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Familial Mediterranean Fever (FMF) is a genetic disorder with complex inheritance
patterns and genotype-phenotype associations, and it is highly prevalent in
Armenia. FMF typically follows an autosomal recessive inheritance pattern
(OMIM: 249100), though it can occasionally display a rare dominant
inheritance pattern with variable penetrance (OMIM։134610). The disease is
caused by mutations in the MEFV gene, which encodes the pyrin protein.
While the 26 most prevalent mutations account for nearly 99% of all FMF
cases, more than 60 pathogenic mutations have been identified. In this study,
we aimed to develop an affordable nanopore sequencing method for full-length
MEFV gene mutation detection to aid in the diagnosis and screening of FMF. We
employed a multiplex amplicon sequencing approach, allowing for the
processing of up to 12 samples on both Flow cells and Flongle flow cells. The
results demonstrated near-complete concordance between nanopore variant
calling and qPCR genotypes. Moreover, nanopore sequencing identified
additional variants, which were confirmed by whole exome sequencing.
Additionally, intronic and UTR variants were detected. Our findings
demonstrate the feasibility of full-gene nanopore sequencing for detecting
FMF-associated pathogenic variants. The method is cost-effective, with costs
comparable to those of the qPCR test, making it particularly suitable for settings
with limited laboratory infrastructure. Further clinical validation using larger
sample cohorts will be necessary.
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1 Introduction

Familial Mediterranean fever (FMF) is a genetic
autoinflammatory disease characterized by mutations within the
MEFV (MEditerranean FeVer) gene that encodes the pyrin protein
(French FMF Consortium, 1997; The International FMF
Consortium, 1997; Papin et al., 2000).

Despite being considered a rare disease worldwide with an
estimate of over 200,000 affected people (Gallego et al., 2023), it
is common in populations of Mediterranean descent, including
Armenians, Turks, Jews, Greeks, and Italians with a prevalence
ranging from 10 to 1,500 per 100,000 population (Cerrito et al.,
2015; Alparslan et al., 2020). Moreover, FMF prevalence (13–20/per
100,000) is notable in Japan (Migita et al., 2016), and recently it has
also been reported in China (Wu et al., 2018).

As of today, 399 variants in theMEFV gene have been identified
and their number is increasing with the development of sequencing
approaches (Tufan and Lachmann, 2020). The majority of 63 known
pathogenic/likely pathogenic variants are located on exon 10 which
encodes the B30.2/SPRY domain, responsible for the activation
of caspase-1 (source: Infevers database, https://infevers.umai-
montpellier.fr/web/search.php, last accessed 15 August 2024). The
most common variant of MEFV is M694V (c.2080A > G), which is
also a dominant variant in the Armenian population (Hayrapetyan
et al., 2016). Other frequent exon 10 variants are M694I (36.0%),
V726A (29.5%), M680I (26.2%), R761H (4.9%). These variants
constitute almost 75% of all FMF patients and are associated
with more severe disease courses among Mediterranean
populations. Up to two-thirds of registered variants distributed
over the entire gene are either not classified or classified as
variants of uncertain significance (VUS) due to their unknown
clinical association (Accetturo et al., 2020).

FMF is primarily an autosomal recessive disorder, however, this
pattern is not uniform across all cases, adding complexity to genetic
counseling and risk assessment (Manukyan and Aminov, 2016).
Many individuals with FMF are compound heterozygotes. Different
combinations of mutations exhibit a wide range of FMF phenotypes
diverse in their symptoms and intensity, indicating incomplete
penetrance (Procopio et al., 2018).

Clinical and research laboratories in Armenia use PCR/qPCR-
based approaches to test the presence of the most prevalent
12–26 pathogenic mutations, such as FMF StripAssay
(12 mutations, ViennaLabs, Austria) or FMF Multiplex real-time
PCR kit (26 mutations SNP Biotechnology, Turkey). The common
disadvantages of these kits are the limited scope of mutations tested
(12 or 26 of known 63), risks of interference for closely located
mutations (for example, M680I (G/C-A), I692del, M694V, K695R)
in available qPCR tests, and limited capacity for further
multiplexing. These limitations can be overcome with Sanger and
next-generation sequencing (NGS). Sanger sequencing is considered
a gold standard for accuracy and offers opportunities for studying
genetic variability on the scale of an exon or a full gene (Schmidt
et al., 2022). However, it has been proven that the costs of Sanger
sequencing per sample are very high due to the small target range
(~1,000 nucleotides in a single run) limiting its use in clinical
settings (at least in low- and middle-income countries (LMICs),
such as Armenia). Furthermore, sequencing a single gene likeMEFV
using high-throughput Illumina NGS platforms is both technically

challenging and costly. The installation and operational costs of
these instruments require significant investments in infrastructure
and a large number of samples is required per run to make it cost-
effective. In contrast, nanopore sequencing (NS) developed by
Oxford Nanopore Technologies (ONT) offers a more cost-
effective solution, with capital and consumable costs as low as
approximately $1,000, making it particularly suitable for use in
settings with limited laboratory infrastructure. NS is actively
explored for the identification of pathogenic variants in various
genetic disorders, such as Familial Hypercholesterolemia (Soufi
et al., 2022), tandem repeat disorders (Stevanovski et al., 2022),
Werner Syndrome (Miller et al., 2021), sickle cell disease
(Christopher et al., 2021), and others (Minervini et al., 2020;
Oehler et al., 2023).

In this study, we focused on developing an affordable nanopore-
based full-gene sequencing test for detecting MEFV mutations to
assist in the diagnosis of FMF.

2 Materials and methods

2.1 Clinical samples

Fourteen patients (5 males and 9 females) were recruited from
the Mikaelyan Institute of Surgery and Nairi Medical Center. FMF
was diagnosed based on the classification criteria for
autoinflammatory recurrent fevers (Gattorno et al., 2019) and
molecular genetic analysis of MEFV mutations using a
commercially available qPCR kit for the detection of 26 common
FMF mutations (FMF Multiplex real-time PCR kit, SNP
Biotechnology, Turkey). Two control non-FMF subjects (females)
were also recruited from the Institute of Molecular Biology NAS RA.
The project was approved by the Ethics Committee of the Institute of
Molecular Biology NAS RA (IRB 00004079, Protocol
N3 from 23.08.2021).

Five milliliters of morning fasting blood was collected in K3-
EDTA tubes. Genomic DNA from 200 μL blood was isolated using
QIAamp DNA Blood Mini Kit (QIAGEN, MD, United States),
according to the manufacturer’s instructions.

2.2 Primer design and PCR amplification

We used the NCBI RefSeq (LRG_190) locus sequence of the
MEFV gene (accession: NG_007871) for primer design. Five pairs
of multiplex primers each targeting approximately 4 kb region
of the MEFV gene were selected using the primalscheme tool
for multiplex primer selection (Quick et al., 2017). Each primer
pair generated overlapping amplicons, together spanning
approximately 99% of the MEFV gene. This size was chosen to
minimize the number of multiplex or singleplex PCR reactions
and ensure that common long-range polymerase can effectively
amplify the fragments.

Validation qPCR primers were designed to check the presence of
all fragments in pooled PCR reactions. Each set of primers targets a
region within the MEFV fragment. Primers for qPCR with
intercalating dyes were designed using the IDT PrimerQuest tool
(Integrated DNA Technologies, Belgium) (Supplementary Table S1).
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Amplicons were generated using Q5 Hot Start High-Fidelity 2X
Master Mix (New England Biolabs, United States), LongAmp Hot Start
Taq 2XMasterMix (NewEnglandBiolabs, United States), andBioMaster
LR HS-PCR (2x) Mix (Biolabmix, Russia). qPCR validation of the
obtained PCR amplicons was performed using HOT FIREPol
EvaGreen qPCR Mix Plus (no ROX) (Solis BioDyne, Estonia). PCR
reaction mix and cycling conditions are provided in
Supplementary Table S2.

The integrity of the amplicons generated using PCR was checked
using 1.5% agarose gel electrophoresis for 30 min with 1 Kb Plus DNA
Ladder (BioFact, Seoul, Korea). Amplified fragments were visualized
using ethidium bromide. Amplicon quantification was performed with
a Nanodrop spectrophotometer (Thermo Fisher, MA, United States).

2.3 Sequencing library preparation and
sequencing

For each sample, generated amplicons were purified with a 1x ratio
of AMPure XP beads (Beckman Coulter, Brea, CA, United States) to
exclude small nonspecific fragments, equilibrated by mass and pooled.
Sequencing libraries were prepared according to the manufacturer’s
(Oxford Nanopore Technologies, Oxford, United Kingdom) protocol
1) using native barcoding kits (EXP-NBD104, EXP-NBD114) in
combination with a ligation sequencing kit (SQK-LSK109) or 2)
Native Barcoding Kit 24 V14 (SQK-NBD114.24). The final
sequencing library amount was 20–50 fmol.

Sequencing was performed on the MinION 1 Mkb device using
R9.4 Flow cells or Flongle flow cells and R10.4 Flongle flow cells. The
average run duration was 12–18 h.

2.4 Sequencing data analysis and
variant calling

Raw sequencing data was basecalled and filtered with guppy
basecaller (version 6.0.1) with a “high accuracy model”
parameter. Basecalled data was then demultiplexed for
downstream analysis. The alignment was done with a
minimap2 aligner (version 2.24-r1122) the ONT genomic
reads option on the reference sequence of the MEFV gene
(accession: NG_007871) downloaded from the RefSeq (LRG_
190) NCBI database (Li, 2018). BAM files were sorted and
indexed for further exploration in integrative genomic viewer
and variant calling analysis using samtools 1.13 (Li et al., 2009).
Variant calling of the aligned file was done with longshot
1.0.0 software for variant detection from error-prone reads
(Edge and Bansal, 2019). Another tool used for variant calling
was P.E.P.P.E.R. (r.08) which uses recurrent neural networks for
variant detection from long read data (Shafin et al., 2021). The
resulting variants were annotated with the Open Custom Ranked
Analysis of Variants Toolkit (openCRAVAT) (Pagel et al., 2020).
The presence/absence of a variant was further confirmed by
examination of BAM files using Integrated Genome
Browser v2.12.3.

2.5 Whole exome sequencing

Whole exome sequencing (WES) of the same DNA samples
was performed by a commercial sequencing provider (Macrogen,
South Korea). Libraries were prepared with Agilent SureSelect V5

TABLE 1 Combinations of sample preps and flow cells for nanopore sequencing of full-length MEFV.

Sample ID SQK-LSK109 & EXP-
NBD104 or EXP-NBD114

SQK-
NBD114.24

Flow cell
R.9.4

Flow cell
R10.4

Flongle
R9.4

Flongle
R10.4

WES

F2 √ √

F5 √ √ √ √ √

F8 √ √

F10 √ √ √

F13 √ √ √ √ √

F15 √ √ √

F16 √ √ √

F19 √ √

F20 √ √ √

F22 √ √ √

F24 √ √

F27 √ √ √

F28 √ √ √

F31 √ √

Ctrl1 √ √

Ctrl2 √ √
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(Agilent Technologies, CA, United States) whole exome
sequencing library preparation kit. Sequencing was performed
on the Illumina Novaseq 6000 instrument (Illumina, SD,
United States). Variant calling was performed with the
Genome Analysis Toolkit v4.3 based on published best
practices (Van der Auwera et al., 2013).

2.6 Performance analysis

Accuracy, sensitivity, and specificity analysis were performed as
described elsewhere (Bartol, 2015) using the caret R package. qPCR
results on mutation genotypes were considered as ground truth.

3 Results

A total of 14 patients (5 males and 9 females) and 2 healthy
controls (2 females) underwent full MEFV gene nanopore
sequencing (NS). The DNA samples were sequenced with library
preparation using R9 or R10 chemistry on both Flow cells and
Flongle flow cells. Additionally, whole genome sequencing data
generated on the Illumina platform was available for some of the
samples (see Table 1).

Nanopore sequencing statistics are shown in Figure 1. Using five
tiling fragments, we achieved near-complete coverage of the full-
length MEFV gene with balanced sequencing depth overall
amplicons. The detailed statistics for individual runs are provided

FIGURE 1
Sequencing statistics of MEFV gene using nanopore sequencing. (A) The average sequencing depth of full MEFV gene, exons, and individual
amplicons. (B) Sequencing coverage of full MEFV gene, exons, and individual amplicons.
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in Supplementary Data Sheet S1. The comparison of variants
detected by NS and qPCR demonstrated a high level of
concordance (Table 2). We performed a performance analysis of
NS variant calling using qPCR results as the ground truth.
Compared with qPCR the balanced accuracy of NS detection was
0.97 with a sensitivity of 0.93, specificity of 1.00, and F1 score of 0.97.
From three NS replicates, two showed complete concordance of
detected variants (samples F5 and F8). In one replicate of the
F13 sample M694V was detected in a heterogeneous state (with
V10 chemistry and R9.4 flow cell), while in the other replicate (with
V14 chemistry and R10.4 flongle flow cell), the M694V variant was
detected in a homozygous state concordant with qPCR results.
Furthermore, in another sample (F19) additional pathogenic
mutation V726A in a heterogeneous state was detected.
Unfortunately, we did not have WES data for this sample to
confirm the NS or qPCR results (Table 2).

Moreover, both NS and WES showed additional variants
outside the scope of the PCR mutation panel (Supplementary
Data Sheet S2). For example, both WES and NS identified
the R202Q (Supplementary Figure S2). In addition,

19 intronic, 5′- and 3′- UTR variants were discovered with
NS (Supplementary Data Sheet S2).

4 Discussion

We present a protocol for full MEFV gene sequencing with
accuracy comparable to qPCR for detecting common variants.
Unlike qPCR, our method is not restricted to a predefined set of
variants or locations and can discover additional clinically relevant
variants that qPCR will miss. In contrast to WES, it enables the
detection of variants not only in exons but also in intronic and
regulatory regions. Although all variants observed in noncoding
variants in the 3′UTR and intronic regions were previously
annotated in ClinVar and classified as benign (see Supplementary
Data Sheet S2) this also shows a possibility to identify pathogenic
mutations located in non coding regions of the gene such as
rs773992396 G>C located in intron 6 (Balta et al., 2020).
Furthermore, the sequencing protocol enables more in-depth
studies to elucidate the role of coding variants in disease. For

TABLE 2 Comparison of variant detection of full-gene nanopore sequencing, qPCR (ground truth), and WES.

Sample ID Patients ID Chemistry Flow cell
type

Mutations (qPCR) Mutations
(nanopore)

Mutations (WES)

F02_MEFV F2 R.9.4 Flongle M694V (het)/
V726A (het)

M694V (het)/ V726A (het) NA

F05_MEFV_R09_rep1 F5 R.9.4 Flongle M694V (het) M694V (het) M694V (het)

F05_MEFV_R10_rep2 F5 R10.4 Flongle M694V (het) M694V (het) M694V (het)

F08_MEFV_R09_rep1 F8 R.9.4 Flongle M694V (het)/
V726A (het)

M694V (het)/ V726A (het) NA

F08_MEFV_R09_rep2 F8 R.9.4 Flongle M694V (het)/
V726A (het)

M694V (het)/ V726A (het) NA

F10_MEFV_R10 F10 R10.4 Flongle M694V (het)/
V726A (het)

M694V (het) M694V (het)/
V726A (het)

F13_MEFV_R09_rep1 F13 R.9.4 Flow cell M694V (hom) M694V (het) M694V (hom)

F13_MEFV_R10_rep2 F13 R10.4 Flongle M694V (hom) M694V (hom) M694V (hom)

F15_MEFV_R10 F15 R10.4 Flongle M694V (het)/
V726A (het)

M694V (het)/ V726A (het) M694V (het)/
V726A (het)

F16_MEFV_R10 F16 R10.4 Flongle M694V (het)/
V726A (het)

M694V (het)/ V726A (het) M694V (het)/
V726A (het)

F19_MEFV_R10 F19 R10.4 Flongle M694V (het) M694V (het)/ V726A (het) NA

F20_MEFV_R10 F20 R10.4 Flongle M694V (het)/
R761H (het)

M694V (het)/ R761H (het) M694V (het)/
R761H (het)

F22_MEFV_R10 F22 R10.4 Flongle M680I (het) M680I (het) M680I (het)

F24_MEFV_R09 F24 R.9.4 Flow cell M694V (het) M694V (het) NA

F27_MEFV_R09 F27 R.9.4 Flow cell M694V (hom) M694V (hom) M694V (hom)

F28_MEFV_R09 F28 R.9.4 Flow cell M694V (het) M694V (het) M694V (het)

F31_MEFV_R10 F31 R10.4 Flongle M694V (het)/
M680I (het)

M694V (het)/ M680I (het) NA

Cntrl1_MEFV_R09 Cntrl1 R.9.4 Flongle - - NA

Cntrl2_MEFV_R09 Cntrl2 R.9.4 Flongle - - NA
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instance, while the R202Q variant is classified as benign, recent
studies have highlighted its potential association with an
inflammatory FMF phenotype (Kandur et al., 2022). Our
protocol has also proven effective with new sequencing chemistry
and Flongle flow cells. The latter, especially when used with 12-
sample multiplexing, makes full-lengthMEFV gene sequencing both
cost- and time-efficient, with results obtainable within 12–24 h
including bioinformatics analysis and report generation.
Additionally, tree samples were analyzed in replicates, and the
variant calling results were consistent across different nanopore
sequencing chemistries, aligning with the qPCR genotyping results.
In one sample (F13), the correct genotype was detected using the
new V14 but not the V10 chemistry suggesting that switching to the
latest flow cells and library preparation kits may enhance genotyping
accuracy. These observations may point out that, in clinical settings,
it may be beneficial to conduct replicates during the initial phase to
gather sufficient data for assessing genotyping consistency and intra-
sample variability before deciding to switch to genotyping based on a
single sample. Furthermore, the R9.4 flow cells and associated
sample preparation reagents were discontinued in 2023-2024,
leaving V14 chemistry and R10.4 flow cells as the only available
option. The cost of full MEFV gene sequencing for 12 samples on a
Flongle flow cell is approximately 30 USD, which is comparable to,
and often less expensive than, the 26-mutation qPCR panel
commonly used in clinical labs in Armenia. With 1 Gb output
(2.5 Gb theoretical output according to the manufacturer), 12-
sample multiplexing can yield up to 6,000x sequencing depth per
sample. The SQK-NBD114.24 kit supports up to 24-sample
multiplexing, which could theoretically provide around 3,000x
depth per sample - still adequate for variant detection.
Additionally, the SQK-NBD114.96 library preparation kit allows
for 96-sample multiplexing, making it a viable option for large-scale
screening. However, with smaller sample flows, using 24- or 96-
sample multiplexing may significantly increase turnaround time.
Finally, compared to the Illumina sequencing platform, our protocol
offers greater flexibility in the number of samples required for cost-
effective multiplexing.

Our method significantly improves upon the protocol
proposed by Schmidt et al. (2022), which uses 8 pairs of
primers targeting only the exons of the gene, against only
5 primer pairs to target the full gene. The accuracy of
variant calling can be further enhanced by switching the
basecalling mode to “super accurate”. Although this would
require more computational resources and time, it has been
shown to outperform default basecalling settings (Ni
et al., 2023).

The small sample size is the main limitation of our study.
Furthermore, the amount of DNA samples was not sufficient to
run NS for all samples in replicates. Nonetheless, our findings,
along with previous results (Schmidt et al., 2022), warrant the
applicability of full-gene nanopore sequencing of MEFV in
clinical settings. Furthermore, even with this small sample,
we were able to collect patients with diverse genotype
combinations (heterozygotes for a single allele, compound
heterozygotes, and homozygotes), which could mitigate
potential sampling bias.

In conclusion, we present a cost-effective nanopore
sequencing-based protocol for MEFV gene sequencing,

making it particularly suitable for settings with limited
laboratory infrastructure. It can enable widespread and
accurate detection of FMF-related mutations, thus supporting
public health initiatives aimed at controlling the prevalence of
FMF, particularly in LMICs of endemic regions. This protocol
could also lead to the discovery of novel pathogenic variants
within the MEFV gene, expanding our knowledge of
FMF genetics.
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