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Introduction: Idiopathic pulmonary fibrosis (IPF) is a rare but debilitating lung
disease characterized by excessive fibrotic tissue accumulation, primarily
affecting individuals over 50 years of age. Early diagnosis is challenging, and
without intervention, the prognosis remains poor. Understanding the molecular
mechanisms underlying IPF pathogenesis is crucial for identifying diagnostic
markers and therapeutic targets.

Methods:We analyzed transcriptomic data from lung tissues of IPF patients using
two independent datasets. Differentially expressed genes (DEGs) were identified,
and their functional roles were assessed through pathway enrichment and tissue-
specific expression analysis. Protein-protein interaction (PPI) networks and co-
expression modules were constructed to identify hub genes and their
associations with disease severity. Machine learning approaches were applied
to identify genes capable of differentiating IPF patients from healthy individuals.
Regulatory signatures, including transcription factor and microRNA interactions,
were also explored, alongside the identification of potential drug targets.

Results: A total of 275 and 167 DEGs were identified across two datasets, with 67
DEGs common to both. These genes exhibited distinct expression patterns
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across tissues and were associated with pathways such as extracellular matrix
organization, collagen fibril formation, and cell adhesion. Co-expression analysis
revealed DEG modules correlated with varying IPF severity phenotypes. Machine
learning analysis pinpointed a subset of genes with high discriminatory power
between IPF and healthy individuals. PPI network analysis identified hub proteins
involved in key biological processes, while functional enrichment reinforced their
roles in extracellular matrix regulation. Regulatory analysis highlighted interactions
with transcription factors andmicroRNAs, suggesting potential mechanisms driving
IPF pathogenesis. Potential drug targets among the DEGs were also identified.

Discussion: This study provides a comprehensive transcriptomic overview of IPF,
uncovering DEGs, hub proteins, and regulatory signatures implicated in disease
progression. Validation in independent datasets confirmed the relevance of these
findings. The insights gained here lay the groundwork for developing diagnostic
tools and novel therapeutic strategies for IPF.

KEYWORDS

idiopathic pulmonary fibrosis, transcriptome analysis, differentially expressed genes, lung
tissue, drug targets, biomarkers, molecular mechanisms, pulmonary disorders

1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
lung disease characterized by the buildup of fibrotic tissue within the
lung parenchyma, leading to severe impairments in gas exchange,
respiratory failure, and ultimately poor patient outcomes (Schwartz,
2016). This abnormal accumulation of the extracellular matrix
(ECM) disrupts alveolar function and results in reduced lung
compliance (Richeldi et al., 2017). Although environmental
factors (such as wood dust, silica, and microbial agents like
viruses, fungi, and bacteria) and genetic and epigenetic
predispositions contribute to IPF pathogenesis, the precise
molecular drivers of this complex condition remain incompletely
understood. In particular, aging, smoking, and certain gene
expression changes have been identified as key risk factors;
however, the specific biological pathways that drive fibrosis
initiation and progression are not fully elucidated (Issa, 2014; Liu
et al., 2010).

Although IPF is classified as a rare disease, its prevalence ranges
from 0.33 to 4.51 per 10,000 individuals globally, with an estimated
30,000 to 40,000 new cases annually (Maher et al., 2021; Srour et al.,
2017). IPF predominantly affects individuals over the age of 50, with
a mean age of diagnosis between 65 and 70 years, and the disease
progresses rapidly without effective intervention, with a typical
survival rate of only 2–3 years post-diagnosis (Fernández-
Fabrellas et al., 2019; Collard, 2010; Sharif, 2017). Current
diagnostic approaches rely heavily on imaging and, in some
cases, invasive surgical lung biopsies (SLBs) (Liao et al., 2023).
Therapeutic options are limited to anti-fibrotic agents like
nintedanib and pirfenidone, which carry significant side effects
and do not prevent disease progression (Kang and Song, 2021).
As a result, there is an urgent need to identify more precise
biomarkers for diagnosis and develop novel therapeutic strategies
that target key pathways involved in fibrosis.

A critical gap in IPF research lies in the comprehensive
understanding of the transcriptomic alterations within the lung
tissues of IPF patients. Previous studies employing transcriptomic
analyses have primarily identified differential gene expression and

dysregulated pathways associated with fibrosis, yet they often do not
address comorbidities and additional risk factors that could further
influence disease progression. Recent studies using transcriptomic
techniques have identified genes involved in immune regulation,
extracellular matrix remodeling, and cellular stress responses,
providing valuable insights into IPF’s pathophysiology. For
instance, (Maher et al., 2017; Hu and Xu, 2024) used RNA-seq
and microarray analyses to reveal dysregulated gene networks
implicated in IPF, including the TGF-β and Wnt signaling
pathways, both of which contribute to fibrosis. However, these
studies have not comprehensively explored how transcriptomic
patterns correlate with IPF comorbidities, leaving potential
diagnostic and therapeutic targets underexplored.

Our study addresses these research gaps by performing an
integrative transcriptomic analysis of lung tissues from IPF
patients. This approach not only identifies key molecular
signatures associated with fibrosis but also examines the influence
of comorbid conditions that may exacerbate IPF pathology. Building
on previous transcriptomic studies, we aim to provide a more
holistic understanding of the molecular mechanisms underlying
IPF, providing insights that could facilitate the development of
targeted and effective diagnostic and therapeutic interventions.
Our findings contribute to IPF research by enhancing the
understanding of its pathogenesis and identifying potential
biomarkers that could serve as diagnostic tools or therapeutic
targets, ultimately addressing some of the unsolved challenges in
the field.

2 Methods

The methodology encompassed RNA-seq data analysis and
the identification of differentially expressed genes (DEGs), along
with weighted gene co-expression network analysis (WGCNA)
and least absolute shrinkage and selection operator (LASSO)
regression. It also included investigations of miRNA–gene
interactions, transcription factors, and drug targets of DEGs,
with findings validated using independent datasets. The
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flowchart in Figure 1 depicts the stepwise approach employed in
this study.

2.1 Dataset selection and retrieval

A systematic search of the NCBI-GEO database was performed
using keywords such as “IPF,” “idiopathic pulmonary fibrosis,”
“transcriptome,” “RNA-seq,” and “lung tissue” to ensure a
comprehensive selection of studies relevant to IPF and control
groups. This search resulted in the selection of two datasets,
namely, GSE213001 and GSE150910, based on sample size, data
quality, and study relevance.

2.1.1 Dataset characteristics and inclusion criteria
The GSE213001 dataset consists of RNA-seq data from lung

tissue samples, including 20 IPF patients, 9 end-stage interstitial
lung disease (non-IPF) patients, and 14 healthy controls. Although
this dataset has a relatively small sample size for IPF, it was selected
for its high-quality transcriptomic data specific to IPF (Zeng et al.,
2023). To enhance statistical power, we incorporated the

GSE150910 dataset, which provides RNA-seq data on 103 IPF
patients, 103 healthy controls, and 82 patients with chronic
hypersensitivity pneumonitis (Yu et al., 2020; Furusawa et al.,
2020). Both datasets underwent quality control checks (e.g., read
depth and alignment rates), and samples with evidence of treatment
or culturing were excluded to avoid potential confounding effects.

2.1.2 Confounding factor control
Potential confounding factors such as age, sex, race, and

smoking history were controlled by integrating these variables
into multivariable linear regression models. Additionally,
propensity score matching was applied to balance covariates
between the IPF and control groups, a standard approach in
genomic studies for isolating disease impact while controlling for
demographic and lifestyle factors (Rosenbaum and Rubin, 1983).

2.1.3 Differential expression analysis and cutoff
justification

Differential expression analysis was conducted using
a false discovery rate (FDR) cutoff of 0.01 and a log2 fold change
(|log2FC|) threshold of 1.5. The FDR threshold of 0.01 was selected

FIGURE 1
Flowchart diagram illustrating the stepwise methods employed in the study.
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as a more stringent alternative to the conventional 0.05 to minimize
false positives, which is advantageous in large-scale transcriptomic
studies (Jiang and Wong, 2009; Love et al., 2014). The log2FC
threshold of 1.5 was chosen based on precedents in IPF research,
targeting biologically meaningful gene expression changes. Smaller
fold changes, although statistically significant, were considered less
relevant biologically in the context of IPF, where larger shifts in gene
expression are central to the disease process (Conickx et al., 2017;
Zhang et al., 2019).

2.1.4 Correction for multiple testing
To address the multiple testing burden associated with RNA-seq

data, the Benjamini–Hochberg method was applied to control the
FDR at q < 0.05, ensuring that identified DEGs remained statistically
significant (Benjamini and Hochberg, 1995).

2.2 Analyzing the correlation between the
expression of DEGs and different diseases
and comorbidities

The chromosomal location of the DEGs was analyzed by
submitting the overlapping DEG set from both databases as a
query within the ShinyGO server (Ge et al., 2020), followed by
annotation function analysis using the Metascape server to optimize
the tissue-specific distribution of the DEGs and the classification of
the proteins expressed by the DEG proteins (Zhou et al., 2019).
Subsequently, the ggplot2 package within RStudio and the Circos
online tool were used to generate visual representations of the
relevant elements (Krzywinski et al., 2009; ggplot2, 2024).
Protein–protein interactions (PPIs) were then analyzed by the
NetworkAnalyst web-based server on the shared DEGs of lung
tissues (Zhou et al., 2019). To generate the PPI network for our
target genes, the integrated STRING database was utilized,
considering a high-confidence cutoff threshold of >0.9
(Szklarczyk et al., 2019). Finally, to identify the nodes with the
highest connectivity, a degree cutoff of 3.0 was applied. The resulting
network was downloaded and further customized using Cytoscape
(version 3.7.2) (Shannon et al., 2003).

2.3 Analyzing the correlation between the
expression of DEGs and different diseases
and comorbidities

A number of tools and databases were explored to investigate the
association of the DEGs with respiratory tract diseases and other
relevant conditions. At first, the DisGeNET plugin (within the
Cytoscape tool) was used to examine the association by
employing the default parameters (Piñero et al., 2017). To further
evaluate the association of DEGs with the top 20 diseases, the
Metascape web-utility tool and the DisGeNET online server were
assessed. A p-value cutoff of 0.01 and a minimum enrichment score
cutoff of 1.5 were considered to determine these associations. To
gain insights into the expression patterns of DEGs in various human
disease studies, the Expression Atlas server (https://www.ebi.ac.uk/
gxa/home) was used (Papatheodorou et al., 2018). Moreover, to
identify the known cancer-related genes in our DEG list, the

Network of Cancer Genome database (http://ncg.kcl.ac.uk/) was
used by keeping DEGs’ parameter settings at default (The Network
of Cancer Genes, 2024). Finally, the ggplot2 package in RStudio was
used to visualize the result.

2.4 Analysis of the ontology terms and
functional relevance of the DEGs

To observe the expression patterns of the DEGs in different IPF
studies, targeted genes were quarried against the Coronascape
database, a repository that compiles the top 300 dysregulated
genes derived from various IPF omics studies via the Metascape
server (Metascape, 2024). The KEGG pathway was further analyzed
using the clusterProfiler package within RStudio (Yu et al., 2012).
The clusterProfiler package was also used to analyze the most
prominent Gene Ontology (GO) terms such as biological
processes (BPs), molecular functions (MFs), and cellular
components (CCs) of the DEGs. The obtained results were
subjected to a multi-test corrected p-value assessment, and
subsequently, the top 15 Gene Ontology terms displaying
significance were visually represented using the enrichplot and
ggplot2 packages (Yu et al., 2012).

2.5 Co-expressed DEGs in IPF and their
biological roles in disease severity

In order to determine the highly correlated gene modules and
key genes based on the gene expression data, the WGCNA package
of R was used, which creates a co-expression network and simplifies
the interpretation of thousands of genes based on sample-to-sample
similarity in expression profiles (Shi et al., 2020). First, we omitted
outlier samples by using Pearson’s approach for sample clustering
before constructing the co-expression network. We checked the
viability of genes and samples in accordance with the WGCNA
tutorial (Yin et al., 2020). Following that, we created the Pearson
correlation matrix using the formula amn = |cmn|β to get the
weighted adjacency matrix. Next, using the dynamic tree cut
technique, all selected genes were clustered using a topological
overlap matrix (TOM)-based dissimilarity measure, which
divided the tree into eight modules labeled with various colors.
Subsequently, the interaction between these co-expression modules
was assessed using Pearson’s correlation coefficient (Yin et al., 2020).
The clustering analysis revealed a hierarchical clustering of module
eigen genes that summarized the modules. Based on the correlation
of eigen genes, the dendrogram’s branches (the meta-modules) were
categorized. In the heatmap of topological overlap, each module’s
gene clusters were identified by a different color, with red denoting a
positive association and blue denoting a negative correlation
(Sánchez-Baizán et al., 2022).

2.6 Prediction power of the DEGs in
differentiating IPF phenotypes

We employed binomial LASSO regression analysis of the
identified DEGs from the GSE150910 dataset to predict the
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power of these DEGs in differentiating IPF phenotypes. LASSO
regression enables a linear model between key determinants and
prognostic outcomes, with variable screening and complexity
correction (Weng and Ning, 2023). In addition, LASSO can filter
variables and minimize model complexity without requiring large
data samples, making it useful for building biological data models.
To develop the prognostic key factors and prognostic outcomes
model, LASSO regression was implemented in R using the glmnet
package. Based on risk assessments, the sample was divided into
high- and low-risk groups. To determine the model’s validity, the
difference in survival time and survival status between high- and
low-risk groups was evaluated. The receiver operating characteristic
(ROC) curves were generated to assess the model’s accuracy (Weng
and Ning, 2023).

2.7 Construction of the protein–protein
interaction network of DEGs and the
identification of hub proteins

The generic PPI network for the proteins expressed by the DEGs
was constructed using the NetworkAnalyst server and STRING
database (with a stringent overall confidence cutoff of 0.900)
(Szklarczyk et al., 2019). Precise methods and tools, such as the
Matthews correlation coefficient (MCC), global methods (edge
percolated component, EPC) and closeness, were further used
through the cytoHubba plugin within the Cytoscape tool to extract
the top 10 most connected nodes (referred to as hub proteins) from the
generic PPI network (Chin et al., 2024). Consequently, the hub proteins
common to all three networks were identified and considered the most
significant hubs. Afterward, the predominant biological processes
associated with these overlapping hub proteins were analyzed using
the clusterProfiler package in R Studio.

2.8 Identification of transcriptional and
post-transcriptional regulatory signatures
and drug targets of the DEGs

Using the NetworkAnalyst web server, the DEGs against the
miRTarBase database were searched to understand experimentally
validated miRNA–gene interactions (cutoff value < 3) (miRTarBase,
2024). The NetworkAnalyst tool was further used to investigate the
gene–transcription factor (TF) interaction network, which drew
information from the ENCODE database (cutoff value < 3)
(ENCODE Project Consortium, 2011). The resulting
gene–miRNA and gene–TF targets of the DEGs were then
obtained and customized through the Cytoscape server. Finally, a
query of the DEGs against the DrugBank database was performed to
ascertain their corresponding protein targets and potential drug
candidates (Wishart et al., 2018).

2.9 Expression patterns of the DEGs in
independent datasets

The expression patterns of the DEGs found in the mainstream
analysis were cross-validated with two additional independent

datasets from NCBI-GEO databases, namely, GSE110147 and
GSE53845, which included the transcriptome profiles of IPF and
healthy lung tissues, respectively. In addition, 67 of the 68 DEGs
identified in the mainstream analysis (excluding TOGARAM2) were
found to be differentially expressed in these two datasets (Cai
et al., 2018).

3 Results

3.1 DEGs in IPF and their molecular and
cellular characteristics

Differential expression analysis revealed 275 and 167 DEGs
from the GSE213001 and GSE150910 datasets, respectively
(Figure 2A; Supplementary Figures S1, S2); among them,
67 DEGs are common to both datasets (Figure 2B). Considering
the higher number of IPF samples in the GSE150910 dataset, a
correlation analysis was performed between the DEGs among the
patients’ samples from this dataset (Figure 2C). We also compared
the log2FC of the DEGs between two datasets using a heatmap
(Figure 2D). The k-means clustering in both our correlation and
heatmap-based log2FC inspection experiment revealed that specific
sets of DEGs were distinctly clustered along the plots according to
their expression values (Figures 2C, D). The tissue- and cell-specific
expression analysis of the DEGs revealed that five genes are
expressed in lung tissues (Figure 3A), four genes are expressed in
bronchial epithelial cells, and few genes are expressed in smooth
muscles, adipocyte tissues, and colon and liver tissues. The cell-
signature analysis of the identified DEGs in IPF patients further
revealed that the DEGs are second-most expressed in lung
adventitial fibroblast cells, followed by fetal thymus stromal cells
and lung myoblast cells after kidney stromal cells (Figure 3B).
Different types of epithelial and stromal cells were the other cell
types in which our DEGs showed specific expression. Chromosomal
distribution analysis of the DEGs revealed that most are located on
chromosomes 1, 2, and 3. The X chromosome was found to host
gene number 1. However, no gene was found to be located in the 18,
20, 21, and Y chromosomes, including the mitochondrial genome
(Figure 3C). Finally, when we categorized our DEGs based on the
function of their translation products, we observed that 45 genes
were expressing different ranges of transmembrane, membrane, and
plasma or secreted proteins (Figure 3D).

3.2 Disease-specific networks and
expression patterns of DEGs in
different disorders

The lung-specific PPI network analysis revealed 15 out of
67 proteins form the interaction network with another 14 partner
proteins in the lung tissues (Figure 4A). The association analysis of
the DEGs in different respiratory tract diseases against curated
databases of DisGeNET revealed that 12 genes of DEGs are
associated with the development and progression of different
lung diseases (Figure 4B). Noticeably, three genes, namely, SPP1,
IGF1, and COL3A1, were found to be related to pulmonary fibrosis
disease. Furthermore, the DEGs were found to be associated with
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pulmonary fibrosis from asbestos exposure, lung carcinoma,
pneumonia, lung inflammation and injury, emphysema, asthma,
and Meckel syndrome type 1. The disease gene-association analysis
of the DEGs was performed against the curated datasets from
DisGeNET, without the respiratory tract disease, to assess their
association with all other types of diseases. This analysis predicted
that six genes (namely, ACTG2, AGER, COL1A1, COL3A1, IGF1,
and SPP1) from our DEG list were associated with fibrosis
(Figure 4C). Additionally, four different genes were discovered to
have associations with a type of skin fibrosis, i.e., cutaneous fibrous
histiocytoma. Furthermore, other genes were differently and
distinctly associated with different types of other diseases,
including sudden cardiac death (Maher et al., 2021), refractory
anemias (Fernández-Fabrellas et al., 2019), pelvic organ prolapse
(Srour et al., 2017), atrophic scar (Issa, 2014), knee osteoarthritis
(Collard, 2010), and hepatoblastoma (Sharif, 2017) (Figure 4C).

3.3 Functional relevance of the DEGs
identified from IPF patients

The KEGG pathway analysis of the common DEGs in IPF
patients revealed that most of the identified DEGs were involved
in the maintenance of the focal adhesion between cells (Figure 5A).
The second-most largest group of DEGs in our experiments was
associated with protein digestion and absorption. A notable number
of the DEGs were also found to be part of the PI3K-Akt signaling

pathway, AGE-RAGE signaling pathway, and ECM–receptor
interactions. The analysis of GO terms found that the highest
number of DEGs were significantly associated with extracellular
matrix organization and maintaining its structure in terms of their
major biological processes (Figure 5B). Moreover, maintaining
insulin signaling pathways, hormone catabolic processes, and
cell–cell adhesion were other predominant biological processes of
the DEGs. On the other hand, the DEGs were predominantly
involved in producing ECM constituents that provide tensile
strength to the ECM, followed by protease binding, integrin
binding, platelet-derived growth factor binding,
glycosaminoglycan binding, and beta-tubulin binding, among
others (Figure 5C). Finally, the DEGs were found to primarily
function in different biological compartments, including the
collagen-containing extracellular matrix, collagen trimer, complex
of collagen trimmer, interstitial matrix, fibrillar collagen trimer, and
banded collagen fibril, as observed through the cellular component
analysis (Figure 5C).

3.4 Co-expressed DEGs in IPF and their
biological roles in disease severity

The WGCNA analysis of the GSE213001 dataset resulted in a
cluster dendrogram incorporating the genes in different colored
modules (merged), and each module possessed dendrograms of
varying heights (Figure 6A). The genes from the targeted dataset

FIGURE 2
(A) Volcano plots showing the DEGs of our interest after filtering (|log2FC| > 1.6 and p < 0.01) in the GSE150910 (upper panel) and GSE213001 (lower
panel) datasets. (B) Venn diagram showing the shared common DEGs between two datasets. (C) Heatmap showing the Spearman’s rank correlation
among the expression values of the DEGs in IPF patients from the GSE150910 dataset. (D) Heatmap showing the log2FC values of the common DEGs in
two selected datasets. The k-means clustering method was applied during both experimental procedures involved in steps (C, D).
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showed the highest degrees of membership with three distinct
modules, namely, brown, blue, and turquoise modules, and the
number of co-expressed genes in these modules ranged between
550 and 750 (data not shown here), while the brown module
included the highest number of genes. Hierarchical clustering
analysis of all the identified merged modules revealed that they
converged into a single clade at a height of 0.9 on the tree, with no
noticeable outliers, reflecting a homogenous analysis with minimal
influence from technical variance (Supplementary Figure S4A).
Correlation analysis between module eigen gene values (a
representative scale of gene expression value) and disease severity
parameters in IPF patients shows the highest correlation with IPF
exacerbation. Unsurprisingly, the brown module (including the
highest module members) showed a significant positive
correlation (p < 0.01 and correlation: ~0.3–0.45) with all
different severity phenotypes (Figure 6B). Functional enrichment
analysis of the genes that fell in the brown module reported that
most of the members from this specific module are involved in
crucial biological processes andmolecular functions, including ECM
matrix organization, collagen fibril organization, and integrin
binding (Supplementary Figure S4B). We further examined the
expression patterns of the shared genes in three different

modules, namely, brown, blue, and turquoise, which contained
the higher number of eigen genes. This analysis affirmed that the
brownmodule included the greatest number of genes, as observed by
the dense expression density in this particular module (Figure 6C).

3.5 Prediction power of the DEGs in
differentiating IPF phenotypes

The binomial LASSO regression analysis of the identified DEGs
from the GSE150910 dataset reported that λ.min from cross
validation of the model was achieved at a λ value of ~0.004,
which lowered the binomial deviance to the expected threshold
(Figure 7A). Using the minimum penalizer, the model retained
10 non-zero covariates (predictor genes) from a total of 67 variables
(DEGs). A similar number of predictors were retained at the λ.1se
value (one standard error from λ.min), further confirming the
robustness of the model’s variable selection (Figure 7A).
Inspection of the obtained model also revealed that all the
covariates leave the fit model at the λ.min value except the non-
zero predictors, as observed in the cross-validation step (Figure 7B).
Thereafter, we also predicted the accuracy of our model using the

FIGURE 3
(A) Dot chart illustrating different tissue- and cell-specific expressions of the DEGs extracted from IPF patients. (B) Diverging bar-plot showing the
number of genes expressed cell-specific manner. (C) Another bar-plot representation of the location of the DEGs identified from our experiment. (D)
Circus plot demonstration of the functional classification of the proteins expressed by our DEGs.
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ROC curve, which suggested that the proposed model has an
accuracy of approximately 96.5% (Supplementary Figure S5).
The 10 gene candidates that were found to be the best predictors
of IPF among the 67 total DEGs were identified from our model.
The area under the curve (AUC) values of these genes were
assessed with ROC curves, with several genes showing
exceptional predictive power. POU2AF1 (AUC: 0.898) and
SLC44A4 (AUC: 0.823) exhibited slightly lower specificity, but
their AUC values remained above 0.8, while other genes like
CTHRC1, POSTN, COL3A1, and CDH3 had AUC values above
0.9, indicating their excellent predictive ability (Figures 7C, D).
On the other hand, the remaining genes, i.e., CTHRC1, CP,
COL3A, SAMD11, POSTN, CDH3, THY1, and CRLF1, showed
an AUC value above 0.9, which characterizes them as excellent
predictors of IPF. Finally, we inspected the differences in the
expression of these genes, which further verified the noticeable
differences in their expression patterns between test and control
variables (Figure 8).

3.6 PPI network of the proteins expressed by
DEGs and their hub proteins

Our experiment on the PPI network construction with the
identified DEGs generated a PPI network with 96 nodes and
170 edges (Figure 9A). A total of 33 different proteins expressed
by the DEGs were found to be part of the network. However, the

interpretation of the biological relevance of the connected
proteins from such a complex network often presents
challenges. Hence, we further utilized the generic PPI to
construct hub protein networks that represent the most
connected nodes in a PPI network. The application of
different algorithms, including betweenness (Figure 9B),
bottleneck (Figure 9C), and closeness (Figure 9D), generated a
hub network containing the top 10 most connected nodes from
the generic PPI and all the networks shared by five proteins,
namely, SP1, COL1A1, FHL2, DES, and UBC (data not provided),
which are considered the most significant hub proteins from the
network. Subsequent biological processes analysis of the
overlapping five hub proteins indicated that three of them,
namely, SP1, FHL2, and COL1A1, are involved in maintaining
crucial biological processes inside the human body (Figure 9E).
The major biological process ontology terms of these proteins
included trabecula formation, trabecula morphogenesis, and
response to nutrient levels, collagen-activated tyrosine kinase
receptor activation signaling pathway, and osteoblast
differentiation.

3.7 Transcriptional and post-transcriptional
regulatory signatures of the DEGs

In this step, we identified the potential TFs and miRNA
targets of the DEGs. The DEG–TF interaction network was

FIGURE 4
(A) Lung-specific PPI network of the proteins expressed by the DEGs. The red-colored nodes represent DEGs, and the remaining nodes correspond
to the protein partners of the respective DEGs. (B) PPI network reflects the association of the DEGs with different respiratory tract diseases. Nodes
represent disease term or DEGs, and edges represent connections. (C) Heatmap representation of the association between DEGs and different other
diseases from theDisGeNET database (the log2FC values of the DEGs are portrayed from theGSE150910 dataset as a representative scale among the
datasets selected in our study).
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found to have 64 nodes and 245 edges. In summary, 17 DEGs
interacted with 49 different TFs, including FOXM1, IRF4, EGR1,
E2F5, KLF9, ZNF24, IRF1, SMAD5, NRF1, TFDP1, MAZ, ATF1,
PPRAG, ZFP37, ZNF324, ZBTB11, SP7, EZH2, DMAP1, SOX13,
GLIS2, ZLX, and HMGN3 (Figure 10A). On the other hand, the
DEG–miRNA interaction network incorporated 63 nodes and
formed 145 edges within its network (Figure 10B). A total of
30 DEGs formed interactions with 33 different miRNAs,
including Hsa-mir-1-3p, Hsa-mir-6b-5p, Hsa-let-7b-5p, Hsa-
mir-16-5p, Hsa-mir-26b-5p, Hsa-mir-29b-3p, Hsa-mir-124-3p,
Hsa-mir-130b-5p, Hsa-mir-149-3p, Hsa-mir-192-5p, Hsa-mir-
329-3p, Hsa-mir-335-5p, Hsa-mir-8485, Hsa-mir-603, Hsa-
mir-940, hsa-mir-1236-3p, Hsa-mir-377-5p, and Hsa-mir-
450a-1-3p. Finally, the DEG–drug interaction revealed the
CA4 gene as a potential drug target among the identified
DEGs, which formed interactions with 17 small drug/
candidate molecules along its network (Figure 10C). Among
the selected molecules with potential therapeutic advantages,
ellagic acid, brinzolamide, diclofenamide, zonisamide,
hydrochlorothiazide, methazolamide, chlorothiazide,
dorzolamide, acetazolamide, benzthiazide, ethoxzolamide, and
topiramate were mentionable.

3.8 Expression patterns of the DEGs in
independent datasets

Finally, the expression patterns of the DEGs identified in the
main analysis were further cross-validated with two independent
datasets (including the transcriptome profile of IPF and healthy lung
tissues) from the NCBI-GEO databases, namely, GSE110147 and
GSE53845. We found that 67 of our total 68 DEGs (excluding only
TOGARAM2) are also significantly (FDR<0.01) and differentially
expressed in these datasets (Supplementary Figure S6). Most of these
genes showed a |log2FC| value above 1, with a fewer number of genes
exhibiting a |log2FC| value in the range of 0.70–0.99.

4 Discussion

To gain deeper insights into the molecular mechanisms driving
the pathogenesis and progression of IPF, we employed a
comprehensive series of meta-analysis protocols to identify
determinants of health risk and molecular targets in IPF patients.
Together with this pooled analysis, pathway and network-based
strategies provide insights into potential molecular targets for IPF

FIGURE 5
(A) Dot plot representation of the enriched terms obtained through KEGG pathway analysis on the common DEGs in IPF patients. The bar-plot
illustration refers to the enrichment results obtained through Gene Ontology term analysis: (B) biological processes, (C) molecular functions, and (D)
cellular components.
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(García-Campos et al., 2015). By analyzing the pattern of differential
gene expression, we further understand the role and involvement of
different genes in IPF (Dutta et al., 2012; Liang and Pardee, 2023).

Identifying the common DEGs between tumor and normal
samples is essential for studying tumorigenesis and identifying
diagnostic, prognostic, and therapeutic biomarkers. Initially, in
this study, we identified 67 common DEGs using differential
gene expression analysis from the GSE213001 and
GSE150910 datasets. To understand their molecular and cellular
characteristics, we investigated their chromosomal location and
different functional compartments within the cell. Among these,
45 DEGs displayed that their translational products constitute
different proportions of transmembrane, membrane, and plasma
or secreted proteins, suggesting that the DEGs are involved in a
diverse group of functions that drive the IPF phenotype
development. This was further supported by chromosomal
location analysis, suggesting that these DEGs are sporadically
located across different chromosomes, affecting IPF pathogenesis
in distinct ways. Notably, we identified one gene on the X
chromosome with none on the Y chromosome. This suggests
that male individuals inheriting the X chromosome expressing
this gene may be at greater risk for developing IPF, while female
individuals with two X chromosomes may be less vulnerable since
the presence of a second X chromosome can mitigate the effects of a
mutated one.

Later, we observed that a majority of the dysregulated genes were
specifically expressed in lung tissues. Among them, four genes were

specifically expressed in the bronchial epithelial cells.
Transcriptomic profiling demonstrated that many upregulated
genes in IPF lung tissues have minimal to no expression in
normal lung tissue. Similar observations have been made
regarding the presence of gene clusters with elevated expression
in bronchial epithelial cells of the IPF patients compared to healthy
controls (DePianto et al., 2015). Additionally, a few genes were
predominantly found to be expressed in smooth muscles. Airway
smooth muscle cells, as demonstrated by Carmo-Fernandes et al.
(2021), contribute to the progression of lung fibrosis by expressing
Wnt5a, which leads to aggravated fibrosis of the lung with poor
clinical outcomes. Cell-signature analysis of the identified DEGs in
IPF patients showed that these genes were the second-most
expressed in lung adventitial fibroblast cells, which are the main
cellular constituents of the adventitia. These fibroblasts play an
essential role in regulating pulmonary vascular wall function,
including the production of extracellular matrix proteins and
adhesion molecules in response to vascular stresses (Stenmark
et al., 2011). These results suggest that the majority of our DEGs
are expressed in the lung tissues, which are the most affected in IPF,
followed by lung adventitia, which has been repeatedly reported to
merge into surrounding fibrotic regions (Vascular remodeling,
2024). Our DEGs also exhibited specific expression patterns in
different types of epithelial and stromal cells. This finding aligns
with earlier studies suggesting that altered epithelial barrier function
may be implicated in the pathogenesis of IPF. Altered epithelial cells
not only undergo altered morphology but also undergo changes in

FIGURE 6
(A) Cluster dendrogram showing different groups of genes that were classified according to their adjacency in different modules. The clustered
genes with 0.25 height in the unmerged tree were merged and incorporated into a merged tree, which was utilized in the downstream analysis. (B)
Heatmap showing the association between different module eigen genes and different IPF severity phenotypes. The asterisks represent the level of
confidence scale of the linear regression: ***, <0.001; **, <0.01; *, <0.05. (C)Co-expression patterns (log2 scale) of the genes clustered in respective
best modules with a higher number ofmembers. The brownmodule showed a dense co-expression pattern as it contained the highest number of genes.
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differentiation and function, potentially contributing to the
pathogenesis of IPF (Chakraborty et al., 2022; Iyonaga et al.,
1997). Plataki et al. showed that pro-apoptotic markers are
upregulated in epithelial cells in IPF, which may contribute to
insufficient and delayed re-epithelialization, consequently
fostering fibroblast proliferation (Plataki et al., 2005). Similarly,
gene expression profiles of stromal cells from patients with IPF
and lung adenocarcinoma showed that several genes were
differentially expressed compared to controls (Kreus et al., 2024).
IPF lung exhibits substantial histological and molecular
heterogeneity. Most molecular studies have heavily focused on
the extensively scarred regions of the lung as these regions are
typically more accessible for standard surgical biopsy (Luzina et al.,
2018). Consequently, the molecular characterization of less scarred

areas remains relatively unexplored. Todd et al. (2016) observed that
normal-appearing lung tissue in IPF patients also exhibits the
signature of lung injury, which is absent in healthy controls.
Thus, it is crucial to investigate the expression profiles of genes
in symptomatic and non-symptomatic lungs.

Among the identified 67 DEGs, ASPN, COL1A1, COL3A1,
COL14A1, POSTN, and SPP1 have been identified as hub genes
for IPF previously (Zhou et al., 2019). Wan et al. (2021) proposed
that these genes, along with their interplay, could influence the
development of IPF by modulating IPF-related biological processes.
Among these,ASPN expression was found to be elevated in the lungs
of mouse models with pulmonary fibrosis, and its knockdown
suppressed transforming growth factor-β (TGF-β)/Smad signaling
and myofibroblast differentiation (Huang et al., 2022). TGF-β is a

FIGURE 7
Result of binomial LASSO regression analysis on identified DEGs (GSE150910) in IPF patients. (A) Cross-validation curve represents different lambda
values (red dotted line, presented in log scale) with upper and lower standard deviation (error bars). The vertical lines represent the lambda value with the
least binomial deviance (λ.min, left) and the lambda value with the least deviancewithin 1 standard error (λ.1se, right). (B) Plot indicates the path of covariates
in response to each lambda value. The upper axis in both plots represents the number of non-zero covariates at specific lambda values. The ROC
curve of the best predictor 10 genes identified through our model: (C) a random group of five genes and (D) a random group of the remaining five genes,
which was partitioned for better visualization and interpretation.
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key mediator of fibrogenesis, and the upregulation of TGF-β
modulates the phenotype and function of fibroblasts (Biernacka
et al., 2011). Therefore, the inhibition of TGF-β is important in
attenuating fibrosis. Additionally, COL14A1 has been identified as
one of the immune-related hub genes that are positively related to
IPF and has shown promise as a potential biomarker for predicting
IPF based on its AUC score (Fu et al., 2023). The DEGs such as
HSD17B6, MYRF, and AGER were also found to be differentially
expressed in alveolar epithelial type 1 cells from IPF lung tissues
compared to healthy samples (Ghandikota et al., 2022). HSD17B6
has been identified as the sole gene significantly upregulated in TGF-
β1-treated cells and is highly expressed in mesothelial cells in IPF
(Wilson et al., 2022). MYRF has also been identified as a potential
IPF biomarker by Gao et al. (2022). Of particular significance, IPF is
associated with aberrant developmental pathways, including the
Hedgehog (Hh) signaling pathway (Effendi and Nagano, 2022).
Given the contribution of Hh signaling to various pro-fibrotic
processes, inhibiting the Hh pathway could serve as a therapeutic
approach for IPF. The DEG CXCL14 showed significantly elevated
expression in lung tissues from IPF patients and in fibroblasts
stimulated in vitro with sonic hedgehog (SHh) (CXCL, 2024). In
addition, plasma levels of the CXCL14 protein were substantially

higher in IPF patients than in controls but showed a considerable
decrease when treated with an Hh inhibitor (CXCL, 2024; Banthien,
2024). The DEG FHL2 is induced by TGF-β, and its overexpression
significantly enhances SMAD-dependent TGF-β signaling in NIH
cells, suggesting a potential role for FHL2 as a pro-fibrotic regulator
in IPF (Banthien, 2024). Furthermore, suppressing FHL2
significantly inhibits the fibrotic morphological changes in rat
lung fibroblasts and primary lung fibroblasts (Shi et al., 2023).
The FHL2 inhibition effectively mitigates TGF-β1 and
bleomycin-induced fibrosis processes (Shi et al., 2023). Another
DEG that is upregulated by TGF-β is SULF1. SULF1 is overexpressed
in TGF⁃β1 induced pulmonary fibrosis in mice and human lungs
compared to normal controls (Yue et al., 2011). Additionally, TGF-β
serves as an important upstream regulator of the expression of
another DEG, IGF1 (Hernandez et al., 2020). The overexpression of
IGF1 has been observed in bleomycin-induced murine pulmonary
fibrosis (MicroRNA, 2024) and IPF patient lung tissue (Hernandez
et al., 2020). Hernandez et al. (2020) showed that knocking down
IGF1 receptors in fibroblast cells resulted in a decrease in pro-
fibrotic responses. Finally, the DEG FBLN2, which has also been
reported as upregulated in patients with IPF, may serve as a potential
therapeutic target for treating IPF. Zhang et al. (2023a)

FIGURE 8
Boxplot representation of the expression difference (log2 scale) of the 10 selected predictor genes from LASSO regression analysis between healthy
and IPF patients. All these genes were found to be significantly (p < 0.01) and differentially (log2FC > 1.6) expressed through Wald’s t-test in the primary
DEG analysis (Step 1).
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demonstrated that inhibiting FBLN2 effectively suppressed the TGF-
β1-induced proliferation and migration of MRC-5 cells.

The lung-specific (PPI) network analysis revealed 12 genes,
including MOV10, PPAP2C, SP1, APP, and FN1 from the DEG
list, exhibiting associations with multiple protein partners. The
interconnection pattern of a large number of DEGs of the PPI
network signified that the DEGs may affect the functions controlled
by many other genes in IPF. Notably, the transcription factor SPP1
has also been identified as a target for gene therapy of lung fibrosis
(Kum et al., 2007). The insulin-like growth factor 1 (IGF1)-induced
activation of PI3K/Akt signaling contributes to AEC senescence,
which is linked to the etiology of IPF. COL3A1 could be a possible
biomarker for monitoring the progression of IPF and non-small cell
lung cancer (NSCLC) (Dong and Ma, 2017). These findings imply
that the 12 DEGs engage in interactions with partner proteins,
thereby influencing lung homeostasis and predisposing patients to
compromised lung integrity, leading to fibrosis. Next, we examined
the association of these DEGs with various respiratory tract diseases,
e.g., lung inflammation, chronic lung injury, pneumonia, lung
carcinoma, and emphysema. Comorbidities such as lung cancer
are significantly associated with IPF-related mortality (Kreuter et al.,
2016). IPF has been reported to co-exist with pulmonary
emphysema and the syndrome of combined pulmonary fibrosis

and emphysema (CPFE) often presents complications such as
pulmonary hypertension, lung carcinoma, and acute lung injury,
resulting in a poor prognosis (Cottin, 2013; Lin and Jiang, 2015).
Moreover, as IPF is characterized as a form of chronic, progressive
fibrosing interstitial pneumonia with an unknown etiology, the
association of the IPF-related DEGs with pneumonia is not
unexpected. Finally, the disease gene-association analysis on the
DEGs without the respiratory tract disease filter showed that six
DEGs (namely, ACTG2, AGER, COL1A1, COL3A1, IGF1, and SPP1)
were associated with fibrosis. Among these, AGER, COL1A1,
COL3A1, IGF1, and SPP1, as already mentioned, have been
linked to IPF pathogenesis (Wan et al., 2021; IJMS, 2024b;
Hernandez et al., 2020; MicroRNA, 2024). These genes have been
implicated in liver fibrosis development as well as fibrosis
development in general (Tao et al., 2018; Osganian et al., 2022;
Komatsu et al., 2012). SPP1 has also been linked to bone marrow
fibrosis (Involvement, 2024) and IGF1 in skeletal muscle fibrosis
(Cells, 2024b).

Our KEGG pathway analysis revealed that many of the identified
DEGs in IPF are associated with focal adhesion and protein
digestion and absorption, suggesting a role in cell–cell
interactions, cell adhesion, and critical signaling pathways,
including PI3K-Akt and AGE-RAGE pathways. These pathways

FIGURE 9
Protein-protein interaction (PPI) network analysis of the proteins expressed by the DEGs. (A) A PPI network was constructed using the IMEX
interactome with a 1.0-degree filter, resulting in a network containing 96 nodes and 170 edges. The red-colored nodes represent proteins expressed by
DEGs, while the pastel-colored nodes denote their interacting partners. The edges represent connections within the network. (B-D) Hub protein
networks were derived from the generic PPI network using the Betweenness (B), Bottleneck (C), and Closeness (D) algorithms, each highlighting the
10 most connected nodes. Five overlapping hub proteins—SP1, COL1A1, FHL2, DES, and UBC—were identified across all three algorithms as the most
significant hub proteins. (E) Functional analysis of the overlapping hub proteins revealed that three of them, SP1, FHL2, and COL1A1, are involved in
maintaining essential biological processes in the human body. The color scale in all panels corresponds to interaction strength, with higher color density
indicating stronger interactions.
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are essential for cellular processes involved in inflammation, fibrosis,
and tissue repair, all of which are highly relevant to IPF.

The PI3K-Akt signaling pathway, for instance, regulates
processes such as cell growth, proliferation, motility, metabolism,
and survival, contributing to disease progression in IPF (Targeting
PI3K, 2024). Studies have shown that the activation of PI3K/Akt
leads to the overexpression of alpha-smooth muscle actin (α-SMA)
in lung fibrosis and is implicated in TGF-β-induced pulmonary
fibrosis (Wang et al., 2022). This overactivation contributes to the
fibroblast-to-myofibroblast differentiation and excessive ECM
production observed in IPF.

The AGE-RAGE signaling pathway is also significant in IPF
as RAGE (receptor for advanced glycation end products)
functions as a signal transduction receptor within the
immunoglobulin superfamily. Reduced RAGE levels have been
observed in human IPF lungs (Ohlmeier et al., 2010) and animal
models of pulmonary fibrosis (Englert et al., 2011; Ramsgaard
et al., 2010), highlighting its role in disease progression. AGE-
RAGE signaling has been associated with increased oxidative
stress and inflammatory response, contributing to the fibrotic
process in IPF.

Additionally, the identification of DEGs related to
ECM–receptor interactions underscores the importance of
ECM remodeling in IPF. IPF is characterized by repeated
cycles of tissue injury and abnormal ECM deposition due to
disrupted wound healing (Walraven and Hinz, 2018). Research
over the past two decades has emphasized the role of focal
adhesion kinase (FAK) in fibroblast adhesion to the ECM, a

critical process in fibrosis. The inhibition of FAK has been shown
to reduce ECM synthesis and increase ECM degradation, thereby
potentially mitigating fibrosis (Lagares and Kapoor, 2013; Dun
et al., 2010).

The GO term analysis of the DEGs in IPF highlighted critical
functions involved in fibrosis and inflammation, including protease
binding, integrin binding, platelet-derived growth factor (PDGF)
binding, and glycosaminoglycan binding. These functions play
essential roles in IPF pathogenesis.

Protease binding, for instance, is crucial for activating protease-
activated receptors (PARs), which mediate the effects of coagulation
factors. PAR activation regulates inflammation and fibrotic
responses, particularly by promoting pro-inflammatory and pro-
fibrotic pathways (Lin et al., 2017). Integrin binding, particularly via
integrin αvβ3, further supports this process by activating TGF-β, a
key regulator of fibrosis. TGF-β signaling in IPF contributes to
fibrosis progression by inducing the expression of pro-fibrotic
proteins (Molecules, 2024). PDGF binding, enriched among the
DEGs, suggests a role in fibroblast proliferation and migration.
PDGF, produced by injured alveolar epithelial type II cells, is a
critical mediator of fibroblast activation in IPF and represents an
important therapeutic target (Targeting platelet, 2024).
Additionally, glycosaminoglycan binding, involving ECM
components such as heparan sulfate and chondroitin sulfate,
regulates fibroblast activity by influencing cell migration,
proliferation, and contraction. This binding impedes fibroblast
recruitment, thus affecting ECM deposition and fibrosis (Jiang
et al., 2010).

FIGURE 10
Summary of transcriptional and post-transcriptional regulator signature identification experiment on the DEGs. (A) Interaction network between
DEGs and their respective TF partners. (B) Interaction network between DEGs and their respectivemiRNA partners. In both cases, the red nodes represent
the DEGs, and the remaining nodes are their corresponding targets. (C) Interaction between potential drug or small candidate molecules and CA4 gene,
which was identified as a drug target for therapeutic intervention in IPF patients.
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Our WGCNA further underscores the importance of ECM
organization and collagen fibril formation in IPF. The brown module
identified contains genes related to ECM functions, such as integrin
binding, glycosaminoglycan binding, and growth factor binding,
reinforcing the critical role of ECM remodeling in IPF progression.
In IPF, abnormal ECM deposition, particularly collagen, disrupts lung
architecture, contributing to fibrosis and respiratory decline. Breakdown
products of ECM, generated by oxidative stress and reactive oxygen
species (ROS), exacerbate fibrogenesis by stimulating inflammatory,
mesenchymal, and epithelial cell responses. This highlights the
potential of targeting ECM turnover and ROS-induced signaling
pathways as therapeutic strategies in IPF (Kliment and Oury, 2010;
Wynn andRamalingam, 2012). FDA-approved therapies like nintedanib
and pirfenidone target ECM remodeling by inhibiting collagen fibril
formation and reducing fibroblast activation. Additionally, integrins,
especially integrin αvβ3, have emerged as promising therapeutic targets
due to their role in ECMorganization and fibroblast activation. Ongoing
clinical trials are investigating integrin inhibitors andRGDpeptide-based
therapies to disrupt fibrotic signaling (Bahudhanapati and Kass, 2017;
Henderson et al., 2020).

The genes within the brown module may also serve as
biomarkers for ECM turnover and fibrosis severity, offering
prognostic insights into IPF progression and responsiveness to
anti-fibrotic therapies. Further investigation into ECM-linked
pathways could lead to more tailored and effective treatments
based on ECM dynamics and integrin expression (King et al.,
2011; Ley et al., 2012).

We identified 10 genes—CDH3, COL3A1, CP, CRLF1, CTHRC1,
POSTN, POU2AF1, SAMD11, SLC44A4, and THY1—from a total of
67 DEGs through LASSO regression, which were found to be the
best predictors of IPF. These genes hold significant promise as
potential diagnostic markers for IPF. Notably, the expression of
COL3A1 and CDH3 was higher in the lung tissues of patients with
IPF compared to healthy individuals (Zhang et al., 2023b). This is
consistent with previous studies that have indicated the involvement
of these genes in fibrosis. Additionally, CP and POSTN have also
been recognized as potential diagnostic markers for IPF (Molecules,
2024), underscoring their relevance in disease progression.

POU2AF1, which was found to be more highly expressed in IPF
patients than in controls, is of particular interest. Knockout studies have
shown that the deletion of POU2AF1 provides protection from
bleomycin-induced lung fibrosis in mice, suggesting its pivotal role
in IPF pathogenesis (Li et al., 2017). In contrast, THY1, which is
expressed in themajority of normal lung fibroblasts, is notably absent in
fibroblastic foci, the characteristic lesions of IPF (Bradley et al., 2009),
making it a promising marker for distinguishing active fibrotic tissue.

To further validate the diagnostic potential of these 10 genes, we
performed ROC curve analysis. The results indicated that these genes
collectively serve as excellent biomarkers for IPF. The reported AUC
values were notably high, reflecting the robustness and accuracy of
these genes in distinguishing IPF patients from healthy controls.
Specifically, an AUC value approaching 1 indicates a high degree
of classification accuracy, demonstrating that these markers can
reliably differentiate IPF from other lung conditions. Moreover, the
inclusion of CTHRC1 and POSTN, both upregulated in IPF
myofibroblasts, as shown in single-nucleus assays (Single-nucleus
chromatin accessibility identifies, 2024), further strengthens the
diagnostic capacity of this gene set.

Our interconnection pattern of the PPI network of the selected
10 DEGs signified five significant hub proteins, and targeting those
proteins holds great promise as the most effective therapeutic
intervention strategy for the patient group (Shen et al., 2010).
Among the identified hub proteins, SP1 could serve as a potential
therapeutic target and a prognostic indicator in individuals suffering
from IPF. This assertion is supported by the work of Kum et al.
(Qinghua et al., 2024), which demonstrates that the inhibition of SP1
activity at the DNA level is an effective approach for the treatment of
lung fibrosis. Our findings also identify COL1A1 as a hub protein
regulated by the long-non-coding RNA H19. Through competition
withmiR-196a, H19 participates in the regulation ofCOL1A1, thereby
mediating pulmonary fibrosis (Lu et al., 2018). Finally, the fibrosis
process induced by TGF-β1 and bleomycin can be effectively reduced
through the inhibition of the hub protein FHL2 (Shi et al., 2023).

The analysis of miRNA and TF interactions revealed that
multiple DEGs, along with their corresponding mRNAs, are
targeted by various miRNAs and TFs. Among the identified TFs,
aberrant induction of FOXM1 has been observed in the lungs of IPF
patients and mouse models of fibrotic lung injury (Balli et al., 2013).
Moreover, the deletion of FOXM1 in alveolar epithelial type II cells
prevented lung fibrosis, while the overexpression of FOXM1 in these
cells exacerbated fibrosis (Balli et al., 2013). Additionally, EGR1 is
aberrantly expressed in animal models such as transgenic mice
expressing TGF-ß or IL-13 and human fibrotic diseases such as
IPF and scleroderma (Bhattacharyya et al., 2011). Additionally, the
loss of EGR1 protects mice from IPF, suggesting that EGR1 may be
involved in remodeling physiological and pathological connective
tissue (Bhattacharyya et al., 2011). Therefore, EGR1 presents itself as
a novel pro-fibrotic mediator and holds promise as a potential target
for the development of anti-fibrotic therapies. Zucker et al. (2014)
demonstrated that KLF9, a TF identified in our analysis,
independently increases the levels of ROS in cultured cells and
animal tissues and is essential for the pathogenesis of bleomycin-
induced pulmonary fibrosis in mice. While NRF1 TF exerts anti-
fibrotic activity in lung fibrosis through the inhibition of the
TGFβ1 pathway (Suliman et al., 2022), knockdown of NRF1
leads to increased mRNA expression of the pro-fibrotic MMP-2
and MMP-9, suggesting that upregulating Nrf1 could decrease the
pro-fibrotic response of MMP-2 and MMP-9, making this TF a
promising therapeutic target (IJMS, 2024a). The TF IRF4, crucial for
regulating M2 macrophage polarization, exhibits overexpression in
both lung sections and bronchoalveolar lavage fluid cells of IPF
patients (Mou et al., 2022). We found EZH2 as a potential target for
IPF treatment. Xiao et al. reported the differential upregulation of
EZH2 in the lungs of IPF patients and mice with bleomycin-induced
lung fibrosis (Wiley Online Library, 2024). Moreover, TGF-1-
induced differentiation of human lung fibroblasts into
myofibroblasts was reduced by EZH2 inhibition (Wiley Online
Library, 2024). Finally, many studies have shown that
ATF1 influenced several fibrotic diseases, and targeting
ATF1 mitigates the proliferation and activation of TGF-β-
stimulated fibroblasts (MiR, 2024).

Recent evidence has highlighted the potential of multiple
miRNAs as biomarkers for the early diagnosis of IPF. In our
study, hsa-let-7b-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p were
identified as hub miRNAs, consistent with their roles as diagnostic
biomarkers in IPF, as also reported in previous studies (He et al.,
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2022). These miRNAs are involved in critical processes such as ECM
deposition, TGF-β signaling, and immune modulation, which are
central to the pathogenesis of IPF. Notably, our study provides
additional validation of their involvement in IPF-specific pathways.
Earlier studies, including ours, have identified other key miRNAs,
such as hsa-miR-16-5p, hsa-miR-26b-5p, hsa-miR-335-5p, hsa-miR-
124-3p, and hsa-miR-192-5p, as the most relevant post-
transcriptional signatures in IPF (Catalanotto et al., 2016). Among
these, exosomal miR-142-3p has been shown to attenuate fibrosis in
airway epithelial cells by inhibiting the TGF-β signaling pathway,
indicating its anti-fibrotic effect in IPF (Guiot et al., 2020). The
miRNome analysis by Granata et al. further emphasized the
significance of miR-8485 as an upregulated miRNA in bronchial
epithelial cells, specifically in the context of everolimus-induced
pulmonary fibrosis (Granata et al., 2018).

Finally, we cross-validated the results using two independent
datasets from the NCBI-GEO databases, namely, GSE110147 and
GSE53845, which comprise the blood transcriptome profiles of IPF
and healthy lung tissues. We found that 67 out of 68 (excluding
TOGARAM2) are differentially expressed in the blood cells of IPF
patients, which holds the potential for aiding in the development of
non-invasive diagnostic approaches for this patient population. The
consistency of the observed expression changes across multiple datasets
strengthens the robustness and reliability of our findings. Furthermore,
the majority of the DEGs exhibited a fold change (log2FC) above 1,
indicating substantial differences in expression between the IPF and
healthy lung tissues. This suggests that these genes may play important
roles in the development or progression of IPF as their expression levels
are significantly altered compared to healthy samples.

Although our study provides valuable insights into IPF-specific
DEGs, certain limitations should be acknowledged. Potential biases
may arise from the dataset selection, which might not fully capture
inter-individual variability, and from analysis techniques that could
influence DEG detection and interpretation. Despite these
limitations, the identified biomarkers hold strong translational
potential, offering promising candidates for future diagnostic
tools and targeted therapies for IPF. By advancing our
understanding of IPF-related molecular pathways, these findings
pave the way for personalized treatment strategies aimed at
improving patient outcomes.

5 Conclusion

This study investigates the molecular basis of IPF, pinpointing
67 key genes linked to the disease, with a focus on notable genes like
ASPN and COL1A1. It also identifies potential therapeutic targets and
regulators through protein interactions, microRNAs, and transcription
factors. Ten genes are identified as strong diagnostic markers for IPF
through LASSO regression. Genemodule analysis provides insights into
the biological processes contributing to IPF severity. The consistency of
findings across independent datasets strengthens the reliability of these
results, suggesting their utility for non-invasive diagnostic approaches in
IPF. This study paves the way for future research and clinical
applications, advancing our understanding of IPF and potentially
leading to more targeted and effective diagnostic and therapeutic
strategies for this challenging disease.
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