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Compound inference models are crucial for discovering novel drugs in
bioinformatics and chemo-informatics. These models rely heavily on useful
descriptors of chemical compounds that effectively capture important
information about the underlying compounds for constructing accurate
prediction functions. In this article, we introduce quadratic descriptors, the
products of two graph-theoretic descriptors, to enhance the learning
performance of a novel two-layered compound inference model. A mixed-
integer linear programming formulation is designed to approximate these
quadratic descriptors for inferring desired compounds with the two-layered
model. Furthermore, we introduce different methods to reduce descriptors,
aiming to avoid computational complexity and overfitting issues during the
learning process caused by the large number of quadratic descriptors.
Experimental results show that for 32 chemical properties of monomers and
10 chemical properties of polymers, the prediction functions constructed by the
proposed method achieved high test coefficients of determination. Furthermore,
our method inferred chemical compounds in a time ranging from a few seconds
to approximately 60 s. These results indicate a strong correlation between the
properties of chemical graphs and their quadratic graph-theoretic descriptors.
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1 Introduction

In recent years, extensive studies have been done on the design of novel molecules using
various machine learning techniques (Lo et al., 2018; Tetko and Engkvist, 2020; Gartner III
et al., 2024). Computational molecular design also has a long history in the field of chemo-
informatics and has been studied under the names of quantitative structure-activity
relationship (QSAR) (Cherkasov et al., 2014) and inverse quantitative structure-activity
relationship (inverse QSAR) (Miyao et al., 2016; Ikebata et al., 2017; Rupakheti et al., 2015).
This design problem has also become an important topic in both bioinformatics and
machine learning.
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The purpose of QSAR is to predict chemical activities from given
chemical structures (Cherkasov et al., 2014). In most QSAR studies,
a chemical structure is represented as a vector of real numbers called
features or descriptors, and then a prediction function is applied to
the vector, where a chemical structure is given as a chemical graph,
which is defined by an undirected graph with an assignment of
chemical elements to vertices and an assignment of bond
multiplicities to edges. A prediction function is usually obtained
from existing structure–activity relationship data. To this end,
various regression-based methods have been utilized in
traditional QSAR studies, whereas machine learning-based
methods, including artificial neural network (ANN)-based
methods, have recently been utilized (Ghasemi et al., 2018; Kim
et al., 2021; Catacutan et al., 2024).

Conversely, the purpose of inverse QSAR is to predict chemical
structures from given chemical activities (Miyao et al., 2016; Ikebata
et al., 2017; Rupakheti et al., 2015; Miyao and Funatsu, 2024), where
additional constraints may often be imposed to effectively restrict
the possible structures. In traditional inverse QSAR, a feature vector
is computed by applying some optimization or sampling method on
the prediction function obtained by standard QSAR, and then
chemical structures are reconstructed from the feature vector.
However, the reconstruction itself is quite difficult due to the
vast number of possible chemical graphs (Bohacek et al., 1996).
In fact, inferring a chemical graph from a given feature vector, except
for some simple cases, is an NP-hard problem (Akutsu et al., 2012).
Due to this inherent difficulty, most existing methods employ
heuristic methods for the reconstruction of chemical structures
and thus do not guarantee optimal or exact solutions. On the
other hand, one of the advantages of ANNs is that generative
models, such as autoencoders and generative adversarial
networks, are available. Furthermore, graph-structured data can
be directly handled by using graph convolutional networks (Kipf
and Welling, 2016). Therefore, it is reasonable to try to apply ANNs
to inverse QSAR (Xiong et al., 2021). Various ANN models,
including recurrent networks, autoencoders, generative networks,
and invertible flow models, have been applied in this context (Segler

et al., 2018; Yang et al., 2017; Gómez-Bombarelli et al., 2018; Kusner
et al., 2017; De Cao and Kipf, 2018; Madhawa et al., 2019; Shi et al.,
2020). However, the optimality or exactness of the solutions
provided by these methods is not yet guaranteed.

A novel two-phase framework based on mixed-integer linear
programming (MILP) and machine learning methods has been
developed to infer chemical graphs (Shi et al., 2021; Zhu et al.,
2022b; Ido et al., 2021; Azam et al., 2021a). The first phase constructs
a prediction function η for a chemical property, and the second
phase infers a chemical graph with a target value of the property
based on the function η. For a chemical property π, we define Cπ as a
data set of chemical graphs such that the observed value a(C) of
property π for every chemical graph C ∈ Cπ is available.

In the first phase, we introduce a feature function f: G → RK for
a positive integer K, where the descriptors of a chemical graph are
defined based on local graph structures by using a two-layered model
(Shi et al., 2021) so that the inverse of f can be modeled by MILP in
the second phase. The prediction function aims to produce an output
y � η(x) ∈ R based on the feature vector x � f(C) ∈ RK for each
C ∈ Cπ . This output serves as a predicted value for the real value a(C).

The task of the second phase is to infer desired chemical graphs.
This phase consists of three steps. For a given set of rules called
topological specification σ and a range [y *, �y*] of the target property
value, the aim of the first step is to infer chemical graphs C* that
satisfy the rules σ and y *≤ η(f(C*))≤ �y* (see Figure 1 for an
illustration). For this, we formulate an MILP Mf,η,σ that represents
(i) the computation process of x ≔ f(C) from a chemical graph C

in the feature function f; (ii) that of y ≔ η(x) from a vector x ∈ RK

in the prediction function η; and (iii) the constraint C ∈ Gσ , where
Gσ denotes the set of all chemical graphs that satisfy the rules in σ.
Given an interval with y *, �y* ∈ R, we solve the MILPMf,η,σ to find
a feature vector x* ∈ RK and a chemical graph C† ∈ Gσ such that
f(C†) � x* and y *≤ η(x*)≤ �y* (if the MILP instance is infeasible,
this suggests that Gσ does not contain such a desired chemical
graph). See Zhu et al. (2022a) for a full description of the framework.

In the second and third steps of the process, we employ different
techniques to generate additional desired chemical graphs based on

FIGURE 1
An illustration of inferring desired chemical graphs C ∈ Gσ with y* ≤ η(f(C)) ≤ y*.
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the initial solution C†. These techniques include a dynamic
programming algorithm (Azam et al., 2021b) and a neighbor
search method (Azam et al., 2021a). The dynamic programming
algorithm operates by decomposing C† into trees and generating
their isomers. These isomers are then combined to produce a set of
isomers C* that belong to the desired chemical graph space Gσ . These
isomers are referred to as the recombination solutions ofC†. The idea of
the neighbor searchmethod is to generate newdesired chemical graphs

C†
i ∈ Gσ that have a slightly different feature vector than that ofC

†. For
this purpose, we solve an augmentedMILP obtained byMf,η,σ with an
additional set of linear constraints. The resulting graphs obtained
through this process are referred to as the neighbor solutions of C†.

Contribution: The feature vector x � f(C) of a chemical graphC
in this framework consists of the descriptors x(i), 1≤ i≤K that extract
the local information of the interior and exterior parts of the graph
obtained from the two-layered model. These simple descriptors play a

TABLE 1 Results of setting data sets for monomers.

π Λ |Cπ| n , �n a , �a |Γ| |F | K1

Biological half life (BHL) (PubChem, 2022) Λ7 514 5, 36 0.03, 732.99 26 101 166

Boiling point (BP) (PubChem, 2022) Λ2 370 4, 67 −11.7, 470.0 22 130 184

Boiling point (BP) (PubChem, 2022) Λ7 444 4, 67 −11.7, 470.0 26 163 230

Critical pressure (CP) (PubChem, 2022) Λ5 131 4, 63 4.7×10−6, 5.52 8 79 119

Critical temperature (CT) (PubChem, 2022) Λ2 125 4, 63 56.1, 3607.5 8 76 113

Critical temperature (CT) (PubChem, 2022) Λ5 132 4, 63 56.1, 3607.5 8 81 121

Dissociation constants (DC) (PubChem, 2022) Λ2 141 5, 44 0.5, 17.11 20 62 111

Dissociation constants (DC) (PubChem, 2022) Λ7 161 5, 44 0.5, 17.11 25 69 130

Entropy (ET) (Duchowicz et al., 2002) Λ7 17 5, 12 64.34, 96.21 5 17 53

Flash point in closed cup (FP) (PubChem, 2022) Λ2 368 4, 67 −82.99, 300.0 20 131 183

Flash point in closed cup (FP) (PubChem, 2022) Λ7 424 4, 67 −82.99, 300.0 25 161 229

Flammable limits lower of organics (FLMLO) (Yuan et al., 2019) Λ16 1046 1, 49 0.185, 4.3 34 282 376

Heat of vaporization (HV) (PubChem, 2022) Λ2 94 4, 16 19.12, 210.3 12 63 105

Kovats retention index (KOV) (Jalali-Heravi and Fatemi, 2001) Λ1 52 11, 16 1422.0, 1919.0 9 33 64

Octanol/water partition coefficient (KOW) (PubChem, 2022) Λ2 684 4, 58 −7.5, 15.6 25 166 223

Octanol/water partition coefficient (KOW) (PubChem, 2022) Λ8 899 4, 69 −7.5, 15.6 37 219 303

Lipophilicity (LP) (Xiao, 2017) Λ2 615 6, 60 −3.62, 6.84 32 116 186

Lipophilicity (LP) (Xiao, 2017) Λ8 936 6, 74 −3.62, 6.84 44 136 231

Melting point (MP) (PubChem, 2022) Λ2 467 4, 122 −185.33, 300.0 23 142 197

Melting point (MP) (PubChem, 2022) Λ8 577 4, 122 −185.33, 300.0 32 176 255

Optical rotation (OPTR) (PubChem, 2022) Λ2 147 5, 44 −117.0, 165.0 21 55 107

Optical rotation (OPTR) (PubChem, 2022) Λ4 157 5, 69 −117.0, 165.0 25 62 123

Refractive index of trees (RFIDT) (PubChem, 2022) Λ10 191 4, 26 0.919, 1.613 17 115 168

Solubility (SL) (MoleculeNet, 2022) Λ2 673 4, 55 −9.332, 1.11 27 154 217

Solubility (SL) (MoleculeNet, 2022) Λ8 915 4, 55 −11.6, 1.11 42 207 300

Surface tension (SFT) (Goussard et al., 2017) Λ3 247 5, 33 12.3, 45.1 11 91 128

Viscosity (VIS) (Goussard et al., 2017) Λ3 282 5, 36 −0.64, 1.63 12 88 126

Energy of highest-occupied molecular orbital (HOMO) (MoleculeNet, 2022) Λ9 977 6, 9 −0.3335, −0.1583 59 190 297

Energy of lowest-unoccupied molecular orbital (LUMO) (MoleculeNet, 2022) Λ9 977 6, 9 −0.1144, 0.1026 59 190 297

The energy difference between HOMO and LUMO (GAP) (MoleculeNet, 2022) Λ9 977 6, 9 0.1324, 0.4117 59 190 297

Isotropic polarizability (ALPHA) (MoleculeNet, 2022) Λ9 977 6, 9 50.9, 99.6 59 190 297

Heat capacity at 298.15 K (CV) (MoleculeNet, 2022) Λ9 977 6, 9 19.2, 44.0 59 190 297

Electric dipole moment (MU) (MoleculeNet, 2022) Λ9 977 6, 9 0.04, 6.897 59 190 297
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crucial role in deriving compactMILP formulations for the inference of
a desired chemical graph. However, for certain chemical properties, the
prediction functions constructed based on the feature functionf could
not achieve evaluation scores in the acceptable range. To improve the
evaluation score, we introduce new quadratic descriptors x(i)x(j) (or
x(i)(1 − x(j)). This drastically increases the number of descriptors,
which would take extra running time for learning or lead to overfitting
of the data set. Moreover, computed quadratic descriptors cannot be
directly formulated as a set of linear constraints in the original MILP.
For this, we introduce a method of reducing a set of descriptors into a
smaller set that delivers a prediction function with a higher
performance. We also design an MILP formulation to represent a
quadratic term x(i)x(j). Based on the sameMILPMf,η,σ formulation
proposed by Zhu et al. (2022b), we implemented the framework to
treat the feature function with quadratic descriptors. From the results
of our computational experiments on more than 40 chemical
properties, we observe that our new method of utilizing quadratic
descriptors has improved the performance of a prediction function for
many chemical properties.

2 Quadratic descriptors and their
approximation in an MILP

In the framework with the two-layered model (Shi et al., 2021), the
feature vector consists of graph-theoretic descriptors that are mainly the
frequencies of atoms, bonds, and edge configurations in the interior and
exterior of the chemical compounds. See Zhu et al. (2022a) for the details
of the interior and exterior of chemical compounds and all the descriptors
x(1), x(2), . . . , x(K1), which are called linear descriptors, respectively.
There are some chemical properties for which the performance of a
prediction function constructed with this feature vector remains rather
low. To improve the learning performance in the two-layered model, we
introduce quadratic terms x(i)x(j) (or x(i)(1 − x(j))) and

1≤ i≤ j≤K1 as a new descriptor, where we assume that each x(i) is
normalized between 0 and 1 by using the min-max normalization. Note
that computing quadratic descriptors cannot be directly formulated as a
set of linear constraints in the original MILP used in the two-layered
model. Therefore, this section introduces an MILP formulation that
approximates the product of two descriptors in a MILP.

Given two real values x and y with 0≤x≤ 1 and 0≤y≤ 1, the
process of computing the product z � xy can be approximately
formulated as the following MILP. First, regard (2p+1 − 1)x as an
integer with a binary expression of p + 1 bits, where x(j) ∈ [0, 1]
denotes the value of the j-th bit. Then, compute y · x(j), which
becomes the j-th bit z(j) of (2p+1 − 1)z.

Constants:

- x, y: reals with 0≤ x, y≤ 1;
- p: a positive integer;

variables:

- z, z(j), j ∈ [0, p]: reals with 0≤ z, z(j) ≤ 1;
- x(j) ∈ [0, 1], j ∈ [0, p]: binary variables;

constraints:

∑
j∈ 0,p[ ]

2jx j( ) − 1≤ 2p+1 − 1( )x≤ ∑
j∈ 0,p[ ]

2jx j( ),

z j( ) ≤ x j( ), j ∈ 0, p[ ],
y − 1 − x j( )( )≤ z j( ) ≤y + 1 − x j( )( ), j ∈ 0, p[ ],

z � 1

2p+1 − 1
∑

j∈ 0,p[ ]
2jz j( ).

Note that the necessary number of integer variables for
computing xy for one pair of x and y is p. In this article, we set
p ≔ 6 in our computational experiment. The relative error by p � 6
in the above method is at most 1

2p+1−1 � 1/127, which is
approximately 0.8%.

TABLE 2 Results of setting data sets for polymers.

π Λ |Cπ| n , �n a , �a |Γ| |F | K1

Experimental amorphous density (AMD) (Bicerano, 2002) Λ2 86 4, 45 0.838, 1.34 16 25 83

Experimental amorphous density (AMD) (Bicerano, 2002) Λ13 93 4, 45 0.838, 1.45 18 30 94

Characteristic ratio (CHAR) (Bicerano, 2002) Λ2 30 4, 18 3.7, 15.9 15 17 68

Characteristic ratio (CHAR) (Bicerano, 2002) Λ12 32 4, 18 3.7, 15.9 15 18 71

Characteristic ratio (CHAR) (Bicerano, 2002) Λ6 35 4, 18 3.7, 15.9 18 21 83

Dielectric constant (DIEC) (Bicerano, 2002) Λ12 36 4, 22 2.13, 3.4 11 18 67

Dissipation factor (DISF) (Bicerano, 2002) Λ13 132 4, 45 7×10−5, 0.07 15 18 78

Permittivity (PRM) (Bicerano, 2002) Λ2 112 4, 45 2.23, 4.91 14 15 69

Permittivity (PRM) (Bicerano, 2002) Λ13 132 4, 45 2.23, 4.91 15 18 78

Refractive index of polymers (RFIDP) (Bicerano, 2002) Λ11 92 4, 29 0.4899, 1.683 15 35 96

Refractive index of polymers (RFIDP) (Bicerano, 2002) Λ14 125 4, 29 0.4899, 1.683 19 50 124

Refractive index of polymers (RFIDP) (Bicerano, 2002) Λ15 135 4, 29 0.4899, 1.71 23 56 144

Glass transition (TG) (Bicerano, 2002) Λ2 204 4, 58 171, 673 19 36 101

Glass transition (TG) (Bicerano, 2002) Λ7 232 4, 58 171, 673 21 43 118
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3 Methods for reducing descriptors

The number of descriptors in the two-layered model increases
drastically due to the quadratic descriptors. More precisely, if
D(1)

π ≔ {x(k) | k ∈ [1, K1]} denotes the set of linear descriptors,
and D(2)

π ≔ {x(i)x(j) | 1≤ i≤ j≤K1} ∪ {x(i)(1 − x(j)) | 1≤ i, j≤

K1} denotes the set of quadratic descriptors constructed over a
data set for a property π, then the total number of descriptors are
K1 + (3(K1)2 +K1)/2. This large number of descriptors would
increase the running time to construct prediction functions or
lead to overfitting of the data set. To address these issues, we
propose methods for reducing descriptors in this section.

TABLE 3 Results of constructing prediction functions for monomers.

π Λ LLR ANN ALR R-MLR K1*,K2*

BHL Λ7 0.483 0.622 0.265 *0.659 0, 27

BP Λ2 0.599 0.765 0.816 *0.935 1, 59

BP Λ7 0.663 0.720 0.832 *0.899 0, 38

CP Λ5 0.555 0.727 0.690 *0.841 0, 67

CT Λ2 0.037 0.357 0.900 *0.937 1, 47

CT Λ5 0.048 0.357 *0.895 0.860 0, 13

DC Λ2 0.489 0.651 0.488 *0.908 0, 58

DC Λ7 0.574 0.622 0.602 *0.829 0, 26

ET Λ7 0.132 0.479 0.464 *0.996 0, 13

FP Λ2 0.589 0.746 0.719 *0.899 0, 42

FP Λ7 0.571 0.745 0.684 *0.846 0, 32

FIMLO Λ16 0.819 0.928 0.604 *0.949 0, 77

HV Λ2 0.864 0.778 0.816 *0.970 0, 22

KOV Λ1 0.677 0.727 0.838 *0.953 2, 19

KOW Λ2 0.953 0.952 0.964 *0.967 0, 55

KOW Λ8 0.927 0.937 *0.952 0.950 0, 64

LP Λ2 0.856 0.867 0.844 *0.928 0, 89

LP Λ8 0.840 0.859 0.807 *0.914 0, 109

MP Λ2 0.810 0.800 0.831 *0.873 0, 51

MP Λ8 0.810 0.820 0.807 *0.898 0, 58

OPTR Λ2 0.825 0.918 0.876 *0.970 0, 85

OPTR Λ4 0.825 0.878 0.870 *0.970 0, 69

RFIDT Λ10 0.000 0.453 0.425 *0.775 0, 43

SL Λ2 0.808 0.848 0.784 *0.894 0, 82

SL Λ8 0.808 0.861 0.828 *0.897 0, 74

SFT Λ3 0.927 0.859 0.847 *0.941 0, 36

VIS Λ3 0.893 0.929 0.911 *0.973 0, 43

HOMO Λ9 *0.841 0.689 0.689 0.804 0, 87

LUMO Λ9 0.841 0.860 0.833 *0.920 0, 102

GAP Λ9 0.784 0.795 0.755 *0.876 0, 83

ALPHA Λ9 0.961 0.888 0.953 *0.980 0, 104

CV Λ9 0.970 0.911 0.966 *0.978 0, 83

MU Λ9 0.367 0.409 0.403 *0.645 0, 112
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Let C be a given set of chemical compounds,D be a descriptor set
obtained using the two-layered model, and K* ∈ [1, |D|] be the size
of a set of selected descriptors.

For given C, D and a real number λ> 0, we denote by Des-set-
LLR(C, D, λ) the subset S of D such that w(d) � 0 for d ∈ S and the
hyperplane (w, b) constructed by the LLR procedure LLR(C, D, λ).

3.1 A method based on lasso linear
regression

Because the lasso linear regression finds some number of
descriptors d ∈ D with w(d) � 0 in the output hyperplane (w, b),
we can reduce a given set of descriptors by applying the lasso linear
regression repeatedly. Choose parameters cmax and dmax so that
LLR(C, D, λ) can be executed in a reasonable running time when
|C|≤ cmax and |D|≤dmax. Let ~K ∈ [1, |D|] be an integer for the
number of descriptors that we choose from a given set D of
descriptors.

LLR-Reduce(C, D):

Input: A data set C and a set D of descriptors;
Output: A subset ~D ⊆ D with | ~D| � ~K.
Initialize D′ ≔ D;
while |D′|> ~K do
Partition D′ randomly into disjoint subsets

D1, D2, . . . , Dp such that
|Di|≤ dmax for each i;

for each i � 1, 2, . . . , p do
Choose a subset Ci with |Ci| � min {cmax, |C|} of C randomly;
Di′ ≔ Des-set-LLR(Ci, Di, λ) for some λ> 0

end for;
D′ ≔ D1′ ∪ D2′ ∪/∪ Dp′

end while;
Output ~D ≔ D′ after adding to D′ extra ~K − |D′| descriptors
from the previous
set D′ when |D′|< ~K by using the K-best method.

In this article, we set cmax ≔ 200, dmax ≔ 200, ~K ≔ 5000 and
w(d) ≔ 0 if |w(d)|≤ 10−6 in our computational experiment.

3.2 A method based on the backward
stepwise procedure

A backward stepwise procedure (Draper and Smith, 1998)
reduces the number of descriptors one by one, choosing the one
removal that maximizes the learning performance and outputs a
subset with the maximum learning performance among all subsets
during the reduction iteration.

For a subset S ⊆ D and a positive integer p, let R2
CV,MLR(C, S, p)

denote the median of the coefficient of determination R2 test score of
a prediction function ηw,b by MLR(C, S) constructed during p times
5-fold cross-validations. We define a performance evaluation
function gp: 2D → R for an integer p≥ 1 such that
gp(S) � R2

CV,MLR(C, S, p). The backward stepwise procedure with
this function gp is described as follows.

BS-Reduce(C, D, p):

Input: A data set C, a set D of descriptors, an integer p≥ 1, and a
performance evaluation function gp: 2D → R

defined above;
Output: A subset D* ⊆ D.
Compute ℓbest ≔ gp(D); Initialize Dbest ≔ D′ ≔ D;
while D′ ≠ ∅ do
Compute ℓ(d) ≔ gp(D′\{d}) for each descriptor d ∈ D′;

TABLE 4 Results of constructing prediction functions for polymers. The negative value shows that the respective model is arbitrarily worse.

π Λ LLR ANN ALR R-MLR K1*,K2*

AMD Λ2 0.914 0.885 *0.933 0.906 0, 5

AMD Λ13 0.918 0.824 0.917 *0.953 0, 6

CHAR Λ2 0.210 0.642 0.863 *0.938 0, 10

CHAR Λ12 0.088 0.640 0.835 *0.924 0, 9

CHAR Λ6 −0.073 0.527 0.766 *0.950 0, 12

DEIC Λ12 0.761 0.641 0.918 *0.956 3, 41

DISF Λ13 0.623 0.801 0.308 *0.906 1, 23

PRM Λ2 0.801 0.801 0.505 *0.967 0, 26

PRM Λ13 0.784 0.735 0.489 *0.977 0, 34

RFIDP Λ11 0.104 0.423 0.853 *0.962 2, 52

RFIDP Λ14 0.373 0.560 0.848 *0.953 2, 43

RFIDP Λ15 0.346 0.492 0.883 *0.947 5, 53

TG Λ2 0.902 0.883 0.923 *0.958 1, 33

TG Λ7 0.894 0.860 0.927 *0.957 0, 32
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Set d* ∈ D′ to be a descriptor that maximizes ℓ(d) over
all d ∈ D′;
Update: D′ ≔ D′\{d*};
if ℓ(d*)> ℓbest then updateDbest ≔ D′ and ℓbest ≔ ℓ(d*) end if

end while;
Output D* ≔ Dbest.

Based on the lasso linear regression and the backward
stepwise procedure, we design the following method for
choosing a subset D* of a given set D of descriptors. We are
given a set A of 17 real numbers and a set B(a) of 16 real numbers

close to each number a ∈ A. The method first chooses a best
parameter λbest ∈ A to construct a prediction function by LLR and
then chooses a subset Di ⊆ D for each λi ∈ B(λbest) by the
backward stepwise procedure. The procedure takes O(|D|2)
iterations, which may take a large amount of running time.
We introduce an upper bound smax on the size of an input
descriptor set D for the backward stepwise procedure. Let p1,
p2, and p3 be integer parameters that control the number of
executions of cross-validations to evaluate the learning
performance in the method.

Select-Des-set(C, D):

FIGURE 2
(i) Seed graph G1

C for I1b and Id; (ii) seed graph G2
C for I2b; (iii) seed graph G3

C for I3b; (iv) seed graph G4
C for I4b.

FIGURE 3
An illustration of chemical compounds for instances Ic and Id: (A) CA: CID 24822711; (B) CB: CID 59170444; (C) CA: CID 10076784; (D) CB: CID
44340250, where hydrogens are omitted.
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Input: A data set C, a set D of descriptors, a set A of different
values of λ, and a set B(λ) of real numbers close to
each λ ∈ A;

Output: A subset D* of D.
for each λ ∈ A do
Compute Dλ ≔ Des-set-LLR(C, D, λ) and

ℓλ ≔ R2
CV,MLR(C, Dλ, p1)

end for;
Set λbest to be a λ ∈ A that maximizes ℓλ; Denote B(λbest)
by {λ1, λ2, . . . , λ16};
for each i ∈ [1, 16] do
Compute Di ≔ Des-set-LLR(C, D, λi) and let

(w, b), w ∈ R|D|, b ∈ R be the hyperplane obtained by this LLR;
if |Di|≤ smax then

Di′ ≔ Di

else
Let Di′ consist of smax descriptors d ∈ Di that have the smax

largest absolute
values |w(d)| in the weight sets {w(d) | d ∈ Di} of the

hyperplane (w, b)
end if;

D†
i ≔BS-Reduce(C, Di′, p2); ℓi ≔ R2

CV,MLR(C, D†
i , p3)

end for;
Output D* to be a set D†

i that maximizes ℓi, i ∈ [1, 16].

In the computational experiment in this article, we set
A �{0, 10−6, 10−5, 10−4, 10−3, 0.01, 0.05, 0.1, 0.5, 0.75, 1, 2, 5, 10, 25,
50, 100}, |B(λ)| � 16 for each λ ∈ A, p1 ≔ p2 ≔ p3 ≔ 5, and
smax ≔ 150 + 104/(|C| + 200).

4 Results and discussion

With our new method of choosing descriptors and formulating
an MILP to treat quadratic descriptors in the two-layered model, we
implemented the framework for inferring chemical graphs and
conducted experiments to evaluate the computational efficiency.

4.1 Chemical properties

In the first phase, we used the following 32 chemical properties
of monomers and ten chemical properties of polymers.

For monomers, we used the following data sets: biological half-
life (BHL), boiling point (BP), critical temperature (CT), critical
pressure (CP), dissociation constants (DC), flash point in closed
cup (FP), heat of combustion (HC), heat of vaporization (HV),
octanol/water partition coefficient (KOW), melting point (MP),
optical rotation (OPTR), refractive index of trees (RFIDT), vapor
density (VD) and vapor pressure (VP) provided by HSDB from
PubChem (2022); electron density on the most positive atom
(EDPA) and Kovats retention index (KOV) provided by Jalali-
Heravi and Fatemi (2001); entropy (ET) provided by Duchowicz
et al. (2002); heat of atomization (HA) and heat of formation (HF)
provided by Roy and Saha (2003); surface tension (SFT) by Goussard
et al. (2017); viscosity (VIS) provided by Goussard et al. (2020);
isobaric heat capacities liquid (LHCL) and isobaric heat capacities
solid (LHCS) provided by Naef (2019); lipophilicity (LP) provided by
Xiao (2017); flammable limits lower of organics (FLMLO) provided by
Yuan et al. (2019); molar refraction at 20° (MR) provided by Ponce
(2003); and solubility (SL) provided by ESOL (MoleculeNet, 2022),
and energy of highest occupied molecular orbital (HOMO), energy of
lowest unoccupied molecular orbital (LUMO), the energy difference
between HOMO and LUMO (GAP), isotropic polarizability (ALPHA), heat
capacity at 298.15 K (CV), internal energy at 0 K (U0), and electric
dipole moment (MU) provided by ESOL (MoleculeNet, 2022), where
the properties from HOMO to MU are based on a common
data set QM9.

The data set QM9 contains more than 130,000 compounds. In
our experiment, we used a set of 1,000 compounds randomly
selected from the data set. For the HV property, we removed the
chemical compound with the compound identifier (CID) � 7947 as
an extremal outlier from the original data set.

For polymers, we used the following data provided by Bicerano
(2002): experimental amorphous density (AMD), characteristic ratio
(CHAR), dielectric constant (DIEC), dissipation factor (DISF), heat
capacity in liquid (HCL), heat capacity in solid (HCS), mol volume
(MLV), permittivity (PRM), refractive index of polymers (RFIDP), and
glass transition (TG), where we excluded from our test data set every
polymer whose chemical formula could not be found by its name in
the book (Bicerano, 2002). A summary of these properties is given in
Tables 1, 2. We remark that the previous learning experiments for
π ∈{ CHAR, RFIDP} based on the two-layered model proposed by Azam
et al. (2021a) and Zhu et al. (2022c) excluded some number of
polymers as outliers. In our experiments, we do not exclude any
polymer from the original data set as outliers for these properties.

TABLE 5 Results of inferring a chemical graph C† and generating recombination solutions for BP with Λ7.

inst. nLB y *, �y* #v #c I-time n nint η D-time C-LB #C

Ia 30 225, 235 10,502 10,240 4.29 49 26 233.92 0.072 3 3

I1b 35 285, 295 10,507 7,793 2.27 35 10 286.52 0.034 6 6

I2b 45 365, 375 13,000 10,913 11.9 49 25 370.70 0.14 3202 100

I3b 45 305, 315 12,788 10,920 7.07 48 25 309.39 0.22 6,304 100

I4b 45 260, 270 12,576 10,928 10.7 49 27 266.26 0.17 376 100

Ic 50 340, 350 7,515 8,270 0.867 50 33 344.98 0.019 2 2

Id 40 320, 330 6,135 7,773 8.22 45 23 329.85 8.3 6,733,440 100
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4.2 Experimental setup and setting data set

We executed the experiments on a PC with a Core i7-9700
(3.0 GHz; 4.7 GHz at the maximum processor and 16 GB RAM
DDR4 memory. Prediction functions were constructed using
scikit-learn version 1.0.2 with Python 3.8.12, and
MLPRegressor and rectified linear unit (ReLU) activation
function were used for learning based on ANN. The prediction
functions constructed by different machine learning models were
evaluated using the coefficient of determination R2. We performed
10 rounds of 5-fold cross-validation, calculated the training and
testing R2 scores for each cross-validation, and recorded the median
of the testing R2 scores across all 50 cross-validations.

For each property π, we first selected a set Λ of chemical
elements and then collected a data set Cπ on chemical graphs
over the set Λ of chemical elements. To construct the data set
Cπ , we eliminated chemical compounds that did not satisfy one of
the following: the graph is connected, the number of carbon atoms is
at least four, and the number of non-hydrogen neighbors of each
atom is at most four.

We set a branch-parameter ρ to be 2, introduce linear
descriptors defined by the two-layered graph in the chemical
model without suppressing hydrogen, and use the set D(1)

π ∪ D(2)
π

of linear and quadratic descriptors (see Zhu et al. (2022a) for the
details). We normalize the range of each linear descriptor and the
range {t ∈ R | a ≤ t≤ �a} of property values a(C),C ∈ Cπ by using
the min–max normalization.

Among the above properties, we found that the median of the
test coefficient of determination R2 of the prediction function
constructed by LLR (Zhu et al., 2022b) or ALR (Zhu et al.,
2022c) exceeds 0.98 for the following nine properties of
monomers (resp., three properties of polymers): EDPA, HC, HA, HF,

LHCL, LHCS,MR, VD, and U0 (resp., HCL, HCS, and MlV). We excluded the
above properties from further analysis because they already achieved
excellent predictive performance, and further improvement would
not provide additional insights. The remaining 23 chemical
properties of monomers and seven chemical properties of
polymers were used in the following experiments.

Tables 1, 2 show the size and range of data sets that we prepared
for each chemical property to construct a prediction function, where
we denote the following:

- π: the name of a chemical property used in the experiment.

- Λ: a set of selected elements used in the data set Cπ ;Λ is one of
the following 19 sets:
Λ1 �{H,C,O}; Λ2 �{H,C,O, N}; Λ3 �{H,C,O, Si(4) }; Λ4 �{H,C,O,
N,S(2),F};Λ5 �{H,C,O, N, Cl, Pb};Λ6 �{H,C,O, N,Si(4),Cl,Br};
Λ7 �{H,C,O, N,S(2),S(6),Cl}; Λ8 �{H,C,O, N,S(2),S(4),S(6),Cl};
Λ9 �{H, C(2),C(3),C(4),C(5),O, N(1), N(2), N(3), F}; Λ10 �{H,C,O,
N,P(2),P(5),Cl}; Λ11 �{H, C, O(1), O(2), N}; Λ12 �{H, C, O, N, Cl};
Λ13 �{H, C, O, N, Cl, S(2) }; Λ14 �{H, C, O(1), O(2), N, Cl, Si(4),
F}; Λ15 �{H,C,O(1), O(2), N, Si(4),Cl,F
S(2), S(6),Br}; Λ16 �{H, C, O(2), N, Cl, P(3), P(5), S(2), S(4), S(6),

Si(4), Br, I}, where a(i) for a chemical element a, and an integer
i≥ 1 means a chemical element a with valence i.
- |Cπ|: the size of data set Cπ over Λ for the property π.
- n , �n: the minimum and maximum values of the number
n(C) of non-hydrogen atoms in the compounds C in Cπ .

- a , �a: the minimum and maximum values of a(C) for π over
the compounds C in Cπ .

- |Γ|: the number of different edge-configurations of interior
edges over the compounds in Cπ .

- |F |: the number of non-isomorphic chemical rooted trees in
the set of all 2-fringe-trees in the compounds in Cπ .

- K1: the size |D(1)
π | of a set D(1)

π of linear descriptors, where
|D(2)

π | � (3(K1)2 +K1)/2 holds.

4.3 Results on the first phase of
the framework

For each chemical property π, we construct a prediction
function by one of the following four methods (i)–(iv) and
compare their results.

(i) LLR: use lasso linear regression on the setD(1)
π of linear descriptors

(see Zhu et al. (2022b) for the details of the implementation);
(ii) ANN: use ANN on the setD(1)

π of linear descriptors (see Zhu
et al. (2022b) for the details of the implementation);

(iii) ALR: use adjustive linear regression on the set D(1)
π of linear

descriptors (see Zhu et al. (2022c) for the details of the
implementation); and

(iv) R-MLR: apply our method (see Zhu et al. (2022a)) of
reducing descriptors to the set D(1)

π ∪ D(2)
π of linear and

quadratic descriptors, and use multi-linear regression for the
resulting set of descriptors.

TABLE 6 Results of inferring a chemical graph C† and generating recombination solutions for DC with Λ7.

inst. nLB y *, �y* #v #c I-time n nint η D-time C-LB #C

Ia 30 0.55, 0.60 10,194 9787 3.91 41 25 0.558 0.069 2 2

I1b 35 1.10, 1.15 10,415 7,368 4.73 35 11 1.104 0.10 16 16

I2b 45 6.00, 6.05 12,976 10,481 57.4 45 25 6.04 0.12 2040 100

I3b 45 1.45, 1.50 2,767 10,488 39.7 49 26 1.488 0.28 21,600 100

I4b 45 6.10, 6.15 12,558 10,494 26.4 46 25 6.10 0.027 2 2

Ic 50 12.35, 12.40 7,207 7,819 1.75 50 34 12.38 0.020 2 2

Id 40 3.15, 3.20 5827 7,325 14.9 41 23 3.199 0.079 18,952 100
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For methods (i)–(iii), we use the same implementation described
in Zhu et al. (2022b) and Zhu et al. (2022c) and omit the details.

In method (iv), we apply LLR-Reduce(Cπ , D(1)
π ∪ D(2)

π ) to
compute ~D ⊂ D(1)

π ∪ D(2)
π of size 5000 if |D(1)

π ∪ D(2)
π |> 5000 for

a monomer property π. In the other case, we set ~D ≔ D(1)
π ∪ D(2)

π .
Then, apply Select-Des-set(Cπ , ~D) to get D* ⊆ ~D, which is used to
construct prediction functions based on MLR.

Results of the learning experiments are listed in Tables 3, 4, where:

- π: the property name;
- Λ: the chemical element set of Cπ ;
- LLR, ANN, ALR, R-MLR: the median of test R2 score in ten
times 5-fold cross-validations for functions obtained by
methods (i), (ii), (iii), and (iv), respectively;

- the best R2 score for each property among LLR, ANN, ALR,
and R-MLR is indicated by “*”;

- K1*, K2*: the number K1* of reduced linear descriptors and the
numberK2* of reduced quadratic descriptors inD* used in MLR.

The computation times of finding D* and constructing
functions by our method (iv) were in the ranges of [80, 4 × 104]
seconds and [0.03, 0.46] seconds, respectively.

Tables 3, 4 show that method (iv) significantly increased the
learning performance of several properties and achieved the best
scores amongmethods (i)–(iii) for 43 of 47 data sets. We also noticed
that most of the selected descriptors in D* are quadratics, which
confirms the effectiveness of the proposed quadratic descriptors.

4.4 Results on the second phase of
the framework

To execute the second phase, we used a set of seven instances Ia,
Iib, i ∈ [1, 4], Ic, and Id based on the seed graphs prepared by Zhu
et al. (2022b). We here present their seed graphs GC (see Zhu et al.
(2022a)) for the details of Ia, Iib, i ∈ [1, 4], Ic, and Id).

The seed graph G1
C of I1b (resp., Gi

C, i � 2, 3, 4 of
Iib, i � 2, 3, 4) is illustrated in Figure 2.

Instance Ic is introduced to infer an intermediate graph C†,
which preserves

- the core part of CA: CID 24822711 given in Figure 3A; and
- the frequencies of all edge-configurations of CB: CID

59170444 given in Figure 3B.The seed graph GC of this instance
is depicted in gray in Figure 3A).

Instance Id has been introduced in order to infer a chemical
graph C† such that

- C† is monocyclic (where the seed graph of Id is given by G1
C in

Figure 2(i)); and
- the frequency vector of edge configurations in C† is a vector

obtained by merging those of chemical graphs CA: CID
10076784 and CB: CID 44340250 in Figures 3C, D, respectively.

4.4.1 Solving an MILP for the inverse problem
We executed the stage of solving an MILP to infer a chemical

graph for two properties π ∈{BP, DC}.
For the MILP formulation Mf,η,σ , we use the prediction

function η for each π ∈{BP, DC} by method (iv), R-MLR
that attained the median test R2 in Table 3. To solve an
MILP with the formulation, we used CPLEX version 12.10.
Tables 5, 6 show the computational results of the experiment
in this stage for the two properties, where we denote
the following:

- nLB: a lower bound on the number of non-hydrogen atoms in a
chemical graph C to be inferred;

- y *, �y*: lower and upper bounds y *, �y* ∈ R on the value a(C)
of a chemical graph C to be inferred;

- #v (resp., #c): the number of variables (resp., constraints) in
the MILP;

- I-time: the time (sec.) to solve the MILP;
- n: the number n(C†) of non-hydrogen atoms in the chemical
graph C† inferred by solving the MILP;

- nint: the number nint(C†) of interior vertices in the chemical
graph C†; and

- η: the predicted property value η(f(C†)) of the chemical
graph C†.

FIGURE 4
(A)C† with η(f(C†)) � 344.98 inferred from Ic with (y *, �y*) � (340, 350) of BP; (B)C† with η(f(C†)) � 0.558 inferred from Ia with (y *, �y*) � (0.55,0.60)
of DC; and (C) C† with η(f(C†)) � 3.199 inferred from Id with (y *, �y*) � (3.15,3.20) of DC.
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Figure 4A illustrates the chemical graphC† inferred from Ic with
(y *, �y*) � (340, 350) of BP in Table 5.

Figure 4B (resp., Figure 4C) illustrates the chemical graph C†

inferred from Ia with (y *, �y*) � (0.55, 0.60) (resp., Id with
(y *, �y*) � (3.15, 3.20)) of DC in Table 6.

In this experiment, we prepared several different types of
instances: instances Ia and Ic have restricted seed graphs, the
other instances have abstract seed graphs, and instances Ic and
Id have restricted sets of fringe trees. From Tables 5, 6, we observe
that an instance with many variables and constraints takes more
running time than those with a smaller size in general. All instances
in this experiment are solved in a few seconds to approximately 60 s
with our MILP formulation.

4.4.2 Generating recombination solutions
LetC† be a chemical graph obtained by solving theMILPMf,η,σ for

the inverse problem. We here execute a stage of generating
recombination solutions C* ∈ Gσ of C† such that f(C*) � x* �
f(C†).

We execute an algorithm for generating chemical isomers ofC† up
to 100 when the number of all chemical isomers exceeds 100. For this,
we use a dynamic programming algorithm (Zhu et al., 2022b). The
algorithm first decomposes C† into a set of acyclic chemical graphs.
Next, it replaces each acyclic chemical graph T with another acyclic
chemical graph T′ that admits the same feature vector as that of T, and
finally, it assembles the resulting acyclic chemical graphs into a chemical
isomer C* of C†. The algorithm can compute a lower bound on the
total number of all chemical isomersC† without generating all of them.

Tables 5, 6 show the computational results of the experiment in
this stage for the two properties π ∈{BP, DC}, where we denote
the following:

- D-time: the running time (s) to execute the dynamic
programming algorithm to compute a lower bound on the
number of all chemical isomers C* of C† and generate all (or
up to 100) chemical isomers C*;

- C-LB: a lower bound on the number of all chemical isomersC*
of C†; and

- #C: the number of all (or up to 100) chemical isomersC* ofC†

generated in this stage.

From Tables 5, 6, we observe the running time and the number
of generated recombination solutions in this stage.

The chemical graphC† in I2b, I
3
b, and Id admits a large number of

chemical isomers C* in some cases, where a lower bound C-LB on
the number of chemical isomers is derived without generating all of
them. For the other instances, the running time for generating up to
100 target chemical graphs in this stage is less than 0.03 s. For some

chemical graphs C†, the number of chemical isomers found by our
algorithm was small. This is because some of the acyclic chemical
graphs in the decomposition of C† have no alternative acyclic
chemical graph other than the original one.

4.4.3 Generating neighbor solutions
LetC† be a chemical graph obtained by solving the MILPMf,η,σ

for the inverse problem. We executed a stage of generating neighbor
solutions of C†.

We select an MILP for the inverse problem with a prediction
function η such that a solution C† of the MILP admits only two
isomers C* in the stage of generating recombination solutions; that
is, instance Ic for property BP with Λ7 and instances Ia, I4b and Ic for
property DC with Λ7.

In this experiment, we add to the MILPMf,η,σ an additional set
Θ of two linear constraints on linear and quadratic descriptors as
follows. For the two constraints, we use the prediction functions ηπ
constructed by R-MLR for properties π ∈{ LP, SL} with Λ8 in Table 3.

LetDπ* denote the set of descriptors selected in the construction
of prediction function for properties π ∈{ BP,DC} withΛ7 and π ∈{ LP,
SL} with Λ8 in Table 3, and let Dunion

π , π ∈{ BP, DC} denote the union
Dπ* ∪ DLP* ∪ DSL* .

We regard each of ηLP and ηSL as a function fromR|Dunion
π | toR for

π ∈{ BP, DC}. We set pdim ≔ 2 and let Θ consist of two linear
constraints θ1 ≔ ηLP and θ2 ≔ ηSL. We set δ ≔ 0.1 or 0.05, which
defines a two-dimensional grid space where C† is mapped to the
origin (see Azam et al. (2021a) for the details on the neighbors). In
these experiments, we check the feasibility of 48 neighbors of the
originC† in a grid in an increasing order w.r.t. the distance. The time
limit of the solver is set to be 300 s. We do not check the feasibility of
a neighbor z and ignore it if there exists a neighbor z′ for which the
MILP formulation is infeasible and z′ is closer to C† than z.The
results of these experiments are listed in Table 7 where

- (inst., π): specification I and property π;
- n: the number of atoms in the hydrogen-suppressed
test instance;

- δ: the size of a sub-region in the grid;
- #sol: the number of new graphs inferred from 48 neighbors;
- #infs: the number of infeasible neighbors;
- #ign: the number of ignored neighbors;
- #TO: the number of neighbors for which the running time of
the solver exceeds the time limit.

The branch-and-bound method for solving an MILP sometimes
takes an extremely large execution time for the same size of
instances. We introduce a time limit to bound an entire running
time to skip such instances when testing the feasibility of neighbors

TABLE 7 Results of generating neighbor solutions of C†.

(inst., π) n δ #sol #infs #ign #TO

(Ic, BP) 50 0.1 5 1 3 39

(Ia, DC) 30 0.1 40 1 0 7

(I4b, DC) 45 0.1 2 0 0 46

(Ic, DC) 40 0.05 0 0 0 48
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in N0. From Table 7, we observe that some number of neighbor
solutions of the solution C† to the MILP Mf,η,σ could be generated
for each of the four instances.

5 Conclusion

In the framework of inferring chemical graphs, the descriptors of
a prediction function were mainly defined to be the frequencies of
local graph structures in the two-layered model, and such a
definition was important to derive a compact MILP formulation
for inferring a desired chemical graph. To improve the performance
of prediction functions in the framework, this article introduced a
multiplication of two of these descriptors as a new descriptor and
examined the effectiveness of the new set of descriptors. For this, we
designed a method for reducing the size of a descriptor set to not lose
the learning performance in constructing prediction functions and
gave a compact formulation to compute a product of two values in
an MILP. From the results of our computational experiments, we
observe that a prediction function constructed by our new method
performs considerably better than the prediction functions
constructed by the previous methods for several chemical
properties. Furthermore, the modified MILP, with the
computation of quadratic descriptors, was able to infer desired
chemical graphs with up to 50 non-hydrogen atoms.
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Glossary
Alpha isotropic polarizability

ALR adjustive linear regression

AmD experimental amorphous density

ANN artificial neural network

BHL biological half life

Bp boiling point

ChaR characteristic ratio

Cp critical pressure

Ct critical temperature

Cv heat capacity at 298.15 K

Dc dissociation constants

DieC dielectric constant

DisF dissipation factor

EDPA electron density on the most positive atom

ET entropy

FlmLO flammable limits lower of organics

Fp flash point in closed cup

Gap the energy difference between HOMO and LUMO

Ha heat of atomization

Hc heat of combustion

HcL heat capacity in liquid

HcS heat capacity in solid

Hf heat of formation

HOMO energy of highest-occupied molecular orbital

Hv heat of vaporization

Kov Kovats retention index

Kow octanol/water partition coefficient

LLR lasso linear regression

Lp lipophilicity

LUMO energy of lowest-unoccupied molecular orbital

MILP mixed-integer linear programming

MLR multidimensional linear regression

MlV mol volume

Mp melting point

Mr molar refraction at 20° degree

mu electric dipole moment

OptR optical rotation

Prm permittivity

QSAR quantitative structure–activity relationship

RfIdP refractive index of polymers

RfIdT refractive index of trees

SfT surface tension

Sl solubility

Tg glass transition

U0 internal energy at 0 K

Vd vapor density

Vis viscosity

Vp vapor pressure
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