datasets from the pre-treatment and post-
treatment samples were initially uploaded for analysis. We
conducted rigorous quality control using the Seurat package
(version 5.0.3) within the R programming environment. This
phase involved stringent filtering to exclude low-quality cells and
genes from the datasets. The quality control criteria included:
(Lagergren et al., 2017): exclusion of cells with fewer than 200 or
more than 10,000 detected genes (nFeature_RNA) to eliminate low-
complexity cells and potential multiplets; (GBD 2017 Oesophageal
Cancer Collaborators, 2020); removal of cells with mitochondrial
gene content exceeding 20% (percent.mt) or those with low unique
molecular identifier (UMI) counts (below 200) to eradicate low-
quality or stressed cells. Data quality was further evaluated using
scatterplots (nCount_RNA vs. percent. mt, and nCount_RNA vs.
nFeature_RNA) and violin plots of nFeature_RNA, nCount_RNA,
and percent. mt.

Following the filtering process, datasets were normalized
employing the “LogNormalize” method with a scale factor of
10,000. Highly variable genes were identified using the variance
stabilizing transformation (VST) method, selecting the top
5,000 features. For comparative analyses, the datasets were
integrated using anchor-based methods (FindIntegrationAnchors
and IntegrateData) across 30 dimensions.

Data normalization and integration

Data normalization across the datasets was performed using the
“LogNormalize” method. To effectively integrate the pre-treatment
and post-treatment datasets, integration anchors were established
based on anchor genes identified within each dataset. Utilizing these
anchors, the datasets were seamlessly integrated, with meticulous
attention to correcting batch effects throughout this process.

Dimensionality reduction and clustering

Dimensionality reduction of the integrated scRNA-seq data was
achieved using Principal Component Analysis (PCA). The initial
computation included the first 50 principal components. To
ascertain the optimal number of components to retain for further
analysis, we employed both the JackStraw method and the Elbow
plot, ensuring robustness in subsequent analyses.

For visual representation of the reduced-dimensional data, we
utilized two techniques: Uniform Manifold Approximation and
Projection (UMAP) and t-distributed Stochastic Neighbor
Embedding (t-SNE). UMAP calculations were specifically
performed using the first 20 principal components, which
provided a clear visualization of the underlying data structure.

Cell clustering was executed using the Louvain algorithm, as
implemented in the Seurat package. To determine the most
appropriate clustering resolutions, we systematically evaluated
outcomes based on UMAP visualizations, clustree analysis, and
marker gene expression heatmaps. The clustree method was
employed to identify a suitable range of resolutions, while UMAP
plots and heatmaps were used to validate biologically meaningful
distinctions between clusters. Following this comprehensive
assessment, a resolution of 1.1 was selected for the initial
clustering, facilitating robust segregation of cell populations. This
resolution allowed for the detailed clustering of cells, with cluster
compositions in both pre-treatment and post-treatment samples
analyzed and depicted using bar plots.

Additionally, specific cell populations—including epithelial
cells, T cells, and myeloid cells—were isolated for sub-clustering
to further explore cellular heterogeneities. The resolutions for sub-
clustering were optimized as follows: 0.6 for epithelial and myeloid
cells, and 1.4 for T cells, ensuring that distinct biological features and
interactions within these populations were effectively captured.

Cell type annotation

To accurately annotate cell types within the Small Cell
Carcinoma of the Esophagus (SCCE) dataset, we compiled an
extensive list of marker genes from reliable sources, including
Cell Signaling Technology (https://www.cellsignal.com/pathways/
immune-cell-markers-human), Abcam (https://www.abcam.com/
primary-antibodies/immune-cell-markers-poster), and various
scholarly publications. These marker genes were instrumental in
categorizing cells into distinct types according to their gene
expression profiles.

The expression levels of these cell type-specific markers were
visualized using dot plots and violin plots to facilitate the validation
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FIGURE 1
Comprehensive Analysis of Cellular Composition and Clustering in SCCE Across Treatment Regimens (A). Timeline of treatments and scRNA-seq
sampling for a 66-year-old male diagnosed with SCCE, detailing the sequence of therapeutic interventions and corresponding sampling points. (B)
Computed tomography (CT) scan image at diagnosis, displaying a prominent lesion located between 24 and 28 cm from the incisors on the anterior
esophagus, highlighted within a red circle. (C) CT scan image from 31 October 2022, following the completion of five chemotherapy cycles with
irinotecan and cisplatin, showing a reduction in tumor size, indicated by the area within the red circle. (D) CT scan from 27 September 2023, showing
progressive disease (PD) despite the patient undergoing concurrent chemoradiation therapy and multiple cycles of teriparatide monoclonal antibody
therapy, with the tumor area highlighted within the red circle. (E) UMAP visualization of eight major cell types within the SCCE microenvironment,
including epithelial cells, T cells, myeloid cells, myeloid-like B cells (MB), B cells, basophils, endothelial cells, and fibroblasts. (F) Results of clustering
analysis using the Seurat package, identifying 25 distinct cellular clusters, each annotated based on the expression profiles of established marker genes.

(Continued )
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of cell type annotations. These visualizations were generated using
the “ggplot2” package (version 3.5.1) in R. Additionally, we
quantified the proportions of each cell type in individual patient
samples, using bar plots to display the relative percentages of
different cell types in both pre-treatment and post-
treatment samples.

For myeloid cells, where marker gene expression levels did not
markedly differ among subtypes, cell type annotation was further
refined based on the functions enriched within these subtypes. This
refined approach allowed for a more nuanced understanding of
myeloid cell diversity within the SCCE samples.

InferCNV analysis

To identify and characterize genomic copy number variations
(CNVs) within the epithelial cell populations of SCCE, we employed
the inferCNV R package (version 1.18.1). This analytical tool is
specifically designed to detect large-scale chromosomal alterations
in single-cell RNA sequencing (scRNA-seq) data by assessing gene
expression intensities across various cells. The CNV profiles
generated by inferCNV offered pivotal insights into the genomic
architecture of SCCE tumor cells, underscoring potential driver
mutations and regions of genomic instability.

Differential expression analysis

To pinpoint genes exhibiting significant changes in expression
between pre-treatment and post-treatment samples, as well as
among different cellular subgroups, we performed a differential
expression analysis. In this analysis, genes were classified as
significantly differentially expressed based on stringent criteria:
an adjusted p-value of less than 0.05 and an average log fold
change exceeding 0.25. These thresholds were set to ensure that
the differences in gene expression observed were not only
statistically significant but also biologically meaningful.

Functional enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted to
explore the biological processes (BP), cellular components (CC), and
molecular functions (MF) linked to genes significantly differentially
expressed between pre-treatment and post-treatment samples of
small cell carcinoma of the esophagus (SCCE), as well as among
various cellular subgroups. GO terms that showed enrichment with
a false discovery rate (FDR) less than 0.05 were deemed significant.

Concurrently, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis was performed to identify
crucial metabolic and signaling pathways affected by the
differentially expressed genes (DEGs). Pathways with an FDR less

than 0.05 were classified as significantly enriched. The results of
these analyses were visualized to clearly delineate the roles of DEGs
in various biological pathways, with a particular focus on those
pathways that are relevant to SCCE drug resistance.

Pseudotime analysis

To explore the dynamic changes in cell states and identify
critical transition points during the treatment of SCCE, we
employed pseudotime analysis using the Monocle package
(version 2.30.1) in R. This analysis began with the construction
of a cell trajectory dataset from normalized and integrated single-cell
RNA sequencing (scRNA-seq) data. The gene expression matrix was
refined to emphasize highly variable genes, which are essential for
mapping cellular trajectories and understanding dynamic
biological processes.

The DDRTree algorithm was utilized for dimensionality
reduction and trajectory inference. To determine the start and
end points of pseudotime, cells were grouped into specific
clusters based on their expression profiles, and these clusters
were annotated with biologically meaningful states. This
systematic annotation provided a clear framework for ordering
cells along the pseudotime trajectory. Throughout the pseudotime
analysis, differential gene expression analysis was performed to
identify genes that significantly altered their expression as cells
transitioned through various states. This methodology yielded
profound insights into the molecular mechanisms driving cellular
transitions during SCCE treatment, enhancing our understanding of
the disease’s progression and response to therapy.

Cell-cell communication analysis

To investigate cell-cell communication within samples of SCCE,
we utilized the “CellChat” package (version 1.6.1) in R. This tool is
specifically designed to identify significant ligand-receptor
interactions across various cell types, thereby elucidating the
dynamics of intercellular signaling.

Through the use of CellChat, we pinpointed key ligand-receptor
interactions and mapped these onto communication networks, thus
revealing the intricate interactions both within and among different
cell types. We employed a variety of visualization techniques,
including network and circos plots, to illustrate the complexity
and specificity of these intercellular signaling pathways. These
visualizations greatly enhanced our understanding of the
communication patterns that may impact disease progression and
response to treatment in SCCE.

Gene set enrichment analysis (GSEA)
GSEA was conducted using the clusterProfiler package (version

4.10.1) in R to delineate the biological processes and signaling

FIGURE 1 (Continued)

(G) Bar chart presenting a comparative quantitative analysis of cell type distributions before and after treatment, detailing the proportional changes in
each cell type across naive and treated samples.
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FIGURE 2
Epithelial Cell Dynamics and Pseudotime Analysis in SCCE Following Treatment (A) t-SNE analysis illustrating distinct clustering patterns of epithelial
cells from SCCE, revealing variability in cellular states post-treatment. (B) Volcano plot displaying differentially expressed genes (DEGs) between naive and
treated epithelial cells. Upregulated genes in treated cells such as LINC02560, CST6, TPRG1, LYPD2, SPRR2F, CLC4A, and CD38 are highlighted in red,
while downregulated genes post-treatment, including NPTX1, KIF1A, and CXXC4, are marked in blue. (C) KEGG pathway enrichment analysis of
DEGs, identifying significantly enriched signaling pathways crucial for tumor cell interactions within their microenvironment. This includes pathways such
as extracellular matrix (ECM)-receptor interactions, cytokine-cytokine receptor interactions, cell adhesion molecules, TNF signaling, Ras signaling, and
PI3K-Akt signaling, which are essential for immunemodulation and cell survival. (D) GO analysis illustrating significant enrichment in terms related to the
molecular biology of treated epithelial cells. Key processes highlighted include nucleoside monophosphate metabolic process, regulation of DNA
biosynthetic process, protein-DNA complex assembly, and positive regulation of DNA-binding transcription factor activity. (E) Pseudotime trajectory
depicting the progression of epithelial cell states from the Initiator state, through Middle, to the Terminus state. (F) Clustering analysis of epithelial cells

(Continued )

Frontiers in Genetics frontiersin.org06

Zhang et al. 10.3389/fgene.2024.1477705

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1477705


pathways implicated in SCCE. Key genes involved in cellular
communication were identified and their fold changes computed
using the “FindMarkers” function in the Seurat package. These
genes were then ranked based on their log fold-change values.

Canonical pathways and GO biological processes were
referenced from the Molecular Signatures Database (MSigDB).
Enrichment scores for each gene set were calculated, with the
significance of these scores determined through permutation
tests. Pathways and processes with a p-value less than 0.05 were
deemed significantly enriched. This analysis yielded critical insights
into the biological mechanisms and pathways associated with drug
resistance in SCCE, enhancing our understanding of disease
pathology and identifying potential therapeutic targets.

Protein-protein interaction (PPI) network
construction

We constructed a PPI network focusing on key ligands and
receptors identified in our study of SCCE. The interactions were
sourced from the STRING database (https://string-db.org/), which is
a comprehensive resource for both known and predicted protein-
protein interactions. The network was visualized using Cytoscape
(version 3.10.2), a software tool specifically designed for complex
network analysis and visualization.

This visualization of the PPI network facilitates an understanding
of the interaction dynamics among proteins, providing key insights
into the molecular mechanisms that may play critical roles in the
pathogenesis and treatment response of SCCE. This approach not
only enhances our understanding of the connectivity among proteins
but also underscores potential therapeutic targets within the network.

Statistical analysis

Statistical analyses for this study were performed using R
software (version 4.3.3). The primary method for assessing
differential expression was the Wilcoxon rank-sum test, with
Bonferroni correction applied to adjust for multiple comparisons
and control the family-wise error rate.

For the analysis of cell-cell interactions, significant interactions
were identified based on a communication probability (p-value) of
less than 0.05. Additionally, variations in cell type proportions
across different subgroups were evaluated using Fisher’s exact
test to ascertain their statistical significance.

In the pseudotime analysis conducted with Monocle, changes in
gene expression along the pseudotime trajectory were assessed using
the likelihood ratio test, which identifies statistically significant
changes in gene expression corresponding to progression through
different cellular states.

All statistical tests employed in this study were two-tailed, with a
significance threshold set at a p-value of less than 0.05, unless
specified otherwise. This rigorous analytical framework ensures
that the findings are both reliable and statistically robust.

Results

Single-cell RNA sequencing reveals dynamic
cellular remodeling in small cell carcinoma
of the esophagus following treatment

A 66-year-old male diagnosed with SCCE underwent a
comprehensive treatment regimen, analyzed through scRNA-
seq. The patient’s overall survival (OS) post-diagnosis was
14 months, with the timeline of treatment and sampling
detailed in Figure 1A.

An esophagogastroduodenoscopy performed on 13 September
2022, revealed a raised, cauliflower-like erosive lesion located
24–28 cm from the incisors, predominantly on the anterior
esophagus, affecting approximately one-third of the esophageal
circumference (Figure 1B). Histopathological examination
confirmed the diagnosis of SCCE, classified as T4N + M0, Stage
III. Samples for scRNA-seq analysis were collected at this time.
From 19 September 2022, to 17 January 2023, the patient received
five cycles of chemotherapy with irinotecan and cisplatin. A
follow-up CT scan on 31 October 2022, indicated a Partial
Response (PR) (Figure 1C), prompting a second single-cell
sequencing biopsy.

The treatment strategy was intensified on 15 February 2023,
with the initiation of concurrent chemoradiation therapy. This
regimen included volumetric modulated arc therapy (VMAT)
delivering 41 Gy over 23 fractions to the planning clinical target
volume (PCTV) and an additional 20 Gy over 10 fractions to the
planning gross tumor volume (PGTV). Concurrently, two cycles of
etoposide and lobaplatin were administered.

By 12 May 2023, a CT scan confirmed the maintenance of PR.
From 13 May 2023, to 27 September 2023, the patient underwent
seven cycles of teriparatide monoclonal antibody therapy. Despite
these interventions, a CT scan on 27 September 2023,
demonstrated progressive disease (PD) (Figure 1D), with a
progression-free survival (PFS) documented at 11 months.
Despite the initial benefits from this multimodal treatment
approach, the disease’s subsequent progression led to rapid
clinical deterioration.

scRNA-seq analysis of SCCE revealed a complex cellular
architecture undergoing significant transformation post-
treatment with irinotecan and cisplatin (Figure 1E). Using the

FIGURE 2 (Continued)

identifying five distinct groups: Initiator, Middle, Terminus, IniTerm (cells transitioning from initial to terminal states), and Universal (cells exhibiting
characteristics of all stages). (G) t-SNE plots showcasing the segregation of these clusters in both naive and treatment groups. (H) Variations in the
distribution of these clusters between naive and treatment groups, with naive samples predominantly concentrated in the Middle state, while treatment
samples show an increase in cells classified as Terminus, IniTerm, and Universal states. (I) Violin plots illustrating expression patterns of key tumor
suppressor genes across pseudotime clusters, such as CDKN2A, CDH1, BRCA1, BRCA2, MSH2, MSH6, and RUNX3. These plots indicate the significant
roles of these genes in cellular state transitions and responses to treatment.
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Seurat package for clustering analysis, we identified 25 distinct
cellular clusters within the esophageal carcinoma
microenvironment (Figure 1F). These clusters were annotated
based on the expression profiles of known marker genes
(Figure 1G). Comparative analysis between pre-treatment
(naive) and post-treatment (treated) samples revealed

substantial shifts in cellular composition (Figure 1H).
Immunofluorescence staining of primary SCCE samples
revealed a marked prevalence of T cells and myeloid-like cells
(Supplementary Figure S1). Notably, the proportion of epithelial
cells increased following treatment, whereas the populations of
T cells, B cells, and myeloid-like cells decreased.

FIGURE 3
UMAP Analysis and Differential Gene Expression in T Cell Subtypes within Esophageal Carcinoma Samples (A) UMAP visualization identifying five
major T cell subtypes within esophageal carcinoma samples, including cytotoxic T cells (Tcyto), primary cytotoxic T cells (PCTL), helper T cells (Th),
exhausted T helper cells (ExhrTH), and effector T cells (Teff), with associated marker gene expression levels depicted. (B) Results of clustering analysis
displaying six distinct cellular clusters of T cells identified using the Seurat package. (C) Comparative analysis of T cell subtype composition between
naive and treatment samples, demonstrating increases in cytotoxic and helper T cells and decreases in exhausted T helper and effector T cells following
treatment. (D) Differential gene expression analysis between naive and treated T cells, highlighting genes such as IGHG1, IGHA1, and IGKC, which were
upregulated, and ALDH1A1 and IGFBP3, which were downregulated. (E) Analysis of gene expression patterns across T cell subtypes, noting upregulation
of GZMB and PRF1 in Teff cells and increased expression of TIGIT and TOX2 in ExhrTH cells. (F) KEGG pathway enrichment analysis of differentially
expressed genes, emphasizing significant pathways including cytokine-cytokine receptor interaction, cell adhesion molecules, extracellular matrix
(ECM)-receptor interaction, and Th1 and Th2 cell differentiation. These pathways are crucial for T cell functionality and the immune response within the
tumor environment.
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Transcriptional reprogramming of epithelial
carcinoma cells in response to treatment
in SCCE

T-distributed Stochastic Neighbor Embedding (t-SNE) analysis
of epithelial cells from SCCE samples demonstrated distinct
clustering patterns between naive (pre-treatment) and treated
groups (Figure 2A), indicating significant treatment-induced
alterations in cellular states. Further genomic analysis using
inferCNV confirmed prevalent mutations in these SCCE
epithelial cells, substantiating their tumor cell classification.

Differential expression analysis between naive and treated
carcinoma epithelial cells identified several significantly
differentially expressed genes (DEGs). A volcano plot analysis
highlighted the upregulation of genes such as LINC02560, CST6,
TPRG1, LYPD2, SPRR2F, CLC4A, and CD38 in treated cells, while
genes like NPTX1, KIF1A, and CXXC4 were notably downregulated
(Figure 2B). KEGG pathway enrichment analysis of these DEGs
revealed significant enrichment in pathways pivotal for tumor cell
interactions with the microenvironment, including extracellular
matrix (ECM)-receptor interactions, cytokine-cytokine receptor
interactions, cell adhesion molecules, TNF signaling, Ras signaling,
and PI3K-Akt signaling pathways (Figure 2C). GO term analysis
showed significant enrichment in terms associated with nucleoside
monophosphate metabolic processes, regulation of DNA biosynthetic
processes, protein-DNA complex assembly, and positive regulation of
DNA-binding transcription factor activity (Figure 2D).

Pseudotime analysis was utilized to explore cell plasticity in
epithelial cell states during SCCE treatment. This analysis
delineated a pseudotime trajectory depicting a continuous
progression from an initial state (Initiator), through intermediate
states (Middle), to a terminal state (Terminus) (Figure 2E). Clustering
of epithelial cells along this trajectory identified five distinct clusters:
Initiator, Middle, Terminus, IniTerm (cells transitioning from initial
to terminal states), and Universal (cells exhibiting characteristics of all
stages) (Figure 2F). t-SNE plots confirmed the distinct segregation of
these clusters in both naive and treated groups (Figure 2G). Significant
variations in the distribution of these clusters between naive and
treated samples were observed (Figure 2H), with the naive group
predominantly displaying a concentration of cells in the Middle state,
while the treatment group showed an increase in cells within the
Terminus, IniTerm, and Universal states, suggesting treatment-
induced shifts in cell plasticity.

Additionally, the expression of key tumor suppressor genes was
analyzed to elucidate their roles in cellular state transitions and
responses to treatment. Violin plots demonstrated distinct
expression patterns across different pseudotime clusters (Figure 2I),
with genes such as CDKN2A and CDH1 showing high expression in
the Middle and Terminus states, whereas BRCA1, BRCA2, MSH2,
MSH6, and RUNX3 exhibited variable expression, underscoring their
differential roles in regulating cell plasticity.

T Cell diversity and dynamics in response to
treatment in SCCE

Uniform Manifold Approximation and Projection (UMAP)
analysis was utilized to investigate the heterogeneity of T cells

within small cell carcinoma of the esophagus (SCCE) (Figure 3A).
This analysis identified five major T cell subtypes: cytotoxic T cells
(Tcyto), primary cytotoxic T cells (PCTL), helper T cells (Th),
exhausted T helper cells (ExhrTH), and effector T cells (Teff), with
their respective marker gene expression levels depicted in Figure 3B.
Notably, substantial variations in the composition of these T cell
subtypes were observed when comparing naive and post-treatment
samples. Post-treatment, there was a significant increase in the
populations of cytotoxic and helper T cells, while the numbers of
exhausted T helper cells and effector T cells diminished (Figure 3C).

Differential expression analysis between naive and treated T cells
revealed several significant differentially expressed genes (DEGs).
For instance, genes such as IGHG1, IGHA1, and IGKC were
upregulated in treated T cells, whereas genes like ALDH1A1 and
IGFBP3 were downregulated, as detailed in Figure 3D. Further
exploration of gene expression across different T cell subtypes
revealed distinct patterns: Teff cells exhibited upregulation of
GZMB and PRF1, while ExhrTH cells showed increased
expression of TIGIT and TOX2 (Figure 3E).

KEGG pathway enrichment analysis of these DEGs highlighted
significant pathways essential for T cell functionality, immune
response, and their interactions with the tumor environment.
These pathways included cytokine-cytokine receptor interaction,
cell adhesion molecules, extracellular matrix (ECM)-receptor
interaction, and Th1 and Th2 cell differentiation (Figure 3F).

Dynamic interaction networks between
tumor cells and T Cells in SCCE
post-treatment

Analysis of interaction networks between tumor cells and T cells
within the esophageal carcinomamicroenvironment revealed dynamic
alterations following treatment (Figure 4A). In naive samples,
interactions were predominantly observed between Initiator and
Universal tumor cells and various T cell subtypes. Post-treatment,
these interactions significantly increased, particularly involving
Initiator cells and multiple T cell subtypes, underscoring substantial
treatment-induced shifts in cell-cell communication.

Pathway analysis revealed distinct differences in signaling
pathways between naive and treated conditions. In naive cells,
critical pathways such as MIF-CD74/CXCR4, MDK-SDC1, and
HLA-E-CD8A were predominant, playing pivotal roles in immune
modulation and tumor cell survival (Figures 4B–D). Conversely, in
treated cells, pathways including TIGIT-PVR,MDK-SDC4, and FN1-
ITGA6/ITGB1 were upregulated, indicating enhanced immune
checkpoint activity and increased cell adhesion (Figures 4E–G).

In the naive microenvironment, interactions involving Middle and
Universal tumor cells were enriched in immune-related pathways such
as MIF-CD74/CXCR4 and HLA-E-CD8A, suggesting a potentially
immune-suppressive landscape (Figure 4C). Post-treatment, the
interaction profile shifted to include pathways such as TIGIT-PVR
and FN1-ITGA6/ITGB1, reflecting enhanced immune checkpoint
regulation and extracellular matrix remodeling (Figure 4F).

Moreover, in naive samples, significant interactions were
concentrated in pathways like MIF-CD74, MDK-SDC1, and
HLA-E-CD8A, aligning with mechanisms of immune suppression
and tumor cell survival. In contrast, treated samples exhibited
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FIGURE 4
Interaction Networks and Signaling Pathways Between Tumor Cells and TCells in the Esophageal CarcinomaMicroenvironment Post-Treatment (A)
Illustration of dynamic changes in cell-cell interactions between tumor cells (Initiator and Universal) and various T cell subtypes across naive and treated
samples, demonstrating a marked increase in interactions following treatment. (E–G) Pathway analysis in treated samples, illustrating upregulated
pathways: (E) The TIGIT-PVR pathway, indicative of enhanced immune checkpoint activity. (F) The MDK-SDC4 pathway, associated with immune
checkpoint regulation. (G) The FN1-ITGA6/ITGB1 pathway, involved in increased cell adhesion and extracellular matrix remodeling.
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prominent interactions involving Middle and Universal tumor cells
through pathways such as TIGIT-PVR, MDK-SDC4, and FN1-
ITGA6/ITGB1, indicative of an adaptive tumor response
characterized by increased immune checkpoint activity and
extracellular matrix remodeling (Figure 4G).

Dissecting myeloid cell heterogeneity and
dynamics in SCCE

The t-SNE analysis of myeloid cells from SCCE samples revealed
eight distinct myeloid cell subtypes, showcasing the complex
heterogeneity inherent to this type of cancer. The subtypes

identified include Myeloid-T helper collaborator (Mye-Th
Collaborator), Replication-repair myeloid (RepliRepair Myeloid),
Proliferation myeloid (Prolif Myeloid), Immune control myeloid
(ImmuneControl Myeloid), Oncogenic myeloid (Onco Myeloid),
Signaling myeloid (Signaling Myeloid), Proliferation regulatory
myeloid (ProlifReg Myeloid), and Cytokine regulatory myeloid
(CytokineReg Myeloid), as illustrated in Figures 5A, C.

KEGG pathway enrichment analysis performed on these
myeloid cell clusters underscored critical pathways essential to
immune responses, cell signaling, and cancer-related processes,
such as cytokine-cytokine receptor interaction, Ras signaling,
PI3K-Akt signaling, and NF-kappa B signaling (Figure 5B). These
pathways are fundamental for the functionality of myeloid cells and

FIGURE 5
t-SNE Analysis and Pathway Enrichment in Myeloid Cells from SCCE (A) t-SNE plots illustrating eight distinct myeloid cell subtypes identified within
SCCE samples: Myeloid-T helper collaborator (Mye-Th Collaborator), Replication-repair myeloid (RepliRepair Myeloid), Proliferation myeloid (Prolif
Myeloid), Immune control myeloid (ImmuneControl Myeloid), Oncogenic myeloid (Onco Myeloid), Signaling myeloid (Signaling Myeloid), Proliferation
regulatory myeloid (ProlifReg Myeloid), and Cytokine regulatory myeloid (CytokineReg Myeloid). (B) KEGG pathway enrichment analysis for the
identified myeloid cell clusters, emphasizing critical pathways such as cytokine-cytokine receptor interaction, Ras signaling, PI3K-Akt signaling, and NF-
kappa B signaling. These pathways are vital for myeloid cell functionality and their interactions within the tumor microenvironment. (C) Additional t-SNE
visualization supporting the detailed identification of myeloid cell subtypes and their distinct genetic profiles, further delineating the heterogeneity within
the SCCE myeloid cell population. (D) Comparative analysis of myeloid cell subtype distributions between naive and treatment samples, indicating shifts
towards subtypes associated with increased proliferative and regulatory functions post-treatment, such as Prolif Myeloid, ProlifReg Myeloid, and
CytokineReg Myeloid. This shift suggests an adaptation of the myeloid cell landscape in response to therapeutic interventions, reflecting changes in the
cellular dynamics within the TME.
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FIGURE 6
Interaction Networks and Signaling Pathways Between Tumor Cells and Myeloid Cells in SCCE Post-Treatment (A) Visualization of interaction
networks between Initiator and Universal tumor cells and various myeloid subtypes, showing pronounced differences between naive and treatment
conditions. Notable increases in interactions post-treatment highlight significant changes in cell-cell communication. (B–D) Pathway analysis in naive
cells, demonstrating the activation of key pathways: (B) The MIF-CD74/CXCR4 pathway, involved in immune modulation. (C) The MDK-SDC1
pathway, associated with cell survival. (D) The HLA-E-CD8A pathway, crucial for immune suppression. (E–G) Pathway analysis in treated cells, depicting
upregulated pathways indicative of altered cellular functions: (E) The TIGIT-PVR pathway, demonstrating enhanced immune checkpoint activity. (F) The
MDK-SDC4 pathway, reflecting changes in immune checkpoint regulation. (G) The FN1-ITGA6/ITGB1 pathway, involved in increased cell adhesion and
matrix remodeling. These pathways illustrate the dynamic responses of tumor and myeloid cells within the TME to therapeutic interventions, signifying
adaptive shifts that may impact treatment efficacy and disease progression.
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their interactions within the tumor microenvironment, pivotal for
immune modulation and cancer progression.

Comparative analysis between naive and treated myeloid cell
subtypes demonstrated significant shifts in subtype distribution
(Figure 5D). In naive samples, there was a predominance of
Mye-Th Collaborator and RepliRepair Myeloid subtypes. Post-
treatment, there was a noticeable increase in subtypes such as
Prolif Myeloid, ProlifReg Myeloid, and CytokineReg Myeloid.
These changes suggest a shift towards more proliferative and
regulatory functions in response to treatment, reflecting the
dynamic nature of the tumor microenvironment and its adaptive
responses to therapeutic interventions.

Dynamic interactions between tumor cells
and myeloid cells in SCCE across
treatment regimens

Analysis of the interaction networks between tumor cells and
myeloid cells within the SCCE microenvironment uncovered
significant insights into cellular plasticity, with notable differences
between naive and treated conditions (Figure 6A). In naive samples,
interactions predominantly occurred between Initiator and Universal
tumor cells and various myeloid subtypes, especially the Myeloid-T
helper collaborator (Mye-Th Collaborator) and Proliferation
regulatory myeloid (ProlifReg Myeloid). Following treatment, a
substantial increase in interactions was observed, particularly
involving Initiator cells and multiple myeloid subtypes, indicating
significant treatment-induced changes in cell-cell communication.

Pathway analysis further clarified the shifts in signaling pathways
between conditions. In naive cells, pathways critical for immune
modulation and cell survival, such as MIF-CD74/CXCR4, MDK-
SDC1, and HLA-E-CD8A, were predominantly active (Figures
6B–D). Conversely, post-treatment, pathways like TIGIT-PVR,
MDK-SDC4, and FN1-ITGA6/ITGB1 were significantly
upregulated, suggesting enhanced immune checkpoint activity and
increased cell adhesion (Figures 6E–G).

In the naive setting, substantial interactions involving Middle and
Universal cells were linked to immune-suppressive pathways such as
MIF-CD74/CXCR4 and HLA-E-CD8A (Figure 6C). Post-treatment,
these interactions shifted to include pathways such as TIGIT-PVR and
FN1-ITGA6/ITGB1, reflecting changes in immune checkpoint
regulation and extracellular matrix interactions (Figure 6F).

Moreover, in naive samples, significant interactions targeted
pathways such as MIF-CD74, MDK-SDC1, and HLA-E-CD8A,
consistent with mechanisms of immune suppression and cell
survival. In contrast, treated samples exhibited pronounced
interactions involving Middle and Universal cells through
pathways like TIGIT-PVR, MDK-SDC4, and FN1-ITGA6/ITGB1,
illustrating an adaptive response characterized by increased immune
checkpoint activity and matrix remodeling (Figure 6G).

Discussion

Our study employs scRNA-seq to explore the impact of
chemotherapy on SCCE, by analyzing pre- and post-treatment
samples from a patient diagnosed with stage III lymph node

metastatic SCCE who exhibited only a partial response. Profound
shifts were detected in the cellular composition of the TME. Notably,
there was a significant increase in the plasticity of SCCE cells
following chemotherapy—an adaptive response that likely plays a
crucial role in the clinically observed rapid recurrence. These
insights could inform therapeutic strategies aimed at disrupting
these transitions to improve clinical outcomes. The intricate
interplay within the tumor fosters a continuously evolving
landscape, characterized by the coexistence of cells in both stem-
like and differentiated states. This complexity complicates the
efficacy of treatment and underscores the necessity for
therapeutic strategies that directly address this adaptive cellular
diversity (Figure 7).

To better elucidate these dynamics, we employed pseudotime
analysis to map cellular transitions, identifying distinct cell states
termed “Initiator” and “Terminus” (Sumanaweera et al., 2024; Sun
et al., 2024). The “Initiator” state appears to represent an early
adaptive response to chemotherapy, potentially harboring
mechanisms associated with either initial resistance or sensitivity,
while the “Terminus” state is linked to more evolved, possibly
therapy-resistant phenotypes. These findings suggest that
progression through these states could be pivotal in driving
treatment outcomes. This enhanced plasticity aligns with the
broader understanding of cancer cell plasticity, which posits that
tumors leverage dynamic transitions between cell states to adapt to
environmental and therapeutic pressures, contributing to both drug
resistance and metastatic spread. However, it is important to note
that these observations are based on a limited dataset and should be
interpreted with caution. Further validation in larger cohorts is
essential to confirm these preliminary findings and fully understand
their implications for cancer treatment strategies.

Chemotherapy, particularly with agents such as irinotecan and
cisplatin in the treatment of SCCE, profoundly influences the TME,
significantly reshaping the immune landscape. Following
chemotherapy, there is a notable increase in both cytotoxic and
helper T cells, coupled with a decrease in exhausted T cells. This
suggests a potential rejuvenation of the immune response, which is
crucial for combating residual tumor cells. This reinvigoration of the
immune system is further supported by pathway enrichment
analyses, which reveal enhanced cytokine-cytokine receptor
interactions and immune checkpoint regulation. However, this
seemingly beneficial response is complicated by an increase in
cellular interaction complexity, which can foster an
immunosuppressive environment, thereby counteracting the
initial immune gains. Additionally, the functional roles of
“Initiator” and “Terminus” states may extend to the immune
context, with “Initiator” cells potentially shaping initial
interactions with immune cells and “Terminus” cells contributing
to mechanisms of immune evasion. The intricate interplay between
enhanced immune activation and the emergence of an adaptive
tumor response underscores the need for integrated therapeutic
strategies (Cui et al., 2024). These strategies should combine
chemotherapy with targeted immunotherapies to effectively
manage and treat SCCE, aiming to leverage synergistic effects to
overcome the complex challenges posed by this aggressive cancer.

The interactions between tumor cells and altered myeloid cells
within the TME are mediated by complex signaling pathways that
become notably active following chemotherapy, particularly the
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TIGIT-PVR and MDK-SDC4 pathways. The TIGIT-PVR
interaction is especially crucial as it plays a significant role in
immune checkpoint regulation (Zhou et al., 2021). TIGIT, a
T cell immunoreceptor with Ig and ITIM domains, is primarily
expressed on regulatory T cells and natural killer cells (Lee, 2020;
Chauvin and Zarour, 2020), and upon binding with its ligand, the
PVR, expressed on myeloid cells, can inhibit T cell activation and
promote immunological tolerance (Chiang and Mellman, 2022).
The upregulation of this pathway post-chemotherapy suggests a
strategic adaptation by the tumor to evade immune surveillance by
exploiting physiological mechanisms of immune regulation (Chiang
and Mellman, 2022). Recent studies have identified the TIGIT-PVR
pathway as a critical axis in immune checkpoint evasion across
various cancers, supporting our findings (Boissière-Michot et al.,
2022; Zhou et al., 2020).

Similarly, the MDK-SDC4 pathway involves midkine (MDK), a
heparin-binding growth factor, and syndecan-4 (SDC4), a
transmembrane heparan sulfate proteoglycan (Hashimoto et al.,
2024). This pathway is pivotal in regulating cellular proliferation,
migration, and the remodeling of the extracellular
matrix—processes integral to wound healing and tissue
regeneration (Hashimoto et al., 2024). However, these processes
may also enhance tumor invasiveness and metastasis. The increased
activity of this pathway following chemotherapy indicates an
escalation in extracellular matrix remodeling activities, potentially
facilitating a more invasive tumor phenotype and contributing to
cancer progression and spread (Cerezo-Wallis et al., 2020). Recent
studies have further elaborated on the role of MDK-SDC4 in
mediating the immunosuppressive environment and in the
regulation of regulatory T cells in colorectal cancer development
(Hashimoto et al., 2024). While these findings are compelling, their
validation in larger cohorts is necessary to delineate their broader
clinical implications and confirm their relevance in the context of
SCCE, thereby guiding future therapeutic strategies.

This study highlights the critical need for advanced
methodologies, such as single-cell proteomics and spatial

transcriptomics, to achieve a refined and precise characterization
of cellular dynamics within SCCE. These techniques are essential for
delving deeper into the heterogeneity of cell populations,
particularly to understand the dynamic changes induced by
chemotherapy that enhance carcinoma cell plasticity and alter
cellular interactions. Further research employing these advanced
methods will facilitate the identification of patient subgroups
exhibiting variable responses to chemotherapy, significantly
advancing the potential for precision medicine.
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