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Intramuscular fat (IMF) is an important indicator for evaluating meat quality.
Transcriptome sequencing (RNA-seq) is widely used for the study of IMF
deposition. Machine learning (ML) is a new big data fitting method that can
effectively fit complex data, accurately identify samples and genes, and it plays an
important role in omics research. Therefore, this study aimed to analyze RNA-seq
data by MLmethod to identify differentially expressed genes (DEGs) affecting IMF
deposition in pigs. In this study, a total of 74 RNA-seq data from muscle tissue
samples were used. A total of 155 DEGs were identified using a limma package
between the two groups. 100 and 11 significant genes were identified by support
vector machine recursive feature elimination (SVM-RFE) and random forest (RF)
models, respectively. A total of six intersecting genes were in both models. KEGG
pathway enrichment analysis of the intersecting genes revealed that these genes
were enriched in pathways associated with lipid deposition. These pathways
include α-linolenic acid metabolism, linoleic acid metabolism, ether lipid
metabolism, arachidonic acid metabolism, and glycerophospholipid
metabolism. Four key genes affecting intramuscular fat deposition, PLA2G6,
MPV17, NUDT2, and ND4L, were identified based on significant pathways. The
results of this study are important for the elucidation of the molecular regulatory
mechanism of intramuscular fat deposition and the effective improvement of IMF
content in pigs.
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Introduction

Intramuscular fat is one of the most important determinants of pork quality (Zhang
et al., 2021) and affects the sensory qualities of pork, such as tenderness, flavor, and juiciness
(Fernandez et al., 1999). Intramuscular fat content is influenced by several factors (Malgwi
et al., 2022), among which genetic factors play a decisive role in intramuscular fat content
(Hamill et al., 2012). The genes that have been studied and found to affect intramuscular fat
deposition are ROBO2 (Sato et al., 2017), HS6ST3 (Jiang et al., 2011), PLIN5 (Puig-Oliveras
et al., 2014) and NR4A1 (Qin et al., 2018), and so on.
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RNA-seq technology is widely used in the field of genetic
breeding in livestock production. In the field of animal
husbandry, numerous studies have utilized transcriptomics to
uncover the intrinsic connection between gene expression and
economic traits. For instance, researchers have revealed the rules
of muscle development during the embryonic stage of Chengkou
pheasants through transcriptomic analysis (Ren et al., 2021);
identified the potential regulatory genes associated with heat
tolerance in Holstein dairy cows (Liu et al., 2020); and
determined the genes related to the growth and development of
skeletal muscles by comparing the transcriptomic differences among
different duck breast muscle tissues and among different pigeon
breast muscle tissues (Wang Z. et al., 2021; Ding et al., 2021). In
recent years, there have beenmany reports on transcriptomic studies
of traits related to intramuscular fat deposition in pigs by RNA-seq
technology. Li et al. analyzed transcriptomic data from the
longissimus dorsi muscle (LDM) of Wei and Yorkshire pigs and
found that many differentially expressed lncRNAsmay influence the
developmental process of IMF by regulating its potential target
genes (Li et al., 2020). Cho et al. compared IMF in western and
Korean native pig breeds with LDM and identified theMYH3 on pig
chromosome 12 as a causal gene affecting intramuscular fat
deposition, which can inhibit myogenic regulatory factor binding
and thus promote intramuscular fat deposition through a structural
variation of 6-bp deletion on the promoter (Cho et al., 2019). Huang
et al. analyzed IMF using Laiwu pig and Large White pig and
identified a total of 513 mRNAs and 55 lncRNAs differentially
expressed between the two pig breeds and identified 31 key lncRNAs
by co-expression network construction and cis- and trans-regulated
target gene analysis (HuangW. et al., 2018). Through transcriptomic
studies, several candidate genes have been identified to affect the
process of intramuscular fat deposition in pigs, such as LEP (Li et al.,
2010), FASN (Crespo-Piazuelo et al., 2020) ACACA (Piórkowska
et al., 2020), and so on. Although the transcriptome provides an
efficient tool for the genetic resolution of important traits,
transcriptome sequencing analysis is difficult for later functional
validation and has a high false positive rate due to the small sample
size. Current transcriptome data analysis methods mainly focus on
the processing of a small number of samples from a single
experiment, and the data from different samples cannot be
integrated, which is not deep enough for data mining. Gene
expression exhibits temporal specificity and spatial specificity.
Spatial specificity implies that in multicellular organisms at
specific growth and development stages, the same gene is
expressed differently in various tissues and organs. The spatial
distributional differences manifested by gene expression along the
sequence of time or stage are actually determined by the distribution
of cells in organs. Hence, the spatial specificity of gene expression is
also known as cell specificity or tissue specificity. Due to the
significant influence of both space and time on gene expression
and the considerable variations in the samples employed in different
studies, it becomes challenging to discover the major effector genes
that universally regulate fat deposition.

ML, as an important component in the field of artificial
intelligence, provides a new strategy for the study of histology.
Currently, the method has been widely used in many areas of multi-
omics research (Hashimoto et al., 2020; Lee et al., 2021). The
classification function of ML in cancer genome classification or

typing can be used to discover new biomarkers, new drug targets,
and a deep understanding of cancer-induced genes (Huang S. et al.,
2018). They have also been applied to genome selection in animal
husbandry and have slightly improved their accuracy compared to
traditional methods (Waldmann et al., 2020). For transcriptomic
data, the large number of expressed genes determines the high
complexity of the model, and ML, a new big data fitting method, can
effectively fit complex data and accurately identify samples and
genes (Waldmann et al., 2020). In addition, the small number of
individual study samples affects the accuracy of machine learning
analysis; therefore, multiple datasets need to be integrated to
accurately predict and mine key genes with machine learning
algorithms. SVM-RFE effectively reduces the feature dimension
through recursive feature elimination and is suitable for high-
dimensional small sample data. RF offers gene importance scores,
can capture nonlinear relationships and feature interactions, and
demonstrates robustness against noise and outliers. By contrast,
KNN, K-means, neural networks, and naive Bayes are not
appropriate for feature selection: KNN lacks a feature evaluation
mechanism; K-means is not suitable for identifying differential
genes; neural networks require a large quantity of data; and naive
Bayes assumes feature independence, which is inconsistent with the
characteristics of gene data (Sheth et al., 2022). In this study, the two
methods of SVM-RFE and RF were chosen to screen differentially
expressed genes mainly because they possess certain advantages in
feature selection and handling high-dimensional data.

Therefore, this study collected the longissimus dorsi muscle
tissue samples transcriptome datasets from pigs with different IMF
content including our study and NCBI’s Sequence Read Archive
(SRA) database. Two machine learning methods RF and SVM-RFE
were used for identifying key genes affecting IMF content. The
findings are helpful for further exploring the molecular regulatory
mechanisms of intramuscular fat deposition in pigs.

Materials and methods

Acquisition of transcriptome
sequencing data

In this study, 53 Songliao Black sows and 132 LongWhite sowswere
selected from the Tianjin Ninghe Original Breeding Pig Farm. These
pigs were reared under the identical feeding conditions. When the pigs
were raised to approximately 100 kg, the backfat thickness was
determined using the HONGDA HS-1500 veterinary B ultrasound
machine (between the second-to-last and fourth ribs, 5 cm from the
dorsal midline) (Suzuki et al., 2009). To avoid the influence of different
genetic backgrounds, three pairs of individuals from each breed with
extreme differences in backfat thickness were slaughtered and the
longissimus dorsi muscle tissues were collected. One portion was
analyzed for the IMF content of the samples using the FOSSDSCAN
near-infrared rapid analyzer for food components, while the other
portion was preserved in liquid nitrogen for RNA extraction.

Total RNA was extracted from the longissimus dorsi muscle tissue
using the Trizol kit according to the product instructions, and a total of
12 samples were extracted. The extracted RNA was diluted with 1%
DEPC water and denatured for 2 min at 70°C. The quality of the RNA
was checked by Agilent 2100, and the library was constructed by
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Illumina TruSeqTM RNA kit. The constructed libraries were sequenced
by the Illumina Hiseq 2000 sequencing platform with pair ends (PE). In
this study, eight datasets were also downloaded from the SRA database
(https://www.ncbi.nlm.nih.gov/sra/) under NCBI, namely
PRJNA776032, PRJNA302287, PRJNA359473, PRJNA480676,
PRJNA695218, PRJNA387276, PRJNA743884, and PRJNA604841. A
total of 62 samples with an equal number of samples in high and low
intramuscular fat groups in each dataset, includingmuscle tissue samples
from Min, Wannanhua, Diannan Small-ear, Tibetan, Landrace, Large
White, Iberian, Nanyang Black, Wei, and Dingyuan pigs.

A total of 74 samples were collected and these data were processed
by the same method, and the raw data were quality-controlled using
fastp software (Chen et al., 2018) to remove sequences with
connectors and low-quality sequences (reads with Q ≤ 20). High-
quality sequences were aligned to the pig reference genome Sus scrofa
11.1 using HISAT2 software (Kim et al., 2019) and annotated, and the
expression of genes in different samples was calculated by HTSeq
software (Anders et al., 2015). After obtaining gene expression profiles
all data sets were integrated and samples were grouped according to
phenotypic indicators (backfat thickness and intramuscular fat
content) (Table 1). The downloaded data categorized lean pigs as
the high IMF group and local pigs as the low IMF group.

Data pre-processing

To make the data comparable across studies, all data were
converted to fragments per thousand bases of transcripts per
million mapped reads (FPKM). The genes were screened with the
following criteria: (1) removal of genes without symbol names; (2)
removal of genes expressed in less than 10 samples. Before analyzing
the data this study adjusted for batch effect, processed by the combat
function of the sva package of the R-4.2.2 package, and visualized the
gene expression data before and after the batch effect adjustment.
Sva is a commonly used batch effect adjustment method that
removes the batch effect by identifying and adjusting for
potential influencing factors while preserving the biological
differences in the data and avoiding biological conclusions.

Differential expression gene extraction

In this study, differential expression analysis was performed
using the algorithm provided by the limma program package of the
R-4.2.2 software packages (Ritchie et al., 2015). The data of the high
intramuscular fat group was compared with the low intramuscular
fat group, and the data were screened at P < 0.05, |log2 FC| > 1 to
select genes with significance. The occurrence of false positives in
differential expression analysis was controlled in our study by
adjusting the batch effect with the ComBat function. The DEGs
were visualized by volcano plot. The samples were clustered using
DEGs through the Microsign online analysis cloud platform (www.
bioinformatics.com.cn).

Construction of machine learning models

To further identify the candidate genes affecting
intramuscular fat deposition in pigs, machine-learning models
were constructed based on the results of differential expression
analysis. The expression levels of each DEG were scaled to the
[0–1] interval using the maximum-minimum normalization
method, to unify the weights of features and improve model
accuracy. The data set is divided into a training set and a
validation set with 74 samples, of which 75% of the samples
were used as the training set to build the model, and the
remaining 25% were used as the validation set to validate the
performance of the model (Figures 1A, B). Two supervised
learning classifiers, including SVM-RFE (Sahran et al., 2018)
and RF (Zhao et al., 2018) models, were tested in this study. The
e1071 program package of the R-4.2.2 package (https://cran.r-
project.org/web/packages/e1071/index.html) was used to
implement SVM-RFE for differentially expressed gene
screening, while RF was done using the randomForest
program package (https://www.stat.berkeley.edu/~breiman/
RandomForests/). To avoid overfitting the constructed models,
the models were validated using a fivefold cross-validation to
adjust the suitable parameters (Figure 1C).

TABLE 1 Sample information from different datasets.

Accession number Breed Day Tissue HIMF
group

LIMF
group

Sex Reference

Ours(PRJNA1043865) Landrace, Song liao black pig — muscle 6 6 F —

PRJNA776032 Large White × Min pig 240 muscle 5 5 M, F Cheng et al. (2021)

PRJNA302287 Yorkshire, Wannanhua 150 muscle 3 3 F Li et al. (2016)

PRJNA359473 Diannan Small-ear pig, Tibetan pig, Landrace,
Yorkshire

180 muscle 2 2 — Wang et al. (2015)

PRJNA480676 Iberian purebred pig 500 muscle 6 6 M Muñoz et al. (2018)

PRJNA695218 Nanyang black pig 180 muscle 3 3 F Wang L. et al. (2021)

PRJNA387276 Yorkshire, Wei pig 150 muscle 3 3 F Xu et al. (2018)

PRJNA743884 Ding yuan pig 300 muscle 3 3 F Zhang et al. (2022)

PRJNA604841 Italian Large White pig 240 muscle 6 6 M, F Zappaterra et al.
(2020)

Note: HIMF, stands for the high intramuscular fat group, and LIMF, stands for the low intramuscular fat group; F denotes sows, and M denotes gilts.
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Biological function analysis

To understand the functions of the genes screened by the
machine learning model, biological functional analysis and their
visualization were performed. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the identified
significant genes was performed through Omicshare Kidio
Bioinformatics Cloud Platform (https://www.omicshare.com/).

Results

Sequencing quality assessment

By analyzing the quality of the raw sequencing data, it was found
that the data quality was all as expected (Additional file 1:
Supplementary Table S1). The quality-controlled high-quality
reads were compared to the reference genome of pigs, and the

FIGURE 1
Model construction. (A) Data set division, (B) Classifier construction, (C) Fivefold cross-validation.

FIGURE 2
Mapping before and after removal of the batch effect. (A) Box line plot before batch effect adjustment. (B) Box line plot after batch effect adjustment.
(C) PCA plot before batch effect adjustment. (D) PCA plot after batch effect adjustment.
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mapping rates were found to be above 90% (Additional file 2:
Supplementary Table S2). The data are reliable and can be
analyzed in the next step.

Batch effect adjustment

The initially obtained gene expression profiles had a total of
31,908 genes, and after retaining the genes with symbol names and
those expressed in at least 10 samples, 9,675 genes remained. The
remaining data were subjected to the batch effect adjustment, and
the box plot shows that the range of gene expression values in the
samples decreased after the batch effect adjustment, indicating a
reduction in outliers (Figures 2A, B). After principal component
analysis, it was found that before the batch effect adjustment, the
samples were divided into three groups, indicating heterogeneity
among the samples, and after the batch effect adjustment. The
samples clustered together, indicating similarity among the
samples (Figures 2C, D).

The sample clustering heat map further showed that the samples
were more homogeneous after adjusting the batch effect (Figure 3).

Analysis of DEGs

The limma package was used to perform differential expression
analysis on the nine datasets, and 180, 1,526, 315, 365, 1,097, 570,
1,452, 452, and 358 genes were identified, respectively. No common
differential genes were found among these datasets (Supplementary
F S1). This indicates that it is difficult to find genes that regulate fat
deposition with generalizability by aggregating DEGs between
different datasets.

Using the limma package, differential expression analysis was
performed on the integrated dataset, and 155 DEGs were screened.
Among them, 99 genes were highly expressed in the high
intramuscular fat group, and 56 genes were highly expressed in
the low intramuscular fat group (Figure 4A). In addition, these
screened genes can effectively separate the high intramuscular fat
group from the low intramuscular fat group (Figure 4B).

Feature selection

The SVM-RFE model screened 100 significant genes
(Additional file 3: Supplementary Table S3), RF screened
11 significant genes, and Table 2 shows the top 15 ranked genes
screened by the SVM-RFE model. A total of six common
important features were screened by both models (Figure 5).
Area Under Curve (AUC) is defined as the area beneath the
Receiver Operating Characteristic (ROC) Curve. Given that the
ROC curve is typically located above the line y = x, the range of
AUC values lies between 0.5 and 1. The AUC value is equivalent to
the probability that a randomly chosen positive example is ranked
higher than a randomly chosen negative example (Fawcett, 2006).
Thus, the larger the AUC value, the more likely the current
classification algorithm is to rank the positive sample before the
negative sample, indicating a better classification performance.

AUC � ∑
m

i−2

xi − xi−1( )p(yi + yi−1)
2

Visualized by ROC curves, AUC of SVM-RFE and RF are
0.893 and 0.86, respectively (Supplementary Figure S2),
indicating that the former technique is superior to the latter.

FIGURE 3
Sample clustering heat map. (A) The heat map of clustering before batch effect adjustment. (B) The heat map of clustering after batch effect
adjustment.
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In addition, this study identified 10 genes associated with fat
deposition from the 100 genes screened by SVM-RFE, namely APP,
CTSZ, EIF4EBP1, FABP4, FAM184B, ID1, PLA2G6, SELENOF,

SRGN, and TSPO, and these genes are associated with fat
deposition (Table 3).

Among them, eight genes were highly expressed in the high
intramuscular fat group compared to the low intramuscular fat
group, and only EIF4EBP1HE and PLA2G6 were highly expressed in
the low intramuscular fat group. Moreover, there was mainly a
positive correlation between these genes (Figure 6).

Sample distribution

To visualize the distribution of samples in the high
intramuscular fat group and the low intramuscular fat group, the
distribution of samples was visualized using a 3D scatter plot. The
green triangles in Figure 7 represent the high intramuscular fat
group and the red triangles represent the low intramuscular fat
group, and the top three most important genes were selected as
coordinates. It can be seen from the figure that the distribution of the
two groups of samples is very different (Additional file 4:
Supplementary Table S4), and therefore, the model this study
constructed can effectively distinguish the high intramuscular fat
group from the low intramuscular fat group. (Figure 7).

Pathway enrichment analysis of
intersection genes

Six intersecting genes screened using two models were subjected
to KEGG pathway enrichment analysis, and it was found that these
genes were enriched in a total of 20 pathways. Among them, there
are 10 significantly enriched pathways, and most of them are related

FIGURE 4
Differential expression analysis of the integrated data set. (A) represents a volcano plot of DEGs, which shows the eight genes with the most
significant P values; (B) represents the sample clustering heat map of DEGs.

TABLE 2 The top15 feature vectors of the support vector machine model.

FeatureName FeatureID AvgRank

SUN1 37 8.6

ETFRF1 128 11.4

RPS4X 62 12.2

ZXDC 6 16

ANXA11 50 16

CTSZ 36 20

SMAD3 22 22.6

KCNAB1 102 26

ID1 142 26.8

MRPL15 116 27.2

CCNH 72 27.4

XIRP1 132 28.2

LYL1 101 29

EIF3M 65 29.4

GGCX 108 32.2

Note: This table shows the top 15 genes, with the first column indicating the feature name,

the second column indicating the feature ID, and the third column indicating the average

ranking coefficient; the smaller the coefficient, the more important the feature is.
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to fat deposition, such as α- Linoleic acid metabolism, linoleic acid
metabolism, ether lipid metabolism, glycerophospholipid
metabolism, and arachidonic acid metabolism, etc. (Figure 8).
Four genes related to fat deposition were screened based on
significant pathways, namely PLA2G6,MPV17, NUDT2, and ND4L.

The four important genes were PLA2G6, MPV17, NUDT2, and
ND4L, where PLA2G6 and MPV17 were upregulated in the high
intramuscular fat group, and NUDT2 and ND4L were
downregulated in the high intramuscular fat group compared to
the low intramuscular fat group (Figure 9).

Discussion

The integration of data from different transcriptomic studies is
important for improving the reliability and generalizability of the
results, allowing access to valid information that is not available
from individual studies (Lazar et al., 2013; Mooney and Mcweeney,

2014). In our study, this was confirmed by screening the DEGs in
each of the nine datasets using traditional differential analysis
methods, and as a result, no common gene was found in these
datasets. In contrast, when this study integrated multiple
transcriptomic datasets for differential expression analysis, a
common set of DEGs was found, and the results of this study are
biologically significant.

When integrating the dataset, the batch effect needs to be
adjusted to unify the data from different studies. This is because
the data this study acquired may lead to errors due to differences
in sample collection time, sequencing platform and pig breed,
tissue, age and sex, and so on. So that the DEGs this study
eventually found are not the genes that differ, resulting in
false positives.

In this study, the large dataset was initially screened by
traditional variance analysis methods, and then machine learning
algorithms were utilized to further identify DEGs. A total of two
classification algorithms, SVM-RFE and RF, were trained, and a set

FIGURE 5
Two algorithms are used for feature selection. (A) the accuracy of the SVM-RFE model. (B) error rate of SVM-RFE model. (C) importance ranking of
genes identified by random forest. (D) The intersection feature selection between SVM-RFE and RF algorithms.
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of key predictors was obtained for each classifier. The intersection of
important genes was screened by these classifiers and functional
annotation of these genes yielded key candidate genes affecting fat
deposition. This study finally screened a total of four important
genes, PLA2G6, MPV17, NUDT2, and ND4L. PLA2G6 is a lipid
regulator that catalyzes the hydrolysis of fatty acids in
glycerophospholipids (Baburina and Jackowski, 1999). MPV17 is
a mitochondrial inner membrane protein that forms oligomers in
lipid bilayers (Sperl andHagn, 2021), and it has also been shown that
low levels of MPV17 expression are associated with quiescence in
energy metabolism. The results indicate that MPV17 influences the
resting energy metabolism by exerting an impact on the

mitochondrial respiratory chain and oxidative phosphorylation
(OXPHOS) (Jacinto et al., 2021). Diadenosine polyphosphates
(e.g., Ap4A) are physiologically released compounds, and the
roles of their receptors as well as their function as second
messengers influencing insulin release have been demonstrated. It
has been shown that glucose levels in the blood increase and plasma
insulin decreases after Ap4A administration in rats (Verspohl et al.,
2003a; Verspohl et al., 2003b), and NUDT2 is thought to be a major
factor in maintaining low intracellular Ap4A levels (Mclennan et al.,
1995; Abdelghany et al., 2001; Carmi-Levy et al., 2008). ND4L is
involved in the composition of the electron transport chain during
oxidative phosphorylation, and dysfunction of this gene leads to

TABLE 3 Fat deposition-related DEGs.

Gene symbol Gene description Gene function Reference

APP The amyloid beta precursor protein Correlated with the level of cytokine expression in
adipocytes

Lee et al. (2008)

CTSZ Cathepsin Z Fat deposition process in pigs Russo et al. (2008)

EIF4EBP1 Eukaryotic translation initiation factor 4E binding
protein 1

Involved in adipose tissue development Tsukiyama-Kohara et al.
(2001)

FABP4 Fatty acid binding protein 4 Transport of long-chain fatty acids Zhou et al. (2010)

FAM184B Family with sequence similarity 184 member B Correlation with fatty acid content Yuan et al. (2021)

ID1 Inhibitor of DNA binding 1 Expressed in brown fat and white fat Patil et al. (2017)

PLA2G6 Phospholipase A2 group VI Catalyzing the hydrolysis of fatty acids in
glycerophospholipids

Alecu and Bennett (2019)

SELENOF Selenoprotein F Involved in lipid metabolic processes Zheng et al. (2020a)

SRGN Serglycin Highly expressed in adipocytes Savedoroudi et al. (2019)

TSPO Translocator protein Regulation of lipid metabolism Kim et al. (2020)

FIGURE 6
Gene expression profile. (A) Red represents upregulation and green represents downregulation. (B) The color, and width of the ribbon correlate with
the correlation of gene expression, where red indicates a positive correlation and green indicates a negative correlation.
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metabolic disorders (Dashti et al., 2021), and it is considered to be a
major predisposing factor for the development of metabolic
syndrome (Perks et al., 2017). In addition, functional annotation
of these genes after the KEGG pathway revealed that these genes are
enriched in pathways related to lipid deposition such as α-linolenic
acid metabolism, linoleic acid metabolism, ether lipid metabolism,
and glycerophospholipid metabolism. Based on these results, it was
concluded that these four genes play important roles in fat
deposition in pigs, and these genes and pathways are not
commonly found in traditional analysis methods but are some
potential candidates that may affect fat deposition in pigs. This
indicates that through machine learning methods were able to find
some important information that could not be found by traditional

differential analysis methods. This study further confirms the
significance of integrating transcriptomic data from different
sources (Liu et al., 2022) and shows that machine learning
models can provide further technical support for traditional
differential analysis methods (Veiner et al., 2022).

There is no single machine learning method that can be applied
to all types of samples and different algorithms should be chosen
based on the sample characteristics of different studies (Mirza
et al., 2019). In this study, after evaluating the performance of both
classifiers, it was found that the SVM-RFE model is more accurate
than the RF model. Support vector machine algorithm, as a
supervised cluster analysis algorithm, has achieved good results
in the classification of high-dimensional small sample data with

FIGURE 7
Distribution of high and low group samples. (A) Distribution of SVM-RFE samples, (B) Distribution of RF samples.

FIGURE 8
KEGG pathway analysis.
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good generalization ability (Cherkassky, 1997), which has been
favored by many researchers and is widely used in various fields of
research (Zheng Y. et al., 2020; Lin et al., 2021; Shang et al., 2021;
Song et al., 2021). The random forest belongs to an integrated
algorithm, which itself has better accuracy than most individual
algorithms and performs well in many cases (Lam et al., 2021), so it
is also widely used in various fields of research (He et al., 2019;
Toth et al., 2019; Bi et al., 2020). The choice of the classifier
depends on the amount of data and the complexity of the problem,
but there are many cases where support vector machines
outperform random forests in terms of predictive effectiveness
(Caruana and Niculescu-Mizil, 2006). For this study, the number
of samples is relatively small and the complexity of the sample
information is high, and the SVM-RFE model shows better
performance compared to the RF model. This further indicates
that different algorithms for different sample characteristics
should be chosen, which is the only way to ensure the accuracy
of the classification and the reliability of the results.

Conclusion

This study integrated transcriptomic datasets from different
studies to identify important genes by combining traditional gene
expression analysis and machine learning methods and finally
screened a total of four important genes, PLA2G6, MPV17,
NUDT2, and ND4L. At the same time, some important pathways
were identified. This study screened consistent key genes affecting
intramuscular fat deposition from different breeds of pigs, providing
new reference information for the study of molecular regulatory
mechanisms of porcine fat deposition.

Data availability statement

Both original dataset and publicly available datasets were
analyzed in this study. This data can be found here: https://www.
ncbi.nlm.nih.gov/sra/, accession numbers PRJNA1043865,

FIGURE 9
Distribution of important gene expression values.

Frontiers in Genetics frontiersin.org10

Shi et al. 10.3389/fgene.2024.1503148

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1503148


PRJNA776032, PRJNA302287, PRJNA359473, PRJNA480676,
PRJNA695218, PRJNA387276, PRJNA743884 and PRJNA604841.

Ethics statement

The animal studies were approved by The Ethics Committee of
Beijing University of Agriculture. The studies were conducted in
accordance with the local legislation and institutional requirements.
Written informed consent was obtained from the owners for the
participation of their animals in this study.

Author contributions

YS: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Resources,
Software, Visualization, Writing–original draft. XW:
Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Project administration, Resources, Software,
Visualization, Writing–original draft. SC: Data curation,
Investigation, Resources, Writing–original draft. YZ: Data
curation, Investigation, Resources, Writing–original draft. YW:
Data curation, Investigation, Resources, Writing–original draft.
XS: Investigation, Methodology, Supervision, Writing–review and
editing. XQ: Formal Analysis, Software, Visualization,
Writing–original draft. LZ: Investigation, Methodology,
Supervision, Writing–review and editing. YF: Formal Analysis,
Software, Visualization, Writing–original draft. JL: Data curation,
Formal Analysis, Visualization, Writing–original draft. CW: Data
curation, Formal Analysis, Methodology, Resources,
Writing–original draft. KX: Conceptualization, Data curation,
Formal Analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Software,
Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research

was funded by the earmarked fund for Biological Breeding-National
Science and Technology Major Project(No.2023ZD04046), CARS
(No. 35) and the 2115 Talent Development Program of China
Agricultural University.

Acknowledgments

We thank the Livestock and Poultry Biological Breeding and
Reproductive Physiology team for their help in this study.

Conflict of interest

Author SC was employed by Beijing Animal Husbandry Station.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2024.1503148/
full#supplementary-material

References

Abdelghany, H. M., Gasmi, L., Cartwright, J. L., Bailey, S., Rafferty, J. B., and
McLennan, A. G. (2001). Cloning, characterisation and crystallisation of a
diadenosine 5′,5′′′-P(1),P(4)-tetraphosphate pyrophosphohydrolase from
Caenorhabditis elegans. Biochim. Biophys. Acta 1550 (1), 27–36. doi:10.1016/s0167-
4838(01)00263-1

Alecu, I., and Bennett, S. A. L. (2019). Dysregulated lipid metabolism and its role in α-
synucleinopathy in Parkinson’s disease. Front. Neurosci. 13, 328. doi:10.3389/fnins.
2019.00328

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq--a Python framework to work
with high-throughput sequencing data. Bioinformatics 31 (2), 166–169. doi:10.1093/
bioinformatics/btu638

Baburina, I., and Jackowski, S. (1999). Cellular responses to excess phospholipid.
J. Biol. Chem. 274 (14), 9400–9408. doi:10.1074/jbc.274.14.9400

Bi, X. A., Hu, X., Wu, H., and Wang, Y. (2020). Multimodal data analysis of
alzheimer’s disease based on clustering evolutionary random forest. IEEE J. Biomed.
Health Inf. 24 (10), 2973–2983. doi:10.1109/JBHI.2020.2973324

Carmi-Levy, I., Yannay-Cohen, N., Kay, G., Razin, E., and Nechushtan, H. (2008).
Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network
in immunologically activated mast cells.Mol. Cell Biol. 28 (18), 5777–5784. doi:10.1128/
MCB.00106-08

Caruana, R., and Niculescu-Mizil, A. (2006). An empirical comparison of supervised
learning algorithms. ICML 06, 161–168. doi:10.1145/1143844.1143865

Cheng, F., Liang, J., Yang, L., Lan, G., Wang, L., and Wang, L. (2021). Systematic
identification and comparison of the expressed profiles of lncRNAs, miRNAs,
circRNAs, and mRNAs with associated Co-expression networks in pigs with low
and high intramuscular fat. Anim. (Basel) 11 (11), 3212. doi:10.3390/ani11113212

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34 (17), i884–i890. doi:10.1093/bioinformatics/bty560

Cherkassky, V. (1997). The nature of statistical learning theory~. IEEE Trans. Neural
Netw. 8 (6), 1564. doi:10.1109/TNN.1997.641482

Cho, I. C., Park, H. B., Ahn, J. S., Han, S. H., Lee, J. B., Lim, H. T., et al. (2019). A
functional regulatory variant of MYH3 influences muscle fiber-type composition and

Frontiers in Genetics frontiersin.org11

Shi et al. 10.3389/fgene.2024.1503148

https://www.frontiersin.org/articles/10.3389/fgene.2024.1503148/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2024.1503148/full#supplementary-material
https://doi.org/10.1016/s0167-4838(01)00263-1
https://doi.org/10.1016/s0167-4838(01)00263-1
https://doi.org/10.3389/fnins.2019.00328
https://doi.org/10.3389/fnins.2019.00328
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1074/jbc.274.14.9400
https://doi.org/10.1109/JBHI.2020.2973324
https://doi.org/10.1128/MCB.00106-08
https://doi.org/10.1128/MCB.00106-08
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.3390/ani11113212
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1109/TNN.1997.641482
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1503148


intramuscular fat content in pigs. PLoS Genet. 15 (10), e1008279. doi:10.1371/journal.
pgen.1008279

Crespo-Piazuelo, D., Criado-Mesas, L., Revilla, M., Castelló, A., Noguera, J. L.,
Fernández, A. I., et al. (2020). Identification of strong candidate genes for backfat
and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci.
Rep. 10 (1), 13962. doi:10.1038/s41598-020-70894-2

Dashti, M., Alsaleh, H., Rodriguez-Flores, J. L., Eaaswarkhanth, M., Al-Mulla, F., and
Thanaraj, T. A. (2021). Mitochondrial haplogroup J associated with higher risk of
obesity in the Qatari population. Sci. Rep. 11 (1), 1091. doi:10.1038/s41598-020-80040-7

Ding, H., Lin, Y., Zhang, T., Chen, L., Zhang, G.,Wang, J., et al. (2021). Transcriptome
analysis of differentially expressed mRNA related to pigeon muscle development. Anim.
(Basel) 11 (8), 2311. doi:10.3390/ani11082311

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit. Lett. 27 (8),
861–874. doi:10.1016/j.patrec.2005.10.010

Fernandez, X., Monin, G., Talmant, A., Mourot, J., and Lebret, B. (1999). Influence of
intramuscular fat content on the quality of pig meat - 2. Consumer acceptability of m.
longissimus lumborum. Meat Sci. 53 (1), 67–72. doi:10.1016/s0309-1740(99)00038-8

Hamill, R. M., Mcbryan, J., Mcgee, C., Mullen, A. M., Sweeney, T., Talbot, A., et al.
(2012). Functional analysis of muscle gene expression profiles associated with
tenderness and intramuscular fat content in pork. Meat Sci. 92 (4), 440–450. doi:10.
1016/j.meatsci.2012.05.007

Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O., and Rosman, G. (2020).
Artificial intelligence in anesthesiology: current techniques, clinical applications, and
limitations. Anesthesiology 132 (2), 379–394. doi:10.1097/ALN.0000000000002960

He, S., Chen, W., Liu, H., Li, S., Lei, D., Dang, X., et al. (2019). Gene pathogenicity
prediction of Mendelian diseases via the random forest algorithm. Hum. Genet. 138 (6),
673–679. doi:10.1007/s00439-019-02021-9

Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., and Xu, W. (2018b).
Applications of support vector machine (SVM) learning in cancer genomics. Cancer
Genomics Proteomics 15 (1), 41–51. doi:10.21873/cgp.20063

Huang, W., Zhang, X., Li, A., Xie, L., and Miao, X. (2018a). Genome-Wide analysis of
mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds.
Cell Physiol. Biochem. 50 (6), 2406–2422. doi:10.1159/000495101

Jacinto, S., Guerreiro, P., De Oliveira, R. M., Cunha-Oliveira, T., Santos, M. J.,
Grazina, M., et al. (2021). MPV17 mutations are associated with a quiescent energetic
metabolic profile. Front. Cell Neurosci. 15, 641264. doi:10.3389/fncel.2021.641264

Jiang, Z., Michal, J. J., Wu, X. L., Pan, Z., andMacNeil, M. D. (2011). The heparan and
heparin metabolism pathway is involved in regulation of fatty acid composition. Int.
J. Biol. Sci. 7 (5), 659–663. doi:10.7150/ijbs.7.659

Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019). Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat.
Biotechnol. 37 (8), 907–915. doi:10.1038/s41587-019-0201-4

Kim, S., Kim, N., Park, S., Jeon, Y., Lee, J., Yoo, S. J., et al. (2020). Tanycytic TSPO
inhibition induces lipophagy to regulate lipid metabolism and improve energy balance.
Autophagy 16 (7), 1200–1220. doi:10.1080/15548627.2019.1659616

Lam, C., Calvert, J., Siefkas, A., Barnes, G., Pellegrini, E., Green-Saxena, A., et al.
(2021). Personalized stratification of hospitalization risk amidst COVID-19: a machine
learning approach. Health Policy Technol. 10 (3), 100554. doi:10.1016/j.hlpt.2021.
100554

Lazar, C., Meganck, S., Taminau, J., Steenhoff, D., Coletta, A., Molter, C., et al. (2013).
Batch effect removal methods for microarray gene expression data integration: a survey.
Brief. Bioinform 14 (4), 469–490. doi:10.1093/bib/bbs037

Lee, Y. H., Tharp, W. G., Maple, R. L., Nair, S., Permana, P. A., and Pratley, R. E.
(2008). Amyloid precursor protein expression is upregulated in adipocytes in obesity.
Obes. (Silver Spring) 16 (7), 1493–1500. doi:10.1038/oby.2008.267

Lee, Y. W., Choi, J. W., and Shin, E. H. (2021). Machine learning model for predicting
malaria using clinical information. Comput. Biol. Med. 129, 104151. doi:10.1016/j.
compbiomed.2020.104151

Li, X. J., Zhou, J., Liu, L. Q., Qian, K., andWang, C. L. (2016). Identification of genes in
longissimus dorsi muscle differentially expressed between Wannanhua and Yorkshire
pigs using RNA-sequencing. Anim. Genet. 47 (3), 324–333. doi:10.1111/age.12421

Lin, J., Lu, Y., Wang, B., Jiao, P., and Ma, J. (2021). Analysis of immune cell
components and immune-related gene expression profiles in peripheral blood of
patients with type 1 diabetes mellitus. J. Transl. Med. 19 (1), 319. doi:10.1186/
s12967-021-02991-3

Li, Q., Huang, Z., Zhao, W., and Li, M. (2020). Transcriptome analysis reveals Long
intergenic non-coding RNAs contributed to intramuscular fat content differences
between Yorkshire andWei pigs. Int. J. Mol. Sci. 21 (5), 1732. doi:10.3390/ijms21051732

Liu, S., Yue, T., Ahmad, M. J., Hu, X., Zhang, X., Deng, T., et al. (2020). Transcriptome
analysis reveals potential regulatory genes related to heat tolerance in Holstein dairy
cattle. Genes(Basel) 11 (1), 68. doi:10.3390/genes11010068

Liu, H., Xing, K., Jiang, Y., Liu, Y., Wang, C., and Ding, X. (2022). Using machine
learning to identify biomarkers affecting fat deposition in pigs by integrating
multisource transcriptome information. J. Agric. Food Chem. 70 (33), 10359–10370.
doi:10.1021/acs.jafc.2c03339

Li, X., Kim, S. W., Choi, J. S., Lee, Y. M., Lee, C. K., Choi, B. H., et al. (2010).
Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression
for variation in intramuscular fat content. Mol. Biol. Rep. 37 (8), 3931–3939. doi:10.
1007/s11033-010-0050-1

Malgwi, I. H., Halas, V., GrüNVALD, P., Carnier, P., and Schiavon, S. (2022). Genes
related to fat metabolism in pigs and intramuscular fat content of pork: a focus on
nutrigenetics and nutrigenomics. Anim. (Basel) 12 (2), 215. doi:10.3390/ani12020215

Mclennan, A. G., Mayers, E., Walker-Smith, I., and Chen, H. (1995). Lanterns of the
firefly Photinus pyralis contain abundant diadenosine 5′,5′′′-P1,P4-tetraphosphate
pyrophosphohydrolase activity. J. Biol. Chem. 270 (8), 3706–3709. doi:10.1074/jbc.
270.8.3706

Mirza, B., Wang, W., Wang, J., Choi, H., Chung, N. C., and Ping, P. (2019). Machine
learning and integrative analysis of biomedical big data. Genes (Basel) 10 (2), 87. doi:10.
3390/genes10020087

Mooney, M., and Mcweeney, S. (2014). Data integration and reproducibility for high-
throughput transcriptomics. Int. Rev. Neurobiol. 116, 55–71. doi:10.1016/B978-0-12-
801105-8.00003-5

MuñOZ, M., GarcíA-Casco, J. M., Caraballo, C., Fernández-Barroso, M. Á., Sánchez-
Esquiliche, F., Gómez, F., et al. (2018). Identification of candidate genes and regulatory
factors underlying intramuscular fat content through longissimus dorsi transcriptome
analyses in heavy iberian pigs. Front. Genet. 9, 608. doi:10.3389/fgene.2018.00608

Patil, M., Sharma, B. K., Elattar, S., Chang, J., Kapil, S., Yuan, J., et al. (2017).
Id1 promotes obesity by suppressing Brown adipose thermogenesis and white adipose
browning. Diabetes 66 (6), 1611–1625. doi:10.2337/db16-1079

Perks, K. L., Ferreira, N., Richman, T. R., Ermer, J. A., Kuznetsova, I., Shearwood, A.
M. J., et al. (2017). Adult-onset obesity is triggered by impaired mitochondrial gene
expression. Sci. Adv. 3 (8), e1700677. doi:10.1126/sciadv.1700677

PióRKOWSKA, K., Małopolska, M., Ropka-Molik, K., Szyndler-Nędza, M.,
Wiechniak, A., Żukowski, K., et al. (2020). Evaluation of SCD, ACACA and FASN
mutations: effects on pork quality and other production traits in pigs selected based on
RNA-seq results. Anim. (Basel) 10 (1), 123. doi:10.3390/ani10010123

Puig-Oliveras, A., Ramayo-Caldas, Y., Corominas, J., Estellé, J., Pérez-Montarelo, D.,
Hudson, N. J., et al. (2014). Differences in muscle transcriptome among pigs
phenotypically extreme for fatty acid composition. PLoS One 9 (6), e99720. doi:10.
1371/journal.pone.0099720

Qin, D. D., Yang, Y. F., Pu, Z. Q., Liu, D., Yu, C., Gao, P., et al. (2018). NR4A1 retards
adipocyte differentiation or maturation via enhancing GATA2 and p53 expression.
J. Cell Mol. Med. 22 (10), 4709–4720. doi:10.1111/jcmm.13715

Ren, L., Liu, A., Wang, Q., Wang, H., and Dong, D. (2021). Transcriptome analysis of
embryonic muscle development in Chengkou Mountain Chicken. BMC Genomics 22
(1), 431. doi:10.1186/s12864-021-07740-w

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Russo, V., Fontanesi, L., Scotti, E., Beretti, F., Davoli, R., Nanni Costa, L., et al. (2008).
Single nucleotide polymorphisms in several porcine cathepsin genes are associated with
growth, carcass, and production traits in Italian Large White pigs. J. Anim. Sci. 86 (12),
3300–3314. doi:10.2527/jas.2008-0920

Sahran, S., Albashish, D., Abdullah, A., Shukor, N. A., and Hayati Md Pauzi, S. (2018).
Absolute cosine-based SVM-RFE feature selection method for prostate
histopathological grading. Artif. Intell. Med. 87, 78–90. doi:10.1016/j.artmed.2018.
04.002

Sato, S., Uemoto, Y., Kikuchi, T., Egawa, S., Kohira, K., Saito, T., et al. (2017).
Genome-wide association studies reveal additional related loci for fatty acid
composition in a Duroc pig multigenerational population. Anim. Sci. J. 88 (10),
1482–1490. doi:10.1111/asj.12793

Savedoroudi, P., Bennike, T. B., Kastaniegaard, K., Talebpour, M., Ghassempour, A.,
and Stensballe, A. (2019). Serum proteome changes and accelerated reduction of fat
mass after laparoscopic gastric plication in morbidly obese patients. J. Proteomics 203,
103373. doi:10.1016/j.jprot.2019.05.001

Shang, Z., Sun, J., Hui, J., Yu, Y., Bian, X., Yang, B., et al. (2021). Construction of a
support vector machine-based classifier for pulmonary arterial hypertension patients.
Front. Genet. 12, 781011. doi:10.3389/fgene.2021.781011

Sheth, V., Tripathi, U., and Sharma, A. (2022). A comparative analysis of machine
learning algorithms for classification purpose. Procedia Comput. 215, 422–431. doi:10.
1016/j.procs.2022.12.044

Song, X., Zheng, Y., Xue, W., Li, L., Shen, Z., Ding, X., et al. (2021). Identification of
risk genes related to myocardial infarction and the construction of early SVM diagnostic
model. Int. J. Cardiol. 328, 182–190. doi:10.1016/j.ijcard.2020.12.007

Sperl, L. E., and Hagn, F. (2021). NMR structural and biophysical analysis of the
disease-linked inner mitochondrial membrane protein MPV17. J. Mol. Biol. 433 (15),
167098. doi:10.1016/j.jmb.2021.167098

Suzuki, K., Inomata, K., Katoh, K., Kadowaki, H., and Shibata, T. (2009). Genetic
correlations among carcass cross-sectional fat area ratios, production traits,
intramuscular fat, and serum leptin concentration in Duroc pigs. J. Anim. Sci. 87
(7), 2209–2215. doi:10.2527/jas.2008-0866

Frontiers in Genetics frontiersin.org12

Shi et al. 10.3389/fgene.2024.1503148

https://doi.org/10.1371/journal.pgen.1008279
https://doi.org/10.1371/journal.pgen.1008279
https://doi.org/10.1038/s41598-020-70894-2
https://doi.org/10.1038/s41598-020-80040-7
https://doi.org/10.3390/ani11082311
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/s0309-1740(99)00038-8
https://doi.org/10.1016/j.meatsci.2012.05.007
https://doi.org/10.1016/j.meatsci.2012.05.007
https://doi.org/10.1097/ALN.0000000000002960
https://doi.org/10.1007/s00439-019-02021-9
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1159/000495101
https://doi.org/10.3389/fncel.2021.641264
https://doi.org/10.7150/ijbs.7.659
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1080/15548627.2019.1659616
https://doi.org/10.1016/j.hlpt.2021.100554
https://doi.org/10.1016/j.hlpt.2021.100554
https://doi.org/10.1093/bib/bbs037
https://doi.org/10.1038/oby.2008.267
https://doi.org/10.1016/j.compbiomed.2020.104151
https://doi.org/10.1016/j.compbiomed.2020.104151
https://doi.org/10.1111/age.12421
https://doi.org/10.1186/s12967-021-02991-3
https://doi.org/10.1186/s12967-021-02991-3
https://doi.org/10.3390/ijms21051732
https://doi.org/10.3390/genes11010068
https://doi.org/10.1021/acs.jafc.2c03339
https://doi.org/10.1007/s11033-010-0050-1
https://doi.org/10.1007/s11033-010-0050-1
https://doi.org/10.3390/ani12020215
https://doi.org/10.1074/jbc.270.8.3706
https://doi.org/10.1074/jbc.270.8.3706
https://doi.org/10.3390/genes10020087
https://doi.org/10.3390/genes10020087
https://doi.org/10.1016/B978-0-12-801105-8.00003-5
https://doi.org/10.1016/B978-0-12-801105-8.00003-5
https://doi.org/10.3389/fgene.2018.00608
https://doi.org/10.2337/db16-1079
https://doi.org/10.1126/sciadv.1700677
https://doi.org/10.3390/ani10010123
https://doi.org/10.1371/journal.pone.0099720
https://doi.org/10.1371/journal.pone.0099720
https://doi.org/10.1111/jcmm.13715
https://doi.org/10.1186/s12864-021-07740-w
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.2527/jas.2008-0920
https://doi.org/10.1016/j.artmed.2018.04.002
https://doi.org/10.1016/j.artmed.2018.04.002
https://doi.org/10.1111/asj.12793
https://doi.org/10.1016/j.jprot.2019.05.001
https://doi.org/10.3389/fgene.2021.781011
https://doi.org/10.1016/j.procs.2022.12.044
https://doi.org/10.1016/j.procs.2022.12.044
https://doi.org/10.1016/j.ijcard.2020.12.007
https://doi.org/10.1016/j.jmb.2021.167098
https://doi.org/10.2527/jas.2008-0866
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1503148


Toth, R., Schiffmann, H., Hube-Magg, C., Büscheck, F., Höflmayer, D., Weidemann,
S., et al. (2019). Random forest-based modelling to detect biomarkers for prostate cancer
progression. Clin. Epigenetics 11 (1), 148. doi:10.1186/s13148-019-0736-8

Tsukiyama-Kohara, K., Poulin, F., Kohara, M., DeMaria, C. T., Cheng, A., Wu, Z.,
et al. (2001). Adipose tissue reduction in mice lacking the translational inhibitor 4E-
BP1. Nat. Med. 7 (10), 1128–1132. doi:10.1038/nm1001-1128

Veiner, M., Morimoto, J., Leadbeater, E., andManfredini, F. (2022). Machine learning
models identify gene predictors of waggle dance behaviour in honeybees. Mol. Ecol.
Resour. 22 (6), 2248–2261. doi:10.1111/1755-0998.13611

Verspohl, E. J., Blackburn, G. M., Hohmeier, N., Hagemann, J., and Lempka, M.
(2003a). Synthetic, nondegradable diadenosine polyphosphates and diinosine
polyphosphates: their effects on insulin-secreting cells and cultured vascular smooth
muscle cells. J. Med. Chem. 46 (8), 1554–1562. doi:10.1021/jm011070z

Verspohl, E. J., Hohmeier, N., and Lempka, M. (2003b). Diadenosine tetraphosphate
(Ap4A) induces a diabetogenic situation: its impact on blood glucose, plasma insulin,
gluconeogenesis, glucose uptake and GLUT-4 transporters. Pharmazie 58 (12),
910–915. doi:10.1021/jm011070z

Waldmann, P., Pfeiffer, C., and MéSZáROS, G. (2020). Sparse convolutional neural
networks for genome-wide prediction. Front. Genet. 11, 25. doi:10.3389/fgene.2020.
00025

Wang, Z., Liang, W., Yan, D., Tian, H., Dong, B., Zhao, W., et al. (2021). Identification
of genes related to growth traits from transcriptome profiles of duck breast muscle
tissue. Anim. Biotechnol. 34, 1239–1246. doi:10.1080/10495398.2021.2018333

Wang, L., Zhang, Y., Zhang, B., Zhong, H., Lu, Y., and Zhang, H. (2021). Candidate
gene screening for lipid deposition using combined transcriptomic and proteomic
data from Nanyang black pigs. BMC Genomics 22 (1), 441. doi:10.1186/s12864-021-
07764-2

Wang, Z., Li, Q., Chamba, Y., Zhang, B., Shang, P., Zhang, H., et al. (2015).
Identification of genes related to growth and lipid deposition from transcriptome
profiles of pig muscle tissue. PLoS One 10 (10), e0141138. doi:10.1371/journal.pone.
0141138

Xu, J., Wang, C., Jin, E., Gu, Y., Li, S., and Li, Q. (2018). Identification of differentially
expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using
RNA sequencing. Genes Genomics 40 (4), 413–421. doi:10.1007/s13258-017-0643-3

Yuan, Z., Sunduimijid, B., Xiang, R., Behrendt, R., Knight, M. I., Mason, B. A., et al.
(2021). Expression quantitative trait loci in sheep liver and muscle contribute to
variations in meat traits. Genet. Sel. Evol. 53 (1), 8. doi:10.1186/s12711-021-00602-9

Zappaterra, M., Gioiosa, S., Chillemi, G., Zambonelli, P., and Davoli, R. (2020).
Muscle transcriptome analysis identifies genes involved in ciliogenesis and the
molecular cascade associated with intramuscular fat content in Large White heavy
pigs. PLoS One 15 (5), e0233372. doi:10.1371/journal.pone.0233372

Zhang, P., Li, Q., Wu, Y., Zhang, Y., Zhang, B., and Zhang, H. (2022). Identification of
candidate genes that specifically regulate subcutaneous and intramuscular fat deposition
using transcriptomic and proteomic profiles in Dingyuan pigs. Sci. Rep. 12 (1), 2844.
doi:10.1038/s41598-022-06868-3

Zhang, Y., Sun, Y., Wu, Z., Xiong, X., Zhang, J., Ma, J., et al. (2021). Subcutaneous and
intramuscular fat transcriptomes show large differences in network organization and
associations with adipose traits in pigs. Sci. China Life Sci. 64 (10), 1732–1746. doi:10.
1007/s11427-020-1824-7

Zhao, X., Wu, Y., Lee, D. L., and Cui, W. (2018). iForest: interpreting random forests
via visual analytics. IEEE Trans. Vis. Comput. Graph 25, 407–416. doi:10.1109/TVCG.
2018.2864475

Zheng, X., Ren, B., Li, X., Yan, H., Xie, Q., Liu, H., et al. (2020a). Selenoprotein F
knockout leads to glucose and lipid metabolism disorders in mice. J. Biol. Inorg. Chem.
25 (7), 1009–1022. doi:10.1007/s00775-020-01821-z

Zheng, Y., Fang, Z., Xue, Y., Zhang, J., Zhu, J., Gao, R., et al. (2020b). Specific gut
microbiome signature predicts the early-stage lung cancer. Gut Microbes 11 (4),
1030–1042. doi:10.1080/19490976.2020.1737487

Zhou, G., Wang, S., Wang, Z., Zhu, X., Shu, G., Liao, W., et al. (2010). Global
comparison of gene expression profiles between intramuscular and subcutaneous
adipocytes of neonatal landrace pig using microarray. Meat Sci. 86 (2), 440–450.
doi:10.1016/j.meatsci.2010.05.031

Frontiers in Genetics frontiersin.org13

Shi et al. 10.3389/fgene.2024.1503148

https://doi.org/10.1186/s13148-019-0736-8
https://doi.org/10.1038/nm1001-1128
https://doi.org/10.1111/1755-0998.13611
https://doi.org/10.1021/jm011070z
https://doi.org/10.1021/jm011070z
https://doi.org/10.3389/fgene.2020.00025
https://doi.org/10.3389/fgene.2020.00025
https://doi.org/10.1080/10495398.2021.2018333
https://doi.org/10.1186/s12864-021-07764-2
https://doi.org/10.1186/s12864-021-07764-2
https://doi.org/10.1371/journal.pone.0141138
https://doi.org/10.1371/journal.pone.0141138
https://doi.org/10.1007/s13258-017-0643-3
https://doi.org/10.1186/s12711-021-00602-9
https://doi.org/10.1371/journal.pone.0233372
https://doi.org/10.1038/s41598-022-06868-3
https://doi.org/10.1007/s11427-020-1824-7
https://doi.org/10.1007/s11427-020-1824-7
https://doi.org/10.1109/TVCG.2018.2864475
https://doi.org/10.1109/TVCG.2018.2864475
https://doi.org/10.1007/s00775-020-01821-z
https://doi.org/10.1080/19490976.2020.1737487
https://doi.org/10.1016/j.meatsci.2010.05.031
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1503148

	Identification of key genes affecting intramuscular fat deposition in pigs using machine learning models
	Introduction
	Materials and methods
	Acquisition of transcriptome sequencing data
	Data pre-processing
	Differential expression gene extraction
	Construction of machine learning models
	Biological function analysis

	Results
	Sequencing quality assessment
	Batch effect adjustment
	Analysis of DEGs
	Feature selection
	Sample distribution
	Pathway enrichment analysis of intersection genes

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


