
MMPred: a tool to predict peptide
mimicry events in MHC class II
recognition

Filippo Guerri1,2, Valentin Junet1,2, Judith Farrés1 and
Xavier Daura2,3,4*
1Anaxomics Biotech, Barcelona, Spain, 2Institute of Biotechnology and Biomedicine, Universitat
Autònoma de Barcelona, Cerdanyola del Vallès, Spain, 3Catalan Institution for Research and Advanced
Studies (ICREA), Barcelona, Spain, 4Centro de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain

We present MMPred, a software tool that integrates epitope prediction and
sequence alignment algorithms to streamline the computational analysis of
molecular mimicry events in autoimmune diseases. Starting with two protein
or peptide sets (e.g., from human and SARS-CoV-2), MMPred facilitates the
generation, investigation, and testing of mimicry hypotheses by providing
epitope predictions specifically for MHC class II alleles, which are frequently
implicated in autoimmunity. However, the tool is easily extendable to MHC class I
predictions by incorporating pre-trained models from CNN-PepPred and
NetMHCpan. To evaluate MMPred’s ability to produce biologically meaningful
insights, we conducted a comprehensive assessment involving i) predicting
associations between known HLA class II human autoepitopes and microbial-
peptide mimicry, ii) interpreting these predictions within a systems biology
framework to identify potential functional links between the predicted
autoantigens and pathophysiological pathways related to autoimmune
diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-
2 infection and autoimmunity. MMPred code and user guide are made freely
available at https://github.com/ComputBiol-IBB/MMPRED.
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1 Introduction

Epidemiological, clinical, and experimental evidence supports the association between
infections and autoimmune diseases, with molecular mimicry proposed as one of the key
mechanisms underlying this relationship (Oldstone, 1998; Rojas et al., 2018). Molecular
mimicry occurs when a pathogen-derived peptide shares sequence similarity with a host
peptide, and it is considered a strategy employed by pathogens to evade the immune system.
By mimicking self-protein sequence fragments, pathogens exploit the immune system’s
tolerance for these molecules, effectively avoiding detection. This mimicry can mislead the
immune response, activating autoreactive T-cells and/or producing cross-reactive
antibodies that target both the pathogen’s peptides and the host’s own tissues. As a
result, the immune system may inadvertently attack the body, contributing to the onset
of autoimmune disorders. This mechanism is known to play a role in diseases such as
Guillain-Barré syndrome (Maguire et al., 2024) or rheumatic fever (Cunningham, 2014),
where infections by specific viruses or bacteria, respectively, are linked to autoimmunity.
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The identification of molecular mimicry events is challenging due to
the vast number of potential pathogen-derived peptides and the
limited number of known autoantigens.

The identification or prediction of peptide mimicry events could
therefore serve as a valuable clinical tool. From a theoretical
standpoint, predicting peptide mimicry involves identifying
similarities between self and exogenous proteins (Doxey and
McConkey, 2013) and predicting their recognition by the
immune system (Rojas et al., 2018). In this context,
bioinformatics can provide valuable insights through the
application of sequence alignment and epitope-prediction
algorithms, particularly for Major Histocompatibility Complex
(MHC) epitopes (Caron et al., 2015; Wang et al., 2010). To our
knowledge, CRESSP (An et al., 2022) is the only tool currently
integrating and streamlining both sequence alignment and epitope
prediction. However, CRESSP primarily focuses on B-cell epitopes.
Although the SARS-CoV-2 study by An et al. (2022) included MHC
class II epitopes as well, the actual tool (https://pypi.org/project/
cressp/) only incorporates MHC class I epitope predictions, as
provided by MHCflurry (O’Donnell et al., 2020).

Here, we present the program MMPred (Molecular Mimicry
Predictor), a tool that integrates sequence alignment and MHC class
II epitope-prediction algorithms into a single pipeline. The tool is
designed to be flexible, user-friendly and amenable to non-expert
use, requiring as sole inputs the fasta files for the exogenous (query)
and endogenous (target) protein (or peptide) sets and a list of MHC
alleles of interest to perform the predictions for. The application of
sequence alignment is optional, and if used, the two sets of sequences
are compared and epitope prediction is applied to those target
sequences that show a significant alignment with query
sequences. The tool is an extension of CNN-PepPred (Junet and
Daura, 2021), and offers the possibility to include predictions from
NetMHCIIpan4.1, both with the BA (trained on binding affinities)
and EL (trained on eluted ligands) models (Reynisson et al., 2020).
The tool is programmed in such a way that additional predictors,
including MHC class I epitope predictors, can be added with
minimal effort. The alignments can be performed with BLASTp
(Altschul et al., 1990) or by means of a position-specific scoring
matrix (PSSM) with PSI-BLAST (Schäffer et al., 2001).

We have evaluated the capacity of MMPred to produce
biologically meaningful results by i) predicting the association of
known HLA class II human autoepitopes to microbial-peptide
mimicry, ii) evaluating and interpreting these predictions in a
systems biology framework, where the predicted autoantigens were
tested for possible functional relations to pathopysiological pathways
associated to autoimmune disease, and iii) analyzing example cases in
the context of autoimmunity and SARS-CoV-2 infection (Ehrenfeld
et al., 2020; Knight et al., 2021).We note that a statistical evaluation of
the performance of the tool would not be meaningful in this case since
i) the number of human peptides that are know to be (and not be)
autoreactive as a result of microbial-peptidemimicry is very small and
ii) we would be mostly evaluating the prediction performance of
CNN-PepPred and NetMHCIIpan, which has been already done and
is not the purpose of this study. For the alignment strategy, both
BLASTp and PSI-BLAST produced biologically relevant matches.
Although PSI-BLAST yielded higher average scores in the
functional evaluation, it significantly reduced the number of hits at
the same significance threshold. Therefore, we recommend using both

alignment methods for a more comprehensive analysis. We discuss
some of the predicted autoantigens in further detail, with helicase
MOV-10 standing as one of the most interesting cases.

2 Methods

2.1 MMPred

This study introduces MMPred, a software tool integrating
epitope prediction and sequence alignment algorithms to simplify
the setup of computational analyses aimed at the generation,
investigation or testing of hypotheses relative to molecular
mimicry events in the context of autoimmune diseases. As it
stands, the tool provides epitope predictions for MHC class II
only, as alleles involved in autoimmunity belong often to this
class (Fiorillo et al., 2017). But the tool can be easily extended to
MHC Class I prediction by incorporating the corresponding pre-
trained models from CNN-PepPred and NetMHCpan (Reynisson
et al., 2020).

2.2 Algorithm

The MMPred algorithm is illustrated in Figure 1 for uses
combining sequence alignment and epitope prediction. In
addition, the program may be also used without the alignment
feature to streamline epitope prediction using NetMHCIIpan and
CNN-PepPred.

2.2.1 Software specifications
The software has been developed using Python3.6.8 in a Linux

environment. The Python3 libraries used are Pandas (https://
pandas.pydata.org/), NumPy (Harris et al., 2020), Matplotlib
(Hunter, 2007), pickle (https://github.com/python/cpython/blob/
3.6/Lib/pickle.py), sklearn (Pedregosa et al., 2011) and tensorflow
(Abadi et al., 2016). Software, installation instructions and program
user-guide are available in GitHub (https://github.com/
ComputBiol-IBB/MMPRED).

2.2.2 Input
The program takes a set of protein sequences in the form of a

fasta file (QUERY) and a list of MHC alleles (ALLELES) as minimal

FIGURE 1
Scheme summarizing the overall workflow of MMPred when
used with alignment. Input in purple, process in orange and output
in grey.
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input. If no additional input is provided, the program runs an
epitope prediction for the sequences in QUERY and each of the
MHC alleles specified.

The user can specify if QUERY contains entire protein
sequences (protein mode) or peptides (peptide mode). When in
protein mode, the program makes a prediction for each fragment of
size W in the protein (with a 1-residue step), where W is a user-
defined parameter. Instead, when using the peptide mode a single
prediction is performed for the full length of the peptide. We suggest
to use the peptide mode only when QUERY contains short-length
peptides, e.g., ≤ 25 residues.

The user can provide a second fasta file (TARGET). In this case,
an alignment is performed between the peptides in QUERY (if in
peptidemode) or derived from QUERY (if in proteinmode) and the
TARGET sequences, to produce the TARGET* set (see Figure 1).
TARGET* contains the sequences from TARGET that show
significant (to a value defined by the user) alignment with

QUERY peptides. Epitope prediction is then applied to the
TARGET* sequences.

In this study, we are using microbial sequences as QUERY and
human ones as TARGET. Yet, QUERY and TARGET may be
whatever the user thinks appropriate for the analysis in question.

2.2.3 Alignment
Protein sequence alignment is performed to identify the

potential similarity between QUERY and TARGET sequences, if
TARGET is specified. The alignment can be done using either of two
strategies: i) using BLASTp to perform an ungapped alignment, with
automatic adjustment of parameters for short input sequences or ii)
using PSI-BLAST to compute a PSSM by aligning the sequences in
QUERY against a user-defined set of epitopes provided in a fasta file,
and then using the PSSM to perform a search in TARGET. This
user-defined epitope set is identified in Figure 1 as Known Epitopes,
and an example set used in this study is described in Section 2.3.5.

TABLE 1 Results of the supervised evaluation.

Human autoepitope AID Microbial epitope Organism Same allele

H1-1 (62-70) MS PPE68 (63-68) MT -

H1-2 (59-67) MS PPE69 (63-68) MT -

H1-2 (203-211) MS HbhA (167-185) MT DRB5*01:01

H1-4 (210-218) MS HbhA (168-185) MT DRB5*01:01

H1-4 (210-218) MS RplV (152-157) MT DRB5*01:01

H2BC3 (66-74) MS EsxB (18-24) MT -

MPO (234-242) MS Spike (326-330) SARS-CoV-2 DRB1*15:01

IFT57 (60-68) MS Spike (457-462) SARS-CoV-2 -

PTPRJ (693-701) MS Spike (778-785) SARS-CoV-2 -

RPL31 (103-116) MS Spike (1065-1069) SARS-CoV-2 -

RPL7A (60-68) MS Spike (1210-1218) SARS-CoV-2 -

ARID4B (540-552) MS Replicase polyprotein 1a (972-977) SARS-CoV-2 -

CCDC97 (248-256) MS Replicase polyprotein 1a (972-977) SARS-CoV-2 -

GLT8D1 (48-56) MS Replicase polyprotein 1a (1910-1917) SARS-CoV-2 -

TGFBI (235-244) MS Replicase polyprotein 1a (2147-2155) SARS-CoV-2 -

VIM (52-64) MS Replicase polyprotein 1a (3381-3389) SARS-CoV-2 -

HLA-A (57-65) MS Replicase polyprotein 1a (3991-3999) SARS-CoV-2 -

HLA-A (57-66) RA Replicase polyprotein 1a (3991-3999) SARS-CoV-2 -

MRPS15 (196-204) MS Nucleoprotein (86-93) SARS-CoV-2 -

PLXDC2 (38-49) MS Nucleoprotein (267-274) SARS-CoV-2 -

ACTA2 (153-161) MS ORF3a protein (164-176) SARS-CoV-2 -

H3-4 (21-29) MS ORF8 protein (51-56) SARS-CoV-2 -

RPL5 (18-26) MS Tegument protein UL46 (486-490) HHV-1 -

JAK2 (102-110) MS gE (38-42) HHV-3 -

Human autoepitope: human protein name and position in the sequence of the predicted autoepitope; AID: autoimmune disease associated to the microorganism (MS: multiple sclerosis, RA:

rheumatoid arthritis); Microbial epitope: microbial protein name and position in the sequence of the known microbial epitope; Organism: corresponding microrganism (MT:Mycobacterium

tuberculosis, HHV: Human Alphaherpesvirus); Same allele: predicted allele, only shownwhen the same allele is known to recognise both human andmicrobial epitopes at the experimental level.

An extended version of this table is provided in the Supplementary Material file MEDS_vs_HADS.xlsx.

Frontiers in Genetics frontiersin.org03

Guerri et al. 10.3389/fgene.2024.1500684

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1500684


If the alignment satisfies a certain significance threshold (either
E-value or bit score; by default E-Value < 0.05) the aligned
TARGET sequence is stored in TARGET* for epitope prediction.
The parameter (E-value or bit score) and its value can be defined
by the user.

To perform the epitope prediction, a sequence of length ≥W
that we shall call “prediction window” has to be extracted from the
alignment. If the length of the alignment is <W, then a prediction
window of size W centered on the aligned sequence is extracted.
If the number of extra residues at left and right cannot be the

same, the program automatically takes the extra residue to the
right. If the window falls outside the ends of the sequence, the
algorithm will take the first or last W residues accordingly. W is
by default 15.

2.2.4 Epitope prediction
Whether the alignment is performed or not, epitope predictions

are run using NetMHCIIpan 4.1, with both the model trained on
Binding Affinity (BA) and that trained on mass spectrometry Eluted
Ligands (EL) (Reynisson et al., 2020), and CNN-PepPred (Junet and

FIGURE 2
Results of the functional analysis for prediction sets 3 (using BLASTp) and 4 (using PSI-BLAST). Dependence of the distribution of scores S (box plots
overlaid with scatterplots) on the following parameters: use of BLASTp or PSI-BLAST and threshold E-value for the alignment, %Rank threshold and allele-
selection criterion (allHLA or one HLA, see Section 2.4.1) for the epitope prediction. The random distribution (Rnd) is represented in grey. Themean of the
distribution is indicated with a cross.
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Daura, 2021). The three predictions are kept and no consensus score
is generated. Note that NetMHCIIpan reports the prediction score
and the %Rank for each peptide-MHC pair. The %Rank is a
normalized prediction score that enables comparison between
different MHC alleles and models (BA and EL). The %Rank of a
query sequence is determined by comparing the prediction score to a
score distribution for a random set of natural peptides, with %

Rank = 1 meaning that the queried sequence obtained a prediction
score in the highest 1% of the distribution. On the other hand, CNN-
PepPred reports only prediction scores. To make results from CNN-
PepPred comparable to NetMhcIIpan, a score distribution for
natural peptides was generated for each MHC allele available in
CNN-PepPred, using a random sample of 10,000 peptides extracted
from UniRef50 (The UniProt Consortium, 2023).

TABLE 2 Results of the functional analysis for prediction sets 3 (using BLASTp) and 4 (using PSI-BLAST).

Alignment Alleles %Rank E-Value N Score ratio p-value Significance

BLASTp allHLA 10 0.1 3144 1.11 3.41e-02 -

BLASTp allHLA 10 0.05 1770 1.15 2.33e-02 -

BLASTp allHLA 10 0.01 516 1.36 1.10e-13 ***

BLASTp allHLA 10 0.001 67 1.91 2.05e-06 ***

BLASTp allHLA 2 0.1 1594 1.1 1.99e-01 -

BLASTp allHLA 2 0.05 794 1.2 1.07e-02 -

BLASTp allHLA 2 0.01 301 1.28 4.25e-04 **

BLASTp allHLA 2 0.001 50 2.14 9.51e-07 ***

BLASTp oneHLA 10 0.1 1346 0.96 9.88e-01 -

BLASTp oneHLA 10 0.05 711 0.95 9.82e-01 -

BLASTp oneHLA 10 0.01 299 1.15 1.26e-02 -

BLASTp oneHLA 10 0.001 50 2.14 9.51e-07 ***

BLASTp oneHLA 2 0.1 618 1.09 3.53e-01 -

BLASTp oneHLA 2 0.05 330 1.16 2.95e-01 -

BLASTp oneHLA 2 0.01 134 1.47 2.43e-03 *

BLASTp oneHLA 2 0.001 17 3.14 9.69e-10 ***

PSI-BLAST allHLA 10 0.1 487 1.49 1.53e-13 ***

PSI-BLAST allHLA 10 0.05 89 1.47 6.60e-04 **

PSI-BLAST allHLA 10 0.01 23 2.66 3.85e-08 ***

PSI-BLAST allHLA 10 0.001 6 1.33 3.26e-01 -

PSI-BLAST allHLA 2 0.1 184 1.8 3.03e-11 ***

PSI-BLAST allHLA 2 0.05 83 1.48 6.45e-04 **

PSI-BLAST allHLA 2 0.01 17 3.14 9.69e-10 ***

PSI-BLAST allHLA 2 0.001 0 - - -

PSI-BLAST oneHLA 10 0.1 188 1.49 1.22e-05 ***

PSI-BLAST oneHLA 10 0.05 56 1.5 1.04e-02 -

PSI-BLAST oneHLA 10 0.01 23 2.66 3.85e-08 ***

PSI-BLAST oneHLA 10 0.001 6 1.33 3.26e-01 -

PSI-BLAST oneHLA 2 0.1 50 1.52 1.08e-02 -

PSI-BLAST oneHLA 2 0.05 50 1.52 1.08e-02 -

PSI-BLAST oneHLA 2 0.01 17 3.14 9.69e-10 ***

PSI-BLAST oneHLA 2 0.001 0 - - -

Alleles: allele-selection criterion (see Section 2.4.1); Score ratio: mean-score ratio; N: size of the sample; p-value: from the Mann-Whitney U test; Significance: - (not significant), * (p-value <
0.01), ** (p-value < 0.001), *** (p-value < 0.0001).
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2.2.5 Output
The output depends on the input parameters as follows:

• No Alignment, Protein mode: The program will return the
predicted binding core (a sequence of length 9 for MHC class
II binders (Wu et al., 2021)) for every window of size W
achieving %Rank ≤ 10 in every protein included in QUERY,
together with the ID of the protein, start and end position of
theW-residue peptide, start and end position of the predicted
core, prediction method, score, %Rank and the allele for which
the prediction has been made.

• No Alignment, Peptide mode: The program will return the
predicted 9-mer core for every peptide included in QUERY
achieving %Rank ≤ 10, together with the ID of the peptide,
start and end position of the predicted core, prediction
method, score, %Rank and the allele for which the
prediction has been made.

• Alignment: For every sequence in TARGET* achieving %Rank
≤ 10, the program will return the predicted 9-mer core, the
TARGET sequence ID, the start and end position of the
alignment in the TARGET sequence, the start and end
position of the window of size W extracted from the
alignment in the TARGET sequence, the start and end
position of the predicted core in the TARGET sequence,
identity, E-value and bit score of the alignment, the aligned
TARGET sequence, the QUERY sequence ID, the start and
end position in the QUERY sequence of the alignment, the
aligned QUERY sequence, prediction method, score, %Rank
and the allele for which the prediction has been made.

2.3 Evaluation datasets

2.3.1 Microbial epitope dataset (MEDS)
A dataset of known HLA class II epitopes from infectious agents

was manually downloaded from IEDB (Vita et al., 2019) (https://
www.iedb.org). The search terms “Epitope: Linear peptide”,
“Epitope source: Bacteria, Virus”, “Host: Human”, “Assay: MHC
ligand”, “Outcome: positive”, “MHC Restriction: Class II”, “Disease:
any” were used (date 11/10/2023).

Epitopes lacking either the UniProtKB accession number (AC)
(The UniProt Consortium, 2023) (https://www.uniprot.org) of the
protein, start or end position in the sequence or the HLA allele for
which they were tested, were excluded. Epitopes containing
modified amino-acid residues were also discarded. Additionally,
only epitopes from microorganisms known to be related to
autoimmune diseases were considered. The relationship between
an organism and the occurrence of autoimmune diseases was
determined by review of the literature when not annotated in
IEDB. For each organism with epitopes fulfilling the previous
selection criteria, a PubMed (https://pubmed.ncbi.nlm.nih.gov/)
search for reviews from the last 10 years using the keywords
“organism_name AND (autoimmunity OR autoimmune)” was
performed. As last filter, epitopes associated to HLA alleles with
no model available in CNN-PepPred and NetMHCIIPan were
also discarded.

After these filters, MEDS contained 3,676 epitopes from
88 proteins of 13 microorganisms, associated to 50 HLA class II
alleles, with a total of 9,229 epitope-allele pairs (Supplementary
Material Table 1 file MEDS_summary.xslx).

TABLE 3 MMPred-predicted autoantigens from similarity to SARS-CoV-2 sequences.

Autoantigen Epitope SARS-CoV-2 protein Aligned sequence N positive

MYT1L EEGDREEEE (125–133) NSP3 DEDEEEGDCEEEE (110–122) 1

BAZ1A VDGDEEEGQSEEEE (1229–1242) NSP3 DEDEEEGDCEEEEFE (110–124) 2

CHD5 DDDDEEEEGGCEEEED (398–413) NSP3 DEDEEEGDCEEEE (110–122) 2

MCM8 YNYEPLTQL (199–207) NSP5 YNYEPLTQ (237–244) 1

ATF7 FVCNAPGCG (7–15) NSP13 PYVCNAPGC (47–55) 1

HELZ2 FTVIQGPPG (2169–2177) NSP13 QKYSTLQGPPGTGKS (275–289) 11

MOV10 KRFNVAVTRAKAL (903–915) NSP13 NVNRFNVAITRAK (557–569) 5

MOV10L1 RFNVAITRPKAL (1131–1142) NSP13 NVNRFNVAITRAK (557–569) 5

DNA2 LNVAITRAKH (1000–1009) NSP13 RFNVAITRAK (560–569) 4

BRI3 VTRYPANSI (64–72) NSP14 VDRYPANSIV (389–398) 7

PARVG LHLLVALAKRFQ (140–151) NSP15 LHLLIGLAKRF (248–258) 8

CALD1 VMSLKNGQI (225–233) NSP16 TAVMSLKEGQI (257–267) 2

MICAL3 YKKDKKKKA (1747–1755) N KKDKKKKADE (369–378) 3

SLC35E4 SVLYNLASF (265–273) spike(BA.1-like) SVLYNLASFS (366–375) 1

UNC50 YKYLRRLFR (32–40) spike(BA.4-like) YNYLRRLFR (447–455) 7

N positive: number of positive predictions for the epitope (pairs of prediction method and allele).
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2.3.2 Human autoepitope DataSet (HADS)
A dataset containing known human autoepitopes was

downloaded from IEDB (11/10/2023). The search terms were:
“Epitope: Linear peptide”, “Epitope source: Human”, “Host:
Human”, “Assay: MHC ligand”, “Outcome: positive”, “MHC
Restriction: Class II”, “Disease: autoimmune”.

To avoid redundancy in the form of nested sets, epitopes
from the same protein that showed overlap and were linked
to the same allele were merged into a single epitope. After
the merging, only sequences with length ≥ 15 were
kept. Epitopes associated to HLA alleles with no model
available in CNN-PepPred and NetMHCIIPan were
also discarded.

HADS thus contained 807 epitopes from 608 different human
proteins, associated to 5 different HLA class II alleles in the context
of Rheumatoyd Arthritis and Multiple Sclerosis (Supplementary
Material Table 2 file HADS_summary.xslx).

2.3.3 Human proteome dataset (HPDS)
HPDS contains the sequences of the 20,426 reviewed human

proteins found in UniProt (The UniProt Consortium, 2023) on the
date of the download (18/10/2023).

2.3.4 SARS-CoV-2 proteome dataset (SC2DS)
SC2DS was generated from the SARS-CoV-2 reference

proteome (Wu et al., 2020) (UniProt identifier: UP000464024,

FIGURE 3
Results of the ANNs analysis for the predicted autoantigens of the SARS-CoV-2 vs. Human protome prediction sets. For each of the autoimmune-
disease motifs tested, a boxplot with overlapped scatterplot represent the background distribution of the score S. The eight predicted autoantigens that
satisfy Perc(S) > 95 are shown. Those with Perc(S) > 99 are marked with * and those with Perc(S) > 99.9 are marked with **.
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downloaded 11/01/2024) and the Pangolin variants (Rambaut et al.,
2020) (downloaded 01/03/2024) A.23.1-like, A.23.1-like + E484K,
Alpha_(B.1.1.7-like), AV.1-like, B.1.1.318-like, B.1.1.7-like + E484K,
B.1.617.1-like, B.1.617.3-like, Beta_(B.1.351-like), Delta_(AY.4.2-
like), Delta_(AY.4-like), Delta_(B.1.617.2-like), Delta_(B.1.617.2-
like)_+K417N, Epsilon_(B.1.427-like), Epsilon_(B.1.429-like),
Eta_(B.1.525-like), Gamma_(P.1-like), Iota_(B.1.526-like),
Lambda_(C.37-like), Mu_(B.1.621-like), Omicron_(BA.1-like),
Omicron_(BA.2-like), Omicron_(BA.3-like), Omicron_(BA.4-
like), Omicron_(BA.5-like), Omicron_(Unassigned), Omicron_
(XBB.1.16-like), Omicron_(XBB.1.5-like), Omicron_(XBB.1-like),
Omicron_(XBB-like), Theta_(P.3-like), XBB-parent1, XBB-
parent2, XE-parent1, XE-parent2, Zeta_(P.2-like). The
downloaded sequences were manually split into all possible
overlapping fragments of size 15. Fragments of variant sequences
were only kept if they had indels or mutations relative to the
reference proteome. SC2DS thus contained 9,608 15-mers, of
which 243 from Pangolin variants.

2.3.5 MHC class II epitopes dataset (MHCII-EDS)
MHCII-EDS contains all MHC class II epitopes available in

IEDB (date 18/03/2024), obtained with the search terms: “Epitope:
Linear peptide”, “Epitope source: Any”, “Host: Any”, “Assay: MHC
ligand”, “Outcome: positive”, “MHC Restriction: Class II”, “Disease:
Any”. A total of 485,020 epitopes were downloaded. Redundancy
was eliminated by clustering the sequences at 95% identity with CD-
HIT (Li and Godzik, 2006), then using the centroid as cluster
representative to obtain a final set of 155,923 epitopes. This
dataset was used for the computation of the PSSM in all the
analyses where PSI-BLAST was used as alignment algorithm.

2.4 MMPred evaluation

2.4.1 Evaluation setup
To evaluate the algorithm, five sets of predictions were obtained:

1. Sequences from the human autoepitope dataset (HADS)
(TARGET) that significantly align with sequences from the
microbial epitope dataset (MEDS) (QUERY) using BLASTp
and were positive for binding to HLA class II (with or without
allele match, see below) with CNN-PepPred and/or
NetMHCIIpan.

2. Same as prediction set 1 but using PSI-BLAST for
the alignment.

3. Same as prediction set 1 but with the human proteome dataset
(HPDS) as TARGET.

4. Same as prediction set 3 but using PSI-BLAST for
the alignment.

5. Sequences from HPDS (TARGET) that significantly align with
sequences from the SARS-CoV-2 proteome dataset (SC2DS)
(QUERY) using BLASTp and where positive for binding to
HLA class II with CNN-PepPred and/or NetMHCIIpan.

6. Same as prediction set 5 but using PSI-BLAST for
the alignment.

Prediction sets 1 and 2 were based on a threshold E-value of
0.05 for the alignments and a %Rank ≤ 2 as condition for
binding—Reynisson et al. (2020) defined peptides with %Rank ≤
2 as strong binders and peptides with 2 < %Rank ≤ 10 as weak
binders. Prediction sets 3 and 4 were instead obtained in replicates
by using threshold E-values from 0.1 to 0.001 and threshold %Rank

FIGURE 4
(A) Superposition of the crystallographic structure of NSP13 (PDB entry 6ZSL, chain B) (green) with the predicted AlphaFold structure of MOV10
(UniProt entry Q9HCE1) (pink), the highlighted α-helices in the center correspond to residues 557-569 of NSP13 and 901-913 of MOV10. Superposition
and image were generated with PyMOL (https://www.pymol.org/). (B) Logo plot of the multiple sequence alignment for the NSP13 epitope. To facilitate
visualization, a pseudocount of 0.1 is used and a min-max normalization of each position is applied. Image generated with the logomaker python
package (Tareen and Kinney, 2020).
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values of 2 and 10. Owing to the results obtained for prediction sets
3 and 4, prediction sets 5 and 6 were based on a threshold E-value of
0.01 for the alignments and a %Rank ≤ 2.

Prediction sets 1 to 4 were evaluated according to two allele-
selection criteria:

1. AllHLA: epitope prediction for HADS (or HPDS) sequences
that had at least one significant alignment with MEDS
sequences was performed for all alleles.

2. OneHLA: epitope prediction for HADS (or HPDS) sequences
that had at least one significant alignment with MEDS
sequences was only performed for the allele(s)
corresponding to the microbial epitope-allele pair(s)
indicated in MEDS.

Furthermore, they were also evaluated both ignoring and
considering allele matches:

1. Epitope prediction: sequences in HADS (or HPDS) were
considered to be predicted as mimicry-induced autoepitopes
if there was at least one alignment with MEDS sequences that
satisfied the threshold E-value and there was at least one
prediction from CNN-PepPred or NetMHCIIpan (BA or EL
models) that satisfied the threshold %Rank for any HLA allele.

2. Epitope-allele prediction: epitope-allele pairs in HADS (or
HPDS) were considered to be predicted as autoepitope-allele
pairs if there was at least one alignment with MEDS that
satisfied the threshold E-value, and there was at least one
prediction from CNN-PepPred or NetMHCIIpan (BA or EL
models) that satisfied the threshold %Rank for the same HLA
allele of the MEDS pair.

2.4.2 Prediction sets 1 and 2: Supervised evaluation
Prediction sets 1 and 2may be viewed as a supervised evaluation,

since the TARGET sequences are labeled, i.e., they are known to be
human autoepitopes, albeit not necessarily relatable to infection
events. The remaining prediction sets have the entire, unlabeled
human proteome (HPDS) as TARGET.

The allele set used for prediction contained all alleles for which a
model exists in either CNN-PepPred or NetMHCIIpan and are
present in either HADS or MEDS, totalling 58 alleles (see
Supplementary Material Table 3 file Alleles.xslx).

2.4.3 Prediction sets 3 and 4: functional evaluation
Prediction sets 3 and 4 were used to investigate potential

functional relationships between predicted autoantigens and the
pathophysiological pathways associated with specific autoimmune
diseases. This investigation involved a post-analysis of the predicted
autoantigens using a systems biology approach. This approach,
detailed in Segú-Vergés et al. (2022), evaluates the likelihood of a
functional relationship between a given protein and a set of proteins
based on their connections within a model of the human protein
network. The underlying algorithm employs a supervised machine-
learning technique, specifically Artificial Neural Networks (ANNs),
trained on a large dataset comprising pharmacological drug targets
and molecular descriptors of clinical phenotypes—such as drug
indications and adverse effects–from the Biological Effector
Database (BED (Jorba et al., 2020)) compiled by the authors.

In BED, each condition (e.g., giant-cell arteritis) is characterized
by a list of motifs (e.g., dysfunction of immune checkpoints), and
each motif is linked to a set of proteins that map to a specific
subgraph within the network. The training objective of the ANNs is
to correctly associate drug targets with their respective clinical
conditions. The resulting score, S, represents the probability that
a given relationship is a true positive, expressed as a percentage.
Here, a “relationship” refers to a scenario where a perturbation of
one element (e.g., a drug target) leads to an observable perturbation
in another (e.g., a clinical condition).

Although the algorithm was originally trained on drug targets
rather than autoantigens, it is designed to assign probabilities to the
association of any node within a protein network with a specific
subgraph. Since the propagation of perturbations or signals between
proteins operates on the same principles regardless of whether the
context involves drug targets or other protein types, the algorithm
can calculate the probability of a relationship between any protein in
the network, such as a potential autoantigen, and any clinical
conditions annotated in the network, such as autoimmune diseases.

Two protein-network topologies are available for the ANNs. In
one of them, the functional associations are based on experimental
evidence; in the other, they are based on inference and computed
using a variety of resources (protein-protein interactions, gene
expression, etc.). The analysis is run for both topologies and the
largest score is taken. The score S for a given protein-condition/
motif pair may be zero when the protein is not present in the
network or no possible association is found for the pair. In such case,
the pair is removed from the analysis.

In this study, Swas determined for the relationship between each
of the human proteins from HPDS that we predicted to be
autoantigens as a consequence of microbial peptide mimicry and
a list of patophysiological motifs characteristic of each selected
autoimmune disease. The list of autoimmune diseases was
compiled from the same articles used for the generation of
MEDS (see Section 2.3.1), and each autoimmune disease was
then mapped to corresponding pathophysiological motifs
compiled in BED (see MEDS_summary.xlsx in Supplementary
Material Table 1).

For a given BED condition, both the separate protein sets
corresponding to the individual motifs and a single protein set
corresponding to all motifs of the condition were used. The motifs to
be tested for each predicted autoantigen were selected using the
following logical sequence: predicted autoantigen → microbial
protein with matching epitope sequence → infectious organism
→ organism’s related autoimmune diseases → BED motifs.

The distribution of S for the predicted autoantigens was
compared to the distribution for a random subset of
1000 samples from HPDS, as surrogate for a random
distribution, using the one-sided Mann-Whitney U test (Di
Bucchianicco, 1999).

2.4.4 Prediction sets 5 and 6: SARS-CoV-2
peptide mimicry

Prediction sets 5 and 6 illustrate an actual application of the tool:
the identification of potential human autoantigens resulting from
SARS-CoV-2 peptide mimicry.

The analysis included those HLA class II alleles for which there
is experimental evidence of their binding of human autoepitopes
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from HADS or SARS-CoV-2 epitopes from MEDS, plus a set of
alleles from HLA-Spread (Dholakia et al., 2022) associated to
autoimmune diseases that have been linked to SARS-CoV-2. As
further filter, only those alleles for which there was a model in either
CNN-PepPred or NetMHCIIpan were considered, leading to a total
of 45 alleles (see Supplementary Material Table 3 file Alleles.xlsx).

We applied the same systems biology approach used on
prediction sets 3 and 4 to explore potential functional
relationships between predicted autoantigens and
pathopysiological pathways associated to specific autoimmune
diseases. To that end, we choose the BED motifs corresponding
to the following autoimmune diseases associated with SARS-CoV-
2 infection (see Supplementary Material Table 1 file MEDS_
summary.xlsx): Anemia, Diabetes type 1, Guillain-Barre
Syndrome, Myasthenia Gravis, Rheumatoyd Arthritis and, Lupus
Erythematosus Systemic (Ehrenfeld et al., 2020; Knight et al., 2021).
For each condition motif, the background distribution of the score S
was calculated using proteins that had S> 0, lacked a predicted
autoepitope, and were not present in the motif’s description. For the
predicted autoantigens, the score S and its corresponding percentile,
Perc(S) (indicating where it falls within the background
distribution), were determined. Perc(S) served as an indicator of
a potential functional relationship between the autoantigen and the
pathophysiological motif. Thresholds were established as follows:
Perc(S) > 95 indicated a weak functional relationship, Perc(S) >
99 indicated a functional relationship, and Perc(S) > 99.9 indicated a
strong functional relationship.

3 Results and discussion

3.1 Supervised evaluation

Prediction sets 1 (using BLASTp) and 2 (using PSI-BLAST)
evaluate the capacity of the tool to identify human peptides from a
pool of known autoepitopes (HADS dataset) that significantly align
with known epitopes from microbial species known to be associated
to autoimmune diseases (MEDS dataset) and are recognised as HLA
class II epitopes by one or both predictors used. In essence, starting
from a pool of known human autoepitopes, the tool predicts which
of them could induce autoimmunity as a consequence of a previous
infection and microbial peptide mimicry. The raw results are
reported in Supplementary Material Table 4 file MEDS_
vs._HADS.xlsx.

Out of the 807 known human autoepitops contained in HADS,
21 had at least one sequence fragment that significantly aligned with a
microbial epitope from MEDS and was predicted as an autoepitope by
CNN-PepPred and/or NetMHCIIpan (Table 1). The matching
microbial epitopes are from SARS-CoV-2, Mycobacterium
tuberculosis (MT) and Human Alphaherpesvirus (HHV) 1 and 3.
PSI-BLAST and BLASTp produced significant alignments in all cases.

In four of the cases, the predicted autoepitopes were matched at
the epitope-allele level and using OneHLA as allele selection criteria
(see Section 2.4.1), meaning that the predictions matched the allele
that has been found to bind, experimentally, both the microbial and
human epitopes. The corresponding autoantigens are H1-2, H1-4
and MPO, showing sequence similarity with HbhA and RplV from
MT and the Spike Glicoprotein from SARS-CoV-2 (Table 1).

Furthermore, the alleles DRB1*15:01 and DRB5*01:01 are known
to be linked to the autoimmune disease—multiple sclerosis–that has
been associated with these autoantigens (Karni et al., 1999; Finn
et al., 2004; Prat et al., 2005; Z�ivković et al., 2009; Shahbazi et al.,
2010; Alcina et al., 2012; Quandt et al., 2012; Apperson et al., 2013;
Kaushansky and Ben-Nun, 2014; Stürner et al., 2019).

3.2 Functional evaluation

Prediction sets 3 (using BLASTp) and 4 (using PSI-BLAST)
evaluate the capacity of the tool to identify peptides from the full
human proteome (HPDS dataset) that significantly align with
known epitopes from microbial species known to be associated to
autoimmune diseases (MEDS dataset) and are recognised as HLA
class II epitopes by one or both predictors used. In short, it extends
the analysis reported in Section 3.1 to the full human proteome. The
raw results are reported in Supplementary Material Table 5 file
MEDS_vs_HPDS.xlsx.

The identified autoantigens were then subjected to the
functional evaluation described in Section 2.4.3. The results of
this evaluation are reported in Supplementary Material Table 6
file MEDS_functional.xlsx. The results are summarized in Figure 2
and Table 2, where the dependence of the distribution of scores S
—the probability that there exists a relationship between the
predicted autoantigen and a pathophysiological pathway
associated to one of the autoimmune diseases considered–on the
various parameters—E-value and %Rank thresholds, use of BLASTp
or PSI-BLAST, use of the allHLA or oneHLA allele-selection
criteria–is evaluated. In addition, the different score distributions
are compared to a score distribution for a random subset of
1000 proteins from HPDS.

Using PSI-BLAST notably reduces the number of hits, but its
strength lies in incorporating specific biological information into the
alignments. By leveraging the pool of peptides known to bind HLA
class II molecules to generate a Position-Specific Scoring Matrix,
PSI-BLAST may enhance the alignment’s relevance. Although this
approach results in fewer hits, it achieves the highest mean score
ratio and the most significant distinction between predicted
autoantigen score distributions and the random peptide score
distribution, particularly at E-value and %Rank thresholds of
0.01 and 2, respectively. These thresholds optimize the selection
of predicted autoantigens, increasing the likelihood of identifying
proteins associated with a specific autoimmune disease in the
human protein network. However, using a more stringent
E-value threshold of 0.001 drastically reduces the number of
aligned sequences, which, when combined with a %Rank
threshold of 2, can prevent the prediction of any autoantigens.
The choice of allele-selection criteria for the binding prediction,
allHLA or oneHLA, plays also a significant role in the results,
particularly regarding the number of hits.

The results of this analysis require some biological context for
proper interpretation. We are examining the potential relationship,
within a graph representing the human protein network, between a
protein identified as a potential autoantigen and a set of proteins that
have been linked to the pathophysiology of a specific autoimmune
disease. Clearly, the proteins in this set tend to be elements of the
immune system. Therefore, a high score indicates that the predicted

Frontiers in Genetics frontiersin.org10

Guerri et al. 10.3389/fgene.2024.1500684

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1500684


autoantigen is, in network terms, associated to these immune-
system elements. While this may not be a universal characteristic
of all autoantigens, Figure 2 and Table 2 show that as we apply more
stringent alignment and epitope prediction thresholds, thereby
increasing our confidence in the autoepitope, the mean score and
significance of the relationship between autoantigen and
autoimmune disease motif also increase. This focused approach
not only enhances the reliability of our predictions but also allows us
to propose potential links between the predicted autoantigens and
specific autoimmune diseases, which would be difficult to
establish otherwise.

3.3 SARS-CoV-2 peptide mimicry

3.3.1 The predicted autoantigens and their relation
to autoimmune diseases

Prediction sets 5 (using BLASTp) and 6 (using PSI-BLAST)
evaluate the capacity of the tool to identify peptides from the full
human proteome (HPDS dataset) that significantly align with
known epitopes from SARS-CoV-2 (SC2DS dataset) and are
recognised as HLA class II epitopes by one or both predictors
used. It thus focuses the analysis on finding SARS-CoV-
2 epitopes that could induce an autoimmune disease through
peptide mimicry. The raw results are reported in Supplementary
Material Table 7 file SC2DS_vs_HPDS.xlsx. As in the previous
section, the identified autoantigens were evaluated for their
potential relationship with autoimmune-disease motifs in the
human protein network (Section 2.4.3). The results of this
evaluation are reported in Supplementary Material Table 8 file
SC2DS_functional.xlsx.

Using BLASTp, MMPred identified 14 potential autoantigens:
MYT1L, BAZ1A, CHD5, MCM8, ATF7, MOV10, MOV10L1,
DNA2, BRI3, PARVG, CALD1, MICAL3, SLC35E4, and UNC50,
using a threshold E-value of 0.01. In contrast, PSI-BLAST did not
detect any autoepitopes with an E-value below 0.01 and predicted
only one autoepitope from HELZ2 with an E-value below 0.05. This
outcome is consistent with the previous section’s analysis, where
BLASTp yielded a significantly higher number of positive
predictions at the same thresholds. Most alignments involved
SARS-CoV-2 Non-Structural Proteins (NSPs), particularly NSP3,
NSP5, NSP13, NSP14, NSP15, and NSP16. Additionally, one
alignment involved Nucleoprotein N, and two alignments were
related to the Spike protein of the Omicron variants BA.1-like
and BA.4-like (Wu et al., 2020). These findings are summarized
in Table 3.

In the functional analysis, the 15 predicted autoantigens were
assessed for potential associations with 32 autoimmune-disease
motifs annotated in the network. Eight proteins—BAZ1A, ATF7,
MOV10, DNA2, PARVG, MICAL3, SLC35E4, and HELZ2– scored
in the 95th percentile (Perc(S), see Section 2.4.4) or higher for
19 different motifs (see Figure 3). While no autoantigen met the
minimum threshold for certain motifs, at least one motif from each
selected autoimmune disease had a significant hit. Notably, BAZ1A,
MOV10, and PARVG were the only proteins with a Perc(S)
exceeding 99 for at least one motif. The highest Perc(S) (above
99.9) was achieved by MOV10 in association with the “Lupus
Erythematosus Systemic” motif.

With a Perc(S) > 95, Rheumatoid Arthritis and Thyroiditis are
associated with the same predicted autoantigens, MOV10 and
ATF7, which are also linked to Lupus Erythematosus Systemic
along with PARVG. Additionally, SLC35E4 is also connected to
Rheumatoid Arthritis. Type I Diabetes is associated with the
predicted autoantigens MOV10 and PARVG, with PARVG also
linked to Guillain-Barré Syndrome, alongside ATF7, BAZ1A, and
DNA2. Myasthenia Gravis shows predicted associations with
HELZ2, ATF7 and PARVG. Lastly, Anemia is associated with
MICAL3 and BAZ1A.

When the threshold is raised to Perc(S) > 99, MOV10 is
associated with both Lupus Erythematosus Systemic and
Rheumatoid Arthritis. MOV10 is also linked to Thyroiditis, along
with ATF7. Anemia is connected to BAZ1A, and Myasthenia Gravis
is linked to PARVG.

The human proteins MYT1L, CHD5, MCM8, MOV10L1,
BRI3 and CALD1 were predicted as autoantigens but did not
show a Perc(S) > 95 for any of the motifs tested.

3.3.2 The predicted human autoepitopes align with
known SARS-CoV-2 epitopes

While there is no experimental evidence in IEDB linking our
predicted autoepitopes to autoimmune diseases, many of the SARS-
CoV-2 sequences that align significantly with these predicted
autoepitopes are known to bind HLA class II molecules.
Specifically, the SARS-CoV-2 sequences 369-378 of the
Nucleoprotein, 47-55, 275-289, and 557-569 of NSP13, 389-
398 of NSP14, 248-258 of NSP15, and 257-267 of NSP16 overlap
with regions that have been experimentally validated (Obermair
et al., 2022; Huisman et al., 2022) (see Table 3). Notably, the regions
275-289 and 557-569 of NSP13 show allele-specific hits, where the
autoepitopes have been predicted for the same alleles experimentally
observed to bind these SARS-CoV-2 protein regions. Thus,
DRB1*07:01 is predicted to bind an autoepitope in MOV10, and
DRB1*04:04 is predicted to bind an autoepitope in HELZ2.

The functional analysis reveals an interesting pattern among the
predicted autoantigens that align with known SARS-CoV-
2 epitopes. Specifically, nine human proteins—ATF7, HELZ2,
MOV10, MOV10L1, DNA2, BRI3, PARVG, CALD1,
MICAL3– exhibit significant alignment with these SARS-CoV-
2 epitopes. Among these, ATF7, HELZ2, MOV10, DNA2,
PARVG and MICAL3 rank in the 95th percentile or higher
(Perc(S) > 95) across 18 different motifs, with ATF7, MOV10,
and PARVG showing Perc(S) > 99 for six motifs. MOV10 alone
achieves a Perc(S) > 99.9 for a single motif. In contrast, the
associations are less significant when examining predicted
autoantigens derived from alignments with SARS-CoV-
2 sequences not known to be antigenic. Of the six proteins with
peptides matching these regions (MYT1L, BAZ1A, CHD5, MCM8,
SLC35E4 and UNC50), only BAZ1A and SLC35E4 yield significant
results, both achieving Perc(S) > 95 for just three motifs, with only
BAZ1A reaching Perc(S) > 99 for a single motif.

3.3.3 The antiviral activity of the predicted
autoantigens MOV10 and HELZ2

We examined baseline expression patterns of the predicted
autoantigens in lung cells using the Expression Atlas (George
et al., 2024). Proteomics data from Wang et al. (2019) indicate
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that 11 out of the 15 predicted autoantigens (BAZ1A, MCM8, ATF7,
HELZ2, MOV10, MOV10L1, DNA2, PARVG, CALD1, MICAL3,
UNC50) are highly expressed, supporting the hypothesis that cross-
reaction with HLA class II molecules in previously infected lung cells
is plausible (Kawasaki et al., 2022; Hoffmann et al., 2020).
Additionally, a gene enrichment analysis conducted using the
online tool g:Profiler (Kolberg et al., 2023) (threshold = 0.05,
multiple hypothesis testing method g:SCS) revealed significant
enrichment for the Gene Ontology (GO, https://geneontology.
org/) Molecular Function terms “helicase activity” (GO:0004386)
and “single-stranded DNA-helicase” (GO:0017116), as well as the
Cellular Component terms “P granule” (GO:0043186) and
“intracellular non-membrane-bounded organelle” (GO:0043232).
Notably, the human proteins MOV10, HELZ2, and DNA2, which
are reported to have helicase activity with GO evidence code
“inferred by direct assay” (IDA), contain segments that align
with the helicase NSP13 of SARS-CoV-2 (see Table 3).
MOV10 is implicated in the modulation of viral infectivity
(Goodier et al., 2012) and promotes type I interferon production
(Cuevas et al., 2016; Yang et al., 2022; Balinsky et al., 2017), while
HELZ2 is known to respond to interferon production during viral
infection (Huntzinger et al., 2023; Du et al., 2024). DNA2 does not
appear to have any known antiviral activity. On the other hand, the
helicase activity of NSP13 is crucial for viral replication (Yan et al.,
2021) and this protein interacts with the host to inhibit interferon-
beta production, thereby evading the immune response (Xia et al.,
2020). Thus, it seems that MOV10 and HELZ2 play roles
antagonistic to that of NSP13.

Overall, transcriptomic and proteomic data on our predicted
autoantigens in the context of SARS-CoV-2 infection primarily
focus on MOV10 and HELZ2. These studies utilize samples
obtained from either the lungs of infected patients or lung cell lines.

Wang et al. employed Dermatan Sulfate (DS)-affinity
proteomics to define the autoantigen-ome of lung fibroblasts,
complemented by bioinformatics analyses to explore the
relationship between autoantigenic proteins and COVID-19-
induced alterations (Wang et al., 2022). Notably, they discovered
that 86% of their predicted autoantigens were either up- or
downregulated in COVID-19 patients or SARS-CoV-2-infected
cells. Among the previously unknown autoantigens identified in
this study, MOV10 (with very high DS affinity) and CALD1 (with
medium to high DS affinity) align with our predictions. Both
proteins exhibited altered expression in COVID-19 patients and/
or SARS-CoV-2-infected cells.

In a study by An et al., the authors developed a bioinformatics
pipeline similar to ours (as noted in the Introduction) and
conducted a differential expression analysis using the Calu-3
human lung adenocarcinoma cell line (An et al., 2022). Their
pipeline predicts that MOV10 and HELZ2 may exhibit cross-
reactivity, while expression data reveal a positive correlation
between transcript abundance of these proteins, particularly
HELZ2, and SARS-CoV-2 viral load in infected cells.

A study by Ariumi explored the epigenetic mechanisms
triggered by SARS-CoV-2 infections (Ariumi, 2022). The findings
indicate that the knockdown of MOV10 leads to a significant
increase in viral load/replication in infected cells, suggesting that
MOV10 plays a role in the host’s suppression of SARS-CoV-
2 replication.

A study examining gene expression in cell lines and patient
samples in the context of epigenetic regulation during SARS-CoV-2,
SARS-CoV, and MERS infections identified various differentially
expressed genes involved in the epigenetic response during infection
in pulmonary cell lines (Salgado-Albarrán et al., 2021). Although the
study does not report expression data for MOV10, it highlights
MOV10’s functional and physical relationships with the
differentially expressed genes through protein-protein interaction
(PPI) data (Kotlyar et al., 2019) and co-expression analysis
(Langfelder and Horvath, 2008).

Aside from MOV10 and HELZ2, the literature also reports the
overexpression of MICAL3 in convalescent COVID-19 patients who
retested positive (Fang et al., 2022). However, no relevant studies
have been found that link the other predicted autoantigens to SARS-
CoV-2.

3.3.4 Sequence and structural similarity between
NSP13 and MOV10, an immune-
excape mechanism?

Considering the reported evidence regarding MOV10, we
extended our investigation to NSP13 due to its shared helicase
activity and the presence of a similar HLA class II epitope. Given
MOV10’s suggested suppressor role in SARS-CoV-2 replication,
its presence in lung epithelial cells, its upregulated expression in
SARS-CoV-2-infected cells, and the APC-like properties of lung
epithelial cells (Kawasaki et al., 2022; Hoffmann et al., 2020), we
propose that cross-reactive epitopes in NSP13 could potentially
trigger autoimmunity and facilitate SARS-CoV-2 replication in
the lungs.

We would therefore expect the NSP13 epitope
NVNRFNVAITRAK (positions 557 to 569, see Table 3) to be
conserved across NSP13 variants. However, it is important to
note that this conservation might also arise from the sequence’s
involvement in NSP13’s catalytic activity (Newman et al., 2021).

A total of 1,725,419 protein sequences of the ORF1ab polyproteins
were downloaded from NCBI Virus (15/02/2024) (Hatcher et al.,
2017), with the maximum number of ambiguous characters set to
zero, and considering only sequences collected for baseline
surveillance (random sampling = “Only”). To extract NSP13 from
the ORF1ab sequences, a BLASTp alignment was performed using the
reference sequence of NSP13 as the query and the ORF1ab sequences
as the target. Due to the high similarity of the variants to the reference,
all alignments yielded significant results, allowing us to heuristically
extract the corresponding NSP13 variants. A multiple sequence
alignment of all NSP13 variants, along with the NSP13 reference,
was then performed using FAMSA (Deorowicz et al., 2016), which is
optimized for datasets with high dimensionality and high pairwise
identity. To compute the conservation of the NSP13 epitope, we
averaged the Shannon Entropy (Shenkin et al., 1991) across its
positions and compared it to the distribution of all windows of the
same length across the alignment. The NSP13 epitope at positions
557 to 569 showed a higher conservation score than 95.7% of the
windows of the same size, indicating the strong conservation of this
region. A logo plot of the alignment is presented in Figure 4.

Furthermore, the superposition of the crystallographic structure
of NSP13 (PDB entry 6ZSL, chain B) (Newman et al., 2021) with the
predicted AlphaFold structure of MOV10 (UniProt entry Q9HCE1)
(Jumper et al., 2021; Varadi et al., 2022) reveales significant
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structural similarity between two regions of these proteins of
214 residues in length (36.5% of the sequence of 6ZSL and 21.3%
of that of the AlphaFold model of Q9HCE1, with a Cα RMSD of
1.98 Å, see Figure 4). Notably, the regions corresponding to the
epitopes—NSP13 residues 557-569 and MOV10 residues 901-913–
are superimposed in the structural alignment, suggesting that
epitope mimicry could arise from both sequence and structure.
Although the MOV10 structure is based on an AlphaFold model
(Terwilliger et al., 2024), the model confidence in this region is very
high (pLDDT > 90).

The molecular mimicry mechanism hypothetically employed by
SARS-CoV-2 may parallel other viral strategies identified as triggers for
autoimmune diseases (Zhao et al., 1998; Hrycek et al., 2005; Bjornevik
et al., 2022), functioning in two potential ways as outlined by Maguire
et al. (2024): i) by mimicking a structural region of MOV10,
NSP13 could enable SARS-CoV-2 to evade immune detection and
achieve immune tolerance, facilitating viral persistence and diminishing
activation of the host’s adaptive immune response (Maguire et al., 2024;
Cusick et al., 2011; Zhao et al., 1998; Adiguzel, 2021); ii) NSP13’s
sequence and structural resemblance to MOV10 might competitively
inhibit MOV10’s activity, impairing its antiviral function in lung
epithelial cells and promoting SARS-CoV-2 replication. Additionally,
the similarity between NSP13 and MOV10 may induce the
development of cross-reactive T-cells and/or antibodies via HLA
class II epitope recognition, potentially triggering an autoimmune
response (Cusick et al., 2011; Smatti et al., 2019; Zhao et al., 1998;
Sabbatini et al., 1993).

It is noteworthy that these mechanisms could operate
concurrently, with NSP13’s epitope conservation enhancing
SARS-CoV-2 infection in both scenarios. The predominance of
one mechanism over the other likely depends on the specific
HLA class II alleles present, as different alleles are associated
with distinct outcomes (Dholakia et al., 2022).

Overall, these findings support the hypothesis of cross-reactivity
between the epitopes of NSP13 and MOV10, which may influence
SARS-CoV-2 replication in the lungs. While the potential for an
autoimmune response against MOV10 and its connection to
autoimmune diseases remains speculative at this stage (see
Section 3.3.1), further investigation is warranted.
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