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Introduction: Repeated measures microbiome studies, including longitudinal
and clustered designs, offer valuable insights into the dynamics of microbial
communities and their associations with various health outcomes. However,
visualizing such multivariate data poses significant challenges, particularly in
distinguishing meaningful biological patterns from noise introduced by
covariates and the complexities of repeated measures.

Methods: In this study, we propose a framework to enhance the visualization of
repeated measures microbiome data using Principal Coordinates Analysis (PCoA)
adjusted for covariates through linear mixed models (LMM). Our method adjusts
for confounding variables and accounts for the repeated measures structure of
the data, enabling clearer identification of microbial community variations across
time points or clusters.

Results:We demonstrate the utility of our approach through simulated scenarios
and real datasets, showing that it effectively mitigates the influence of nuisance
covariates and highlights key axes of microbiome variation.

Discussion: This refined visualization technique provides a robust tool for
researchers to explore and understand microbial community dynamics in
repeated measures microbiome studies.
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1 Introduction

Cross-sectional studies of the human microbiome have identified a wide range of
outcomes and exposures associated with the human microbiome ranging from type
2 diabetes (Qin et al., 2012; Larsen et al., 2010) to colorectal cancer (Zackular et al.,
2014; Feng et al., 2015). These findings have shed light on the biological mechanisms
underlying many conditions and provided critical clues as to novel therapeutic and risk
reduction interventions, but a serious weakness of many of these classical studies is the
limited information on how the microbiome changes over time and how these changes may
affect outcomes. This has motivated the development of longitudinal microbiome studies
where specimens are collected and profiled over a period of time. These studies promise
comprehensive opportunities to gain better insight into topics such as how the microbiome
varies over the course of a treatment (Lawrence et al., 2014; Jackson et al., 2016) and how the
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microbiome may sit within the causal pathway of some conditions
(Turnbaugh et al., 2006; Wang et al., 2018), among many other
opportunities. However, despite the potential and promises, serious
analytical challenges persist.

Visualization is a particular challenge in longitudinal microbiome
studies, yet it represents an important and standard step in most
microbiome data analysis workflows. As in the analysis of other
omics data types, visualization allows for the assessment of outlying
samples and quality control. However, within the context of microbiome
studies, it takes on an additional role by allowing for an understanding of
microbial community structures in relation to metadata. The most
popular approach for visualizing microbiome data is through
Principal Coordinates Analysis (PCoA) (Gower, 2014) in which
individual samples are plotted on a scatter plot. Like classical
principal component analysis (PCA), the coordinates of each sample
are determined based on capturing the greatest variability in the data, but
whereas PCA focuses on linear transformations, PCoA allows for better
capture of nonlinear transformations. Operationally, PCoA is performed
by calculating amatrix of pair-wise dissimilarity between samples, where
the dissimilarity measure is thought to be ecologically relevant and
captures certain aspects of community structure (e.g., phylogeny,
presence/absence, and abundance of taxa, etc.). The dissimilarity
matrix is then transformed to a matrix of pair-wise similarity
through Gower centering, and the principal coordinates are
calculated as the eigenvectors of the similarity matrix. Such analyses
have enabled a better understanding of many conditions and even the
discovery of possible enterotypes (clusters) (The Human Microbiome
Project Consortium, 2012; Arumugam et al., 2011).

In longitudinal microbiome studies, PCoA could provide
information on how community structures change over time and
how these changes correlate with variables of interest. However,
guidance on how to carry out PCoA in longitudinal studies
including multiple samples from the same subjects is lacking.
PCoA strategies for repeated measures, such as in longitudinal
studies, face additional challenges due to the inherent correlation
between repeated observations from the same subjects. Currently,
data across all subjects and time points are amalgamated, and plots
are generated in the same way as in cross-sectional studies. This
approach, however, may not be suitable when the goal is to analyze
the temporal dynamics or subject-specific effects.

In longitudinal studies, factors such as subject clustering, irrelevant
variables, and time effects often dominate the variability, overshadowing
structures related to the variables of interest. Applying PCoA without
adjustments for repeated measures may obscure important temporal
patterns or subject-level effects, as the method assumes that all samples
are independent. For example, high correlation between samples from
the same subject can distort shifts over time or distort relationships with
other variables.

How to accommodate these obfuscating effects in longitudinal
analysis remains unclear. Our proposed method accounts for
repeated measures by incorporating random effects and
covariates to model within-subject correlations. This approach
yields more accurate visualizations of temporal changes and
effects of interest, ensuring that the primary sources of variability
reflect the variables of interest rather than confounding factors.

For longitudinal microbiome studies, we propose a strategy to
mitigate the effects of variables and data characteristics that may
obscure the primary structures of interest in PCoA plots. This

approach is also applicable to other repeated measures study
designs, such as clustered microbiome measurements from
individuals sharing households. Therefore, throughout this
discussion, we will refer to repeated measures designs more
broadly. Our proposed framework involves removing the
confounding effects from the pair-wise similarity matrix while
accommodating the repeated-measure nature of the data. Our
framework is similar to covariate-adjusted PCoA (Shi et al.,
2020), which is used for cross-sectional studies, but it also
accounts for correlation among observations by incorporating
random effects in a linear mixed model (LMM). Specifically, we
estimate the similarity matrix, adjust out potential obfuscating
effects from each PC of the similarity matrix using LMMs, and
reconstruct the similarity matrix for usual PCoA analysis using the
residuals from the LMM. Since there are multiple notions of
residuals in LMMs (Verbeke et al., 1997), we consider multiple
concepts of residuals (including marginal and standardized
residuals) and provide guidance on their recommended use.

We find that our approach effectively distills the most important
axes of microbiome community variation while reducing the influence
of nuisance covariates in our visualizations, all while leveraging shared
information across distinct time points. However, we also found that
relying on marginal or conditional residuals from LMMs can be
inadequate for certain analytic objectives, as unwanted structures
may persist. This persistence is due to dependencies introduced by
the replacement of parameters with their estimates, a challenge that is
particularly pronounced in dependent data (Wakefield, 2013). To
overcome these challenges, we further recommend standardization
of residuals as an essential step to mitigate dependencies when the
dependencies are not of primary interest. Collectively, we find that our
approach and recommendations offer the ability to facilitate
understanding of shifts in community structure in relation to time
or other variables of interest.

In the following sections, we first review PCoA before describing
our proposed strategies for adjusting out uninteresting effects. We
then apply our approach within simulated examples to illustrate the
potential utility and to offer specific guidance. Finally, we
demonstrate the utility of our approach in two real data sets
before concluding with a brief discussion.

2 Methods

In this section, we briefly review the usual PCoA and covariate
adjusted PCoA for cross-sectional studies before presenting our
proposed strategy for accommodating repeated measures study
designs. We then discuss the simulation setup for some
illustrative scenarios.

2.1 PCoA and adjusted PCoA for cross-
sectional studies

Consider a cross-sectional (single time point) microbiome
profiling study in which the abundances of p taxa have been
quantified across n independent samples. Then n × p matrix
Y � [Y(1),Y(2),/,Y(p)], where Y(k) represents the vector of
observations for the kth taxon in the study. Since visualization of
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multivariate data is challenging when p is large, the objective of
PCoA is to find a lower dimensional representation of the data such
that the most information is retained.

PCoA begins by constructing a matrix of pair-wise
dissimilarities between each pair of samples, D, where the
(i, i′)th element of D is the dissimilarity between samples i and
i′. A wide range of, typically nonlinear and ecologically relevant,
dissimilarities are commonly used within the microbiome
analysis literature. Each dissimilarity emphasizes different
aspects of the data and captures different qualities of the
community structure. For example, Bray-Curtis dissimilarity
(Roger Bray and Curtis, 1957) emphasizes relative abundance
such that more common taxa tend to drive dissimilarity. On the
other hand, UniFrac distance (Lozupone and Knight, 2005)
focuses on dissimilarity based on the presence/absence of taxa
such that rarer taxa can exert greater influence, and further
incorporates phylogenetic relationships among taxa when
estimating distance. Extensions of UniFrac, such as weighted
UniFrac (Lozupone et al., 2007) and generalized UniFrac (Chen
et al., 2012), focus on more common taxa or compromise between
rare and common taxa, respectively, while still accommodating
phylogeny. Other distances such as Aitchison distance
(Aitchison, 1982) try to respect compositional effects. The
choice of distance is based on the type of relationships that
investigators seek to study or believe to be relevant.

After calculation of D, the distance is transformed to an n × n
similarity matrix which we denote K via Gower centering:

K � I −H( )D2 I −H( )
where H � 1(1′1)−11′. The principal coordinates (PCs) are
computed as the eigenvectors of K, and the proportion of
variability in the nonlinear space explained by each PC is given
by the relative magnitude of the corresponding eigenvalue.

The PCs represent lower-dimensional embeddings of the data.
For visualization, the top PCs are plotted against each other to
generate PCoA plots. Specifically, the PCoA plot is a scatter plot
where each point corresponds to a separate sample, and the
coordinates of each point (sample) are determined by the value
of the PCs. In practice, only the top few (sometimes only the top
two) PCs are used for visualization, even though the proportion of
variability explained may be modest.

A limitation of PCoA is that the PC directions can be driven by
confounding variables, denoted X, which leads to the obfuscation of
structures of primary interest, i.e., related to a variable of primary
interest. Thus, adjusted PCoA (aPCoA) (Shi et al., 2020) was
developed to address this by essentially regressing out the effect
of obscuring variables. Specifically, the covariate adjusted similarity
matrix is calculated as

Kadj � I − X X′X( )−1X′( )K I − X X′X( )−1X′( ). (1)

Essentially, one is re-centering K based on the covariates.
One way of justifying this approach is the following. We first

calculate the matrix K as before and then decompose K � ΦΦ′
whereΦ � [Φ(1), . . . ,Φ(n)] � ��

K
√

is a matrix square root. A natural
choice of decomposition is to set Φ � UΛ1/2 where UΛU′ is the
eigendecomposition of K. The Φ(k)’s (the columns of Φ) are simply
the original PCs. Then aPCoA essentially regresses each PC on X

and calculates the residual (i.e., corrected PCs). The matrix of
residuals is E with kth column given as

E k( ) � Φ k( ) − Xβ̂
k( )
and β̂

k( ) � X′X( )−1X′Φ k( ). (2)
By regressing out the effect of the covariates X, each E(k) is now
orthogonal to the covariates. Then the covariate-adjusted similarity
matrix can be recalculated as K* � EE′ — note that one cannot
simply use E as the PC since proportions of variability explained
have shifted. At this point, PCoA proceeds as before, just using K*
instead of K. This gives the same result as in Equation 1.

Importantly, however, although aPCoA is useful for removing
covariate effects, it cannot directly handle repeated measures
designs. This approach assumes that each sample is independent,
which is not the case for repeated measures data. In such data,
samples taken from the same subject over time are correlated, and
failing to account for this correlation can result in misleading
visualizations where the effects of repeated measures dominate
the patterns of interest.

In contrast, our method, detailed in the following section,
extends traditional aPCoA by incorporating linear mixed models
(LMMs) that account for both fixed effects (e.g., treatment, age) and
random effects (e.g., subject-level variability) to properly adjust for
the repeated measures structure. By adjusting for within-subject
correlations, this method ensures that temporal changes in
microbiome profiles are more accurately captured, and that
variability due to repeated measures does not obscure key
patterns related to covariates or treatment effects.

2.2 PCoA strategy for repeated measures

As before, we assume that we have profiled p taxa for n
subjects or clusters. However, we now assume that we have
collected measurements mi times for the ith subject or
cluster, such that all microbiome measurements are then
in an M × p matrix, Y � [Y(1),Y(2),/,Y(p)] where
Y(k) � (y(k)

1,1 , . . . , y
(k)
1,m1

, . . . , y(k)
n,1 , . . . , y

(k)
n,mn

)′, where y(k)
i,j is the

count of the kth taxon for subject/cluster i at measurement j and
M � ∑imi. We assume that subjects/clusters are independent of
each other but that there may be correlation within each
subject/cluster.

As earlier, the goal is to adjust Y in such a way that we can
meaningfully plot patterns embedded in the data. The general
strategy follows a similar approach to aPCoA but includes some
key differences. First, to accommodate the repeated measures and
longitudinal sampling, we incorporate linear mixed models into the
calculation of residuals in Equation 2. Second, because of using
mixed models, the convenient formulas in Equation 1 are no longer
usable in the repeated measures setting, which requires more explicit
correction. Finally, there is no unique concept of “residual” for linear
mixed models (Verbeke et al., 1997). With multiple notions of
residual, the choice of which one to use depends on the context
and analytic objective, but we suggest the use of standardized
residuals in general.

With these considerations in mind, we propose the following
steps for our method, which are also illustrated in the workflow in
Figure 1. Before applying it, we recommend normalizing the
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microbiome data to account for differences in library sizes across
samples. Specifically, we suggest using the centered log-ratio (CLR)
transformation on relative abundances in conjunction with the
Aitchison kernel matrix. By expressing each feature as a log-ratio
relative to the geometric mean of all relative abundances in a sample,
CLR reduces the influence of total sequencing depth, making the
data more comparable across samples. Additionally, CLR-
transformed data are more amenable to linear transformations,
which makes them particularly well-suited for methods that rely
on linear modeling, such as our approach. The Aitchison kernel is
ideal for compositional microbiome data, as it respects the relative
nature of the data and ensures that variations in sequencing depth
do not bias the results. Throughout the rest of the text, we use the
Aitchison kernel for these reasons. However, if an alternative kernel
matrix, such as Bray-Curtis, is needed, then relative abundance data
may be more appropriate, as CLR-transformed data are not suitable
for such distance measures. Therefore, users should choose between
raw count, relative abundance, or CLR-transformed data based on
the kernel matrix and specific analysis objectives, with the Aitchison
kernel being the preferred choice for compositional data.

1. Kernel Construction: Embed microbiome data Y into an
appropriate kernel (similarity) matrix K, as usual.
Throughout the text, we use Aitchison kernel matrices
because they are well-suited for compositional data like
microbiome datasets. Specifically, Aitchison distance
accounts for the relative nature of the data and is

compatible with CLR-transformed data. As in earlier steps,
we calculate an ecologically relevant distance between all pairs
of samples, which may no longer correspond to unique
individuals, and Gower-center this distance matrix to form
the kernel matrix, as is typical in PCoA.

2. Kernel PCA: We then obtain kernel PCs,
��
K

√ � UΛ1/2, from
K � UΛU′ using all samples and without regard to the repeated
measures sampling, as before.

3. Retain Key Kernel PCs: Retain the top ℓ ≤ rank(K) kernel PCs
that explain a large proportion of the variability in K. Possible
choices for proportion of variability explained could be 90%
or 95%.

4. Covariate Adjustment: Regress kernel PC r, r � {1, 2, . . . , ℓ},
on any “nuisance” covariates as fixed effects (e.g., age, sex,
study site) and/or random effects (e.g., random slopes for time
within subject/cluster), as well as random intercepts for
subjects/clusters to account for repeated measurement. For
subject i, given fixed effect vector xi and random
effect vector z i,

Φ r( )
i � xiβ

r( ) + z iγ
r( )

i +  r( )
i ,

where β(r) is the vector of fixed effect coefficients, γ(r)i is the vector of
random effect coefficients for the ith subject/cluster, and (r)i is the
vector of residual errors.

5. Standardize Residuals: Obtain estimated standardized
residuals ê*(r). To do so, first, obtain marginal (population-

FIGURE 1
Workflow for the adjusted PCoA method applied to repeated measures microbiome data. The process starts with data normalization, followed by
kernel construction. Kernel principal coordinates are extracted and adjusted for covariates using linear mixedmodels. The residuals are standardized, and
the adjusted kernel matrix is reconstructed before visualizing the top principal coordinates using PCoA. Note that the data shown are illustrative and do
not directly lead to the final plot displayed in the figure.
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level) residuals, e(r)i � Φ(r)
i − xiβ̂

(r)
. If Vi is the true error

structure, then var(e(r)i ) � Vi, and var(ê(r)i ) ≈ V̂i. The
dependence within our residuals may affect visualization of
the data. Therefore, we standardize to remove the dependence
within the residuals. Next, we let V̂i � LiLi′ be the Cholesky
decomposition of V̂i. Then, we can form estimated
standardized residuals

êp r( )
i � L−1

i ê r( )
i � L−1

i Φ r( )
i − xiβ̂

r( )( ).
Now, var(êp(r)i ) ≈ I.

6. PCoA on Reconstructed Adjusted Kernel Matrix: Then as in
aPCoA, we reconstruct the adjusted kernel matrix K*, from
which we can perform usual PCoA. For completeness, this
proceeds by calculating the eigendecomposition of
K* � (U*)Λ*(U*)′. The PCs are then the columns of

���
K*

√ �
U*(Λ*)1/2.

7. Visualize: The top PCs, or first few columns, of
���
K*

√
can be

plotted against each other. The proportion of residual
variability explained is given by the relative magnitude of
the diagonal values of Λ*.

Note that in Step 3, we drop a few of the PCs that explain very
small proportions of the variability. This step is not theoretically
necessary but is important in practice as the low variability of the tail
eigenvectors leads to difficulties in fitting the mixed models. Due to
the low percentage of variability explained, their removal typically
does not affect the overall visualization.

For supplementary analyses comparing the proposed kernel-
based aPCoA and aPCoA on CLR-transformed data, please refer to
the Supplementary Material.

2.3 Simulated scenarios

The core of our proposed strategy for PCoA with repeated
measures is to adjust out the effects of variables that obscure or
confound visualization. The specific variables that should be
included inside of X depend on the analytic objectives. Here, we
briefly consider some general guidance on what variables one may
wish to include in X by studying some specific scenarios. We
emphasize that these examples are not intended to be a
comprehensive catalog of analytic objectives but rather provide
some ideas for possible strategies.

2.3.1 Time-invariant covariate obscuring the effect
of another time-invariant covariate

Time-invariant covariates are variables that remain constant
over time, such as treatment arm, sex, and binary smoking history.
We first explore a simulated example where we aim to visualize how
microbiome profiles evolve in relation to a time-invariant covariate
(treatment arm, in this simulation). However, this visualization is
obscured by the influence of another time-invariant covariate (sex,
in this simulation). Specifically, we consider a hypothetical
microbiome study where a treatment assigned at baseline affects
community diversity over time for some individuals. Our goal is to
visually assess whether microbiome profiles differ across treatment

arms, but the influence of sex obscures this visualization, so we wish
to adjust for it.

For this scenario, we simulated a longitudinal dataset with
repeated measurements from n � 100 subjects across mi � m � 4
time points: {t0, t1, t2, t3}. Subjects were randomly assigned to the
treatment or control arm with equal probability. Sex (male or female)
was also simulated for each subject with equal probability,
independently of arm assignment. For each subject and time point,
we simulated microbiome profiles using real data from the Multi-
Omic Microbiome Study-Pregnancy Initiative (MOMS-PI), sourced
from the HMP2Data R package. We focused on vaginal samples from
site visit 4, excluding samples with a library size of fewer than
4,000 and taxa with a zero occurrence rate greater than 95%. After
pre-processing, 270 samples and 233 operational taxonomic units
(OTUs) remained.

Let yi,j denote the length p vector of taxon counts for sample i at
time tj. We randomly selected n samples from the MOMS-PI data.
For each selected sample, we perturbed the taxa counts by drawing
from a Dirichlet distribution with parameters set to the MOMS-PI
taxa counts plus a small pseudocount of 0.5. The resulting Dirichlet
samples were then scaled by multiplying them by the sample’s
original MOMS-PI library size, ensuring the perturbed counts
retained the same library size. These perturbed counts represent
the baseline microbiome profiles, denoted yi,0, i � {1, 2, . . . , n}.

To simulate taxa counts at tj, j � 1 we perform the following
steps. We first initialized taxa counts according to a multinomial
distribution with number of trials equal to the subject’s library size at
tj−1 and probabilities generated from a Dirichlet distribution with
concentration parameters equal to yi,j−1 + 0.5. Next, to introduce
changes in the community profiles shared by all subjects, we
randomly selected 20 taxa and reduced their counts by
multiplying them by 0.25. For those in the treatment group, we
randomly selected a different set of 20 taxa and increased their
counts by a factor of 3. To introduce an obscuring sex effect, we
multiplied the counts of another 20 taxa by 8 for female subjects. The
sex-specific taxa were selected by identifying pairs of taxa with
prevalence closest to each of 0, 0.1, 0.2, . . . , 0.9, ensuring that the sex
effect spans a range of taxa prevalence. Notably, the sex effect size is
significantly larger than the treatment effect size, so we expect any
visualization that does not adjust for sex to be overwhelmingly
driven by the sex effect.

We repeat these steps to generate taxa counts for tj, j � {2, 3}.
None of the taxa sets overlap, and we used the same taxa sets across
all time points. Finally, all taxonomic abundances were rounded to
the nearest whole number to reflect counts.

We compared the proposed method described in Section 2.2 to
the aPCoAmethod for cross-sectional studies, as outlined in Section
2.1, and to an approach where we only adjusted for sex as a
fixed effect.

For the aPCoA approach, we first stratified all data points by
time. Within each stratum, we embedded the simulated microbial
counts into an Aitchison distance, generated a kernel matrix, and
obtained the kernel PCs. We then regressed each kernel PC on sex in
a linear model, computed the residuals, and derived the PCs from
the resulting residuals matrix. Finally, we plotted PC2 against
PC1 for each time point.

For the fixed-effect-only approach, we embedded all simulated
microbial counts Y into an Aitchison distance, generated a kernel
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matrix K, and obtained the kernel PCs. We then regressed each
kernel PC on sex in a linear model, computed the residuals, and
derived the PCs from the resulting residuals matrix. Finally, we
plotted PC2 against PC1 for each time point.

For the proposed aPCoA approach for repeated measures, we
embedded the simulated microbial counts Y into an Aitchison
distance, which was used to generate a kernel matrix K. We then
obtained the kernel PCs (Φ) from K and retained the top ℓ � 69
kernel PCs, which explained approximately 90.1% of the variability
in K. Each of the ℓ kernel PCs was regressed on sex, time, and their
interaction as fixed effects, and a random intercept for each subject,
using a linear mixed model. The estimated standardized residuals
were then computed, an adjusted kernel matrix was constructed, and
the PCs of the adjusted kernel matrix were obtained. Finally, we
plotted PC2 against PC1 for each time point.

2.3.2 Time-varying covariate obscuring the effect
of a time-invariant covariate effect

While the first example focused on two time-invariant
covariates, we now consider a situation where the primary
interest remains a time-invariant covariate (again, treatment).
However, in this scenario, a time-varying covariate influences the
microbiome profiles over time, obscuring the visualization of the
time-invariant effect. A hypothetical example might involve a
treatment effect of interest, but with some subjects falling ill at
various points during the study. The illness impacts the microbiome
profiles, but the timing of sickness varies across subjects.

For this scenario, we simulated data on n � 100 subjects atm � 4
time points, following a similar approach to that described in Section
2.3.1. We initialized data at t0 the same as in the previous section.
Sickness status was simulated as a time-varying binary covariate,
following a standard Bernoulli distribution independently across
time points. For subjects who were sick at t0, we multiplied the
counts of 20 randomly selected sickness-affected taxa by 24.

For subsequent time points, tj, j ∈ {1, 2, 3}, we initialized taxa
counts as in Section 2.3.1; generated shared changes in the
community profiles across all subjects by multiplying the counts
of 20 randomly chosen taxa by 0.25; generated a treatment effect by
multiplying the counts of 20 randomly selected taxa by 3; and finally
generated a sickness effect by multiplying the counts of the
differentially prevalent taxa (described in the previous section) by
24. None of the taxa sets overlap, and we used the same taxa sets
across all time points. After counts at all time points were generated,
we rounded all taxa counts to the nearest whole number.

We compared the proposed method described in Section 2.2 to
the aPCoAmethod for cross-sectional studies, as outlined in Section
2.1, and to an approach where we only adjusted for sickness status as
a fixed effect.

For the aPCoA approach, we first stratified all data points by
time. Within each stratum, we embedded the simulated microbial
counts into an Aitchison distance, generated a kernel matrix, and
obtained the kernel PCs. We then regressed each kernel PC on
sickness status in a linear model, computed the residuals, and
derived the PCs from the resulting residuals matrix. Finally, we
plotted PC2 against PC1 for each time point.

For the fixed-effect-only approach, we embedded all simulated
microbial counts Y into an Aitchison distance, generated a kernel
matrix K, and obtained the kernel PCs. We then regressed each

kernel PC on sickness status in a linear model, computed the
residuals, and derived the PCs from the resulting residuals
matrix. Finally, we plotted PC2 against PC1 for each time point.

For the proposed aPCoA approach for repeated measures, we
embedded the simulated microbial counts Y into an Aitchison
distance, which was used to generate a kernel matrix K. We then
obtained the kernel PCs (Φ) from K and retained the top ℓ � 62
kernel PCs, which explained approximately 90.0% of the variability
in K. Each of the ℓ kernel PCs was regressed on sickness status as a
fixed effect, and a random intercept for each subject, using a linear
mixed model. The estimated standardized residuals were then
computed, an adjusted kernel matrix was constructed, and the
PCs of the adjusted kernel matrix were obtained. Finally, we
plotted PC2 against PC1 for each time point.

2.3.3 Hierarchical structure obscuring the effect of
a time-invariant covariate effect

Here, we address a related yet distinct issue. Instead of repeated
measurements arising from a longitudinal study design, repeated
measures in this case result from the hierarchical structure of the
data, where observations are nested within higher-level units. For
example, we may have microbiome measurements from multiple
members of the same households or from multiple body sites within
individuals. Unlike in the previous two sections, these data are not
longitudinal, but they may exhibit cluster heterogeneity that we may
or may not wish to highlight in visualizations.

In this simulation, the observations aremicrobiomemeasurements
from individuals within families sharing a household. Each family
member undergoes a different treatment during a trial, which affects
their microbiome profiles. The similarity inmicrobiome profiles due to
household membership obscures the treatment effect we aim to
visualize. Without addressing the clustering effect, data points
would naturally cluster based on household membership. By
effectively mitigating the clustering effect, we allow other sources of
variation to emerge in the visualizations.

We simulated data for n � 30 families with m � 3 members in
each family. For the ith family and the jth family member, yi,j is the
vector of taxa counts. Each family member received one of three
treatments, with the family member corresponding to j � 1 gets
treatment 1, j � 2 receiving treatment 2, and so on.

We generated y(k)
i,1 , i ∈ {1, . . . , n}, k ∈ {1, . . . , p} the same way we

generated y(k)
i,0 in Section 2.3.1. Next, we jointly sampled y(k)

i,2 and
y(k)
i,3 , i ∈ {1, . . . , n}, k ∈ {1, . . . , p} from a multivariate normal

distribution with mean (y(k)
i,1 y(k)

i,1 )′ and covariance 1
7

10 3
3 10

( ).
After generating these taxa counts, we introduced treatment
effects by multiplying the counts of 20 randomly selected taxa by
8 for y(k)

i,2 and by multiplying the counts of 20 different randomly
selected taxa by 32 for y(k)

i,3 , i ∈ {1, . . . , n}, k ∈ {1, . . . , p}. Finally, we
rounded all counts to the nearest whole number, truncating any
negative values to 0.

We aimed to compare visualizations that either account for or
ignore the confounding effect of cluster (familial) membership
on the treatment effect. We applied the standard PCoA approach
as in Section 2.1, making no adjustments. We compared this to
the proposed aPCoA approach for repeated measures as in
Section 2.2. Following the same procedure as before, we
retained the top ℓ � 29 kernel PCs, which explained 88.13% of
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the variability. Each kernel PC was then regressed on a random
intercept for each family. We then computed standardized
residuals, constructed the corresponding kernel matrices, and
obtained the resulting PCs.

The standard PCoA plots of PC2 vs. PC1 visualize microbiome
profiles without accounting for cluster membership, while the
aPCoA plots using standardized residuals account for this
clustering effect.

3 Results

3.1 Results from simulated scenarios

3.1.1 Time-invariant covariate obscuring the effect
of another time-invariant covariate

Figure 2A shows the aPCoA for cross-sectional data plots of
microbiome profiles stratified by time point and one can see that the

FIGURE 2
Adjusted principal coordinates analysis (aPCoA) plots of a simulated longitudinal dataset where a time-invariant covariate (sex) obscures the
treatment effect (n � 100 andm � 4). (A) aPCoA approach for cross-sectional data, adjusting for sex in a linearmodel, with data stratified by time point; (B)
aPCoA approach adjusting only for sex in a linear model across all time points; (C) proposed aPCoA approach for repeated measures, adjusting for sex,
time, and their interaction as fixed effects, while including a per-subject random intercept as a random effect in a linear mixed model. Points are
colored by treatment arm and shaped by sex.

Frontiers in Genetics frontiersin.org07

Little et al. 10.3389/fgene.2024.1480972

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1480972


treatment effect is difficult to distinguish, particularly at earlier
times, with the plotted points on top of each other due to the
effects of sex. The difference due to treatment is not apparent until
t3, yet from the simulation scenario, the difference should have been
apparent from t1.

Figure 2B shows that adjusting using a linear model to account
only for the fixed effect of sex is insufficient to fully remove the sex
effect. While the separation between treatment and control groups is
slightly more discernible compared to the unadjusted case in
Figure 2A, the plots still indicate a strong influence of sex,
particularly at later time points (e.g., t2 and t3). The separation
between male and female subjects remains pronounced, suggesting
that additional adjustments or a more complex model are necessary
to adequately isolate the treatment effect from the confounding
influence of sex.

Figure 2C demonstrates that the proposed aPCoA method for
repeated measures successfully removes the confounding sex effect.
Unlike in Figure 2B, where the sex effect dominates, in Figure 2C, the
separation between treatment and control groups is clearly visible
across all time points after baseline, with no clear separation of the
male and female subjects. This indicates that the method effectively
adjusts for the sex effect, allowing the treatment effect to emerge
distinctly in the visualization. Compared to the plot in Figure 2A, the
plot in Figure 2C illustrates the differences in community profiles
earlier, which better reflects the true underlying model. This
demonstrates the utility in borrowing information across all time
points and the value of having longitudinal data. Moreover, the data
points appear to segregate in a more meaningful way; treatment
points migrate towards the right side of the plot as time progresses.
This trend would not be guaranteed if we simply stratified
microbiome profiles by time without proper adjustment, as the
PCoA rotations at each time point would not necessarily be
consistent with rotations at other time points.

3.1.2 Time-varying covariate obscuring the effect
of a time-invariant covariate effect

Figure 3A displays the standard aPCoA plot, stratified by time.
Similar to the previous section, the treatment effect is difficult to
discern, and no distinct patterns emerge, indicating that the
variability in the microbiome profiles is largely dominated by
other factors.

In Figure 3B, despite adjusting for sickness status as a fixed
effect, the variability continues to be primarily driven by sickness.
Due to the impact of repeated measures, the plot still propagates the
variability associated with sickness status, further obscuring the
treatment effect. However, Figure 3C reveals a much clearer
distinction between treatment and control groups after adjusting
for sickness status and person-specific random intercepts. This
adjustment effectively isolates the treatment effect, demonstrating
its influence more distinctly in the data. The comparison between
these plots underscores the importance of incorporating random
effects to account for confounding variables, like sickness status, to
accurately visualize treatment effects in longitudinal studies.

3.1.3 Hierarchical structure obscuring the effect of
a time-invariant covariate effect

The standard PCoA plot and aPCoA for repeated measures are
shown in Figure 4. When using standard PCoA, the clustering effect

due to family membership is not removed, making it challenging to
visualize the treatment arm effect, as subjects cluster by family.
However, using the proposed approach effectively removes the
cluster effect, revealing clear segregation by treatment arm.

While this example focuses on a scenario where the primary
interest is in the treatment effect, there may be situations where
understanding clusters is of greater importance. In such cases, not
adjusting for clustering might better reveal the variability of interest.
Moreover, in such situations, aPCoA still allows for the option to
adjust for other variables that may be less relevant.

3.2 MsFLASH data

We applied our proposed framework to data on 126 subjects
from the Menopause Strategies: Finding Lasting Answers for
Symptoms and Health (MsFLASH) Vaginal Health Trial. The
trial aimed to identify microbial, immune, or metabolic markers
associated with response to topical treatment for postmenopausal
symptoms of vaginal discomfort. Over the course of a 12-week
randomized trial, postmenopausal women were randomly
assigned to a vaginal discomfort treatment of vaginal estradiol
tablet plus placebo gel (arm 1), vaginal moisturizing gel plus
placebo tablet (arm 2), or placebo gel and tablet (arm 3).
Investigators profiled vaginal microbiota samples taken at 0, 4,
and 12 weeks via 16S ribosomal RNA gene sequencing (Mitchell
et al., 2021).

To visualize the data, we restricted our analysis to patients who
had complete data measured at all three visits. We excluded taxa
with zero counts across all patient measurements, resulting in
373 taxa. We used our proposed strategy with Aitchison distance,
age at enrollment as a fixed effect in the LMM and included a
random intercept for each subject. Adjusted PCoA plots using
standardized residuals are show in Figure 5.

At Week 0, the clusters of data points for all groups overlap
substantially, indicating a similar microbiome composition among
the groups at the baseline. By Week 4, the data points start to show
more separation, particularly for arm 3, although there is still
considerable overlap among the groups. At Week 12, the separation
between groups becomes more pronounced, especially for the arms
2 and 3, suggesting that microbiome composition changes over time are
treatment-dependent.

Overall, the aPCoA plot indicates that while there are pre-treatment
similarities in microbiome composition among the groups (which is as
expected since subjects had not yet been treated), distinct changes
emerge over the 12-week period, highlighting the temporal dynamics of
the vaginal microbiome in response to the treatments.

3.3 DIABIMMUNE study

We further applied the proposed framework to the data from the
DIABIMMUNE study. The study examined the gut microbiome of
39 children via 16S rRNA sequencing of stool samples and clinical
information during their first 3 years of life (Yassour et al., 2016).
Microbiome data were collected from participants aged between
40 and 1,105 days. Each participant underwent 16 to 32 repeated
microbiome assessments, with a median of 26 measurements per
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individual, resulting in a total of 1,018 observations across the study.
We excluded taxa that had zero counts for all measurements, leaving
us with 178 taxa. We performed the steps as in 2.2 on all observations,
but for the visualization in step 7, we restricted attention to the
observations that occurred during the first 200 days of life.

As earlier, we used Aitchison distance and in our procedure
retained the top ℓ � 58 PCs, explaining approximately 90.30% of the

variability. Each PC was regressed on an intercept as a fixed effect
and a random intercept for each subject and standardized residuals
were calculated.

In Figure 6, panel (a) presents the data without accounting for
repeated measurements on subjects using the standard PCoA
approach, where the two time groups exhibit significant
overlap. In contrast, panel (b) shows the data when repeated

FIGURE 3
Adjusted principal coordinates analysis (aPCoA) plots of a simulated longitudinal dataset where a time-varying covariate (sickness status) confounds
the treatment effect (n � 100 andm � 4 time points). (A) aPCoAmethod applied to cross-sectional data, adjusting for sickness status in a linearmodel and
stratifying by time point; (B) aPCoA approach adjusting solely for sickness status across all time points; (C) proposed aPCoA method for repeated
measures, incorporating adjustment for sickness status as a fixed effect, along with a per-subject random intercept as a random effect in a linear
mixed model. Points are colored by treatment group and distinguished by shape based on sickness status.
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measurements on subjects are considered using the proposed
approach. Compared to panel (a), clear separation emerges, with
the earlier time group forming a tighter cluster and the later time
group exhibiting a broader spread. This indicates that microbiome

compositions in this sample evolve over time. However, this
evolution is obscured when repeated measurements are not
accounted for, as seen in the standard PCoA approach, where
points from the same subjects tend to cluster together.

FIGURE 4
Principal Coordinates Analysis (PCoA) plots illustrating the impact of clustering on the visualization of treatment effects. (A) Standard PCoA plot
without any adjustments, showingmicrobiome profiles without accounting for familial clustering. The variability due to clustering obscures the treatment
effect, making it difficult to distinguish between treatment arms. (B) Proposed adjusted PCoA (aPCoA) plot for repeatedmeasures, accounting for familial
clustering. The treatment effect becomes clearer, with distinct separation between treatment arms, emphasizing the importance of adjusting for
clustering in the analysis. Different families are represented by different colors, and treatment arms are indicated by different shapes.

FIGURE 5
Adjusted Principal Coordinates Analysis (aPCoA) plot for repeated measures of vaginal microbiome profiles from the MsFLASH trial, evaluating the
impact of vaginal estradiol tablets and/or vaginal moisturizing gel at 0, 4, and 12 weeks. Points are colored by treatment arm: vaginal estradiol tablet plus
placebo gel (Arm 1), vaginal moisturizing gel plus placebo tablet (Arm 2), and placebo gel and tablet (Arm 3).

Frontiers in Genetics frontiersin.org10

Little et al. 10.3389/fgene.2024.1480972

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1480972


The results of the proposed kernel-based aPCoA analysis
revealed clear temporal patterns. We also performed
supplementary comparisons using CLR-transformed aPCoA, and
the results are provided in the Supplementary Material for further
insight on the differences between these approaches.

4 Discussion

While PCoA is useful for visualizing microbiome data, it is
challenging to visualize data from longitudinal and clustered
measures due to obscuring variables and inherent clustering.
Following the approach of adjusted PCoA for cross-sectional data,
we presented a general strategy for adjusting out variables that may
obscure effects within a linear mixed model framework. Our results
demonstrate the importance of accounting for repeated measures in
microbiome studies.While traditional PCoA and aPCoAprovides useful
insights into microbiome structure for cross-sectional data, it does not
account for the correlations between repeated samples from the same
subjects, which can obscure the temporal dynamics and subject-level
effects. By incorporating linear mixed models to adjust for these
correlations, our approach provides more accurate visualizations of
temporal patterns and treatment effects, allowing researchers to more
effectively explore how microbiome profiles evolve over time. This
method is particularly valuable for longitudinal studies, where
repeated measures are common and require careful handling to
avoid biased results.

Although we presented some possible cases, we emphasize that
no single approach is universally appropriate for all situations. One
must carefully consider which variables to adjust and whether to
reduce effects of clustering, depending on the study and analytic
objectives. In general, we suggest constructing unadjusted plots, over
time, to identify major variables that may be making the
visualization more challenging. These can then be included as
fixed and random effects as appropriate. Similarly, visualization
of clustering effects can be used to ascertain whether adjustment
would be helpful.

One facet of our approach is that the proportion of variability
explained by variables may change after adjustment. The proportion
explained by variables of interest could increase or decrease depending
on the variable and the specific study, but in either case, one should
avoid testing associations between beta-diversity and variables of
interest [e.g., permanova (Anderson, 2001; Zhao et al., 2015)] using
the corrected PCs or the corrected similarity matrices.

Our proposed strategy relies heavily on linear mixed models and
accordingly, is similarly constrained by the limitations of the LMM. In
particular, LMMs typically assume normality of the outcomes (in this
case the PCs rather than the taxonomic abundances) and random effects,
and we have focused only on modeling linear main effects of the
variables. Similarly, sufficiently large sample size is necessary to fit
these models stably. While it is possible to consider more
sophisticated models that mitigate these limitations within the
context of LMMs, we emphasize that our focus is on visualization
rather than formal inference. Therefore, deviations from the usual
distributional assumptions do not affect the statistical validity of the
visualization. The requirement for sufficient sample size is important, but
as longitudinal microbiome studies continue to get larger, this issue will
be resolved. However, larger sample sizes will further emphasize the need
for adjusted procedures like ours to uncover more subtle signals.

Our proposed kernel-based aPCoA method provided more
distinct separation and clearer visualization of temporal patterns
compared to the simpler CLR-transformed aPCoA approach. While
the results from the CLR-transformed method were broadly
consistent, the visualizations were less distinct and failed to
capture some of the more subtle temporal dynamics. These
supplementary findings, detailed in the Supplementary Material,
highlight the advantages of the kernel-based method in handling
repeated measures and covariate adjustment, despite the potential
trade-off in methodological complexity. The kernel-based approach
ultimately offers better results in handling repeated measures and
covariate adjustment, making it the superior choice in more
complex datasets.

An important aspect of our approach is the preprocessing of
input microbiome data, particularly the decision to normalize the

FIGURE 6
Principal Coordinates Analysis (PCoA) plots of DIABIMMUNE data restricted to the first 200 days of life. (A) Standard PCoA plot; (B) adjusted PCoA
approach for repeated measures. Points are colored according to time of observation.
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data. The use of the centered log-ratio (CLR) transformation, paired
with the Aitchison kernel matrix, proved effective in handling
compositional microbiome data and addressing issues related to
differences in sequencing depth. Normalization via CLR ensured
that the data were comparable across samples, leading to more
meaningful visualizations. However, users should carefully consider
their choice of transformation and kernel matrix, as these decisions
can significantly impact the results of the analysis.

In particular, when we constructed a Bray-Curtis kernel matrix
using relative abundance data, the resulting visualizations were less
meaningful, likely due to the kernel’s inability to appropriately account
for the compositional nature of the data. This underscores the
importance of choosing a kernel matrix and data transformation that
align with the underlying structure of microbiome data. For studies
where relative abundance is the focus orwhere compositionality is less of
a concern, a Bray-Curtis kernel matrix may be suitable. However, for
compositional data, the Aitchison kernel matrix, combined with CLR,
remains the preferred choice due to its ability to properly handle the
relative nature of microbiome datasets. In addition to these choices,
some kernel matrices, such as UniFrac, account for phylogenetic
relationships between taxa. In studies where evolutionary history
plays a central role, a kernel matrix based on UniFrac could provide
valuable insights by incorporating this phylogenetic information.
However, for compositional data where relative abundances are of
primary interest, the Aitchison kernel remains the preferred choice.
Future research could further explore the impact of using different
kernel matrices, such as phylogeny-aware approaches like UniFrac, to
extend the applicability of our method to a broader range of
microbiome studies.

Additionally, while the choice of normalization and kernel
matrix plays a key role in the success of the method, the
performance of our approach remains robust as long as
appropriate preprocessing steps are applied. In future studies,
exploring how different transformations and kernel matrices
impact the visualization of longitudinal and repeated measures
microbiome data could further enhance the applicability of this
method across a wider range of microbiome studies.
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