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Introduction: This study aims to identify the therapeutic targets and regulatory
mechanisms of the antitumor drug gallic acid (GA) in cervical cancer (CC).

Methods: HeLa cells were treated with GA and subjected to RNA-sequencing
using the DNBSEQ platform. By combining the results of the Gene Expression
Omnibus (GEO) and the Cancer Genome Atlas (TCGA) analysis and RNA-seq, the
differentially expressed genes (DEGs), including those upregulated and
downregulated genes in CC compared with the normal cervix in the GEO and
TCGA database, while expressed reversed after treatment with GA, were
identified. Subsequently, the function enrichment analysis and protein–protein
interaction of the DEGs were conducted. The candidate genes were identified
using the Cytoscape software Gentiscape2.2 and MCODE plug-ins. Furthermore,
the upstream microRNA (miRNA), long noncoding RNA (lncRNA), and circular
RNA (circRNA) of the candidate genes were predicted using the online tools of
MirDIP, TarBase, and ENCORI. Finally, the regulatory network was constructed
using Cytoscape software.

Results: CC cells are significantly inhibited by GA. Combining the GEO and TCGA
databases and RNA-seq analyses, 127 DEGs were obtained and subjected to
functional enrichment analysis. This analysis revealed that 221 biological
processes, 82 cellular components, 63 molecular functions, and 36 KEGG
pathways were employed to identify three therapeutic candidate genes,
including CDC20, DLGAP5, and KIF20A. The upstream 13 miRNAs, 4 lncRNA,
and 42 circRNAs were detected and used to construct a lncRNA/circRNA-
miRNA-mRNA-pathway regulatory network.

Conclusion: This study identified candidate genes and the regulatory networks
underlying the therapeutic effects of GA on CC using GA data mining methods,
thus establishing a theoretical basis for targeted therapy of CC.
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1 Introduction

According to the 2022 Global Cancer Statistics, cervical cancer (CC) is the fourth most
common cancer and the fourth leading cause of cancer deaths in women worldwide (Bray
et al., 2024). Globally, CC is the most common cancer of the female reproductive system and
the second most common gynecological malignancy (Li et al., 2022; Zhao et al., 2023).
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Human papillomavirus (HPV) is a significant risk factor for CC. The
development of an immune vaccine against HPV has reduced the
incidence of HPV-associated CC cases by approximately 70%
(Zhang and Batur, 2019). Despite the efficacy of these vaccines,
CC remains a highly prevalent gynecological malignancy globally
(Ahn et al., 2023; Wu L. et al., 2022). Furthermore, the vaccine does
not prevent all subtypes of HPV infections. China has a low rate of
HPV vaccination (Hu et al., 2021; Wu J. et al., 2022). Meanwhile,
molecularly targeted therapies are becoming increasingly popular in
tumor treatment (Vervoort et al., 2021; Zhang et al., 2022).

Gallic acid (GA), also known as 3,4,5-trihydroxybenzoic acid,
exhibits antioxidant, anti-inflammatory, antidiabetic,
antiangiogenic, antibacterial, antiviral, antifungal,
anticarcinogenic, and other beneficial effects on human health
(Hassani et al., 2023; Sagdicoglu Celep et al., 2022; Santana
Andrade et al. 2022). GA can downregulate the molecular
pathways involved in cancer progression, including the PI3K/Akt
pathway (Ashrafizadeh et al., 2021). Furthermore, our findings
indicate that GA can significantly inhibit the proliferation of
several CC cell lines, including HeLa, SiHa, and C-33 A cells, in
a dose-dependent manner.

This study aimed to identify the therapeutic molecular targets of
GA in CC and the underlying regulatory mechanisms. To this end,
HeLa cells were treated with GA and then subjected to RNA-
sequencing (RNA-seq). Then, the RNA-seq results were
combined with those obtained from the Gene Expression
Omnibus (GEO) and Cancer Genome Atlas (TCGA) databases to
identify differentially expressed genes (DEGs). Subsequently, the
DEGs were analyzed for their functional enrichment and
protein–protein interactions, resulting in the identification of
therapeutic candidate genes and their upstream miRNA, lncRNA,
and circRNA. Finally, a regulatory network was constructed. These
findings provide a basis for further research into the regulatory
mechanisms and molecular targets of GA in treating CC.

2 Materials and methods

2.1 Cell lines and cell culture

Three human CC cell lines, HeLa, SiHa, and C-33 A, were
obtained from the American Type Culture Collection (ATCC,
United States) and cultured in Dulbecco’s Modified Eagle
Medium (DMEM) (Hyclone, United States) supplemented with
10% fetal bovine serum (FBS) (BI, United States) at 37°C
with 5% CO2.

2.2 Cell viability assays

Cell viability was assessed using the Cell Counting Kit-8 (CCK-
8, Sparkjade) assay. GA was dissolved in methanol at a
concentration of 500 mM and then diluted to different
concentrations (0 or control, 100 and 200 µM) using appropriate
amounts of methanol. At the logarithmic growth stage, the cells were
trypsinized, neutralized, and then seeded at a density of 5 × 103 cells
in 96-well plates containing complete DMEM. After 12–24 h, the
culture medium was replaced with diluted GA. The absorbance of

the plates was measured at 24, 48, and 72 h posttreatment at 450 nm.
The data were analyzed using GraphPad Prism 9.0.0 software.

2.3 RNA Extraction, quantification, and
sequencing

HeLa cells were cultured with the methanol control and a
medium containing 200 μM GA (control and GA groups,
respectively) for 3 days. When the cells reached a fusion of 60%–
80%, they were collected and washed twice with PBS. Total RNAwas
extracted and purified from six samples (n = 3/group) using TRIzol
Reagent (Invitrogen). RNA quantification and sequencing were
performed using the BGISEQ-500 platform (BGI, China). The
raw sequencing data were deposited in the Sequence Read
Archive (SRA) of the National Center for Biotechnology
Information (NCBI) under the accession number PRJNA1169526.

2.4 Microarray datasets

A total of four mRNA expression datasets obtained using human
CC cell lines [GSE7803 (ZHAI et al., 2007), GSE9750 (Scotto et al.,
2008), GSE63514 (den Boon et al., 2015), and GSE527 (WONG
et al., 2003)] were selected and downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). All datasets included analyses
of the differences between normal cervical and CC tissue samples.
GSE7803 is based on GPL96, [HG-U133A] Affymetrix Human
Genome U133A array platform, which contains 10 normal
squamous cervical epithelium and 21 invasive squamous CC
samples. GPL96 was also used as the platform for GSE9750,
which contains 24 normal cervical and 33 CC samples. The
platform for GSE63514 is GPL570, [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array, which contains
24 normal cervical epithelium and 28 cervical squamous epithelial
cancer specimens. GSE527 is the platform for GPL355, Human 10 K
cDNA Array, which contains eight normal cervical and 25 CC
samples. The RNA-seq results of HeLa cells treated with GA were
provided by BGI.

2.5 Screening for DEGs

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an online
analytical tool within the GEO dataset designed to analyze the DEGs
between normal cervical and CC tissue samples. Genes were selected
according to the following criteria: |logFC| ≥ 1, P-value < 0.05, and
adj. P-value < 0.05.

The gene expression profiling interactive analysis (GEPIA2)
(http://gepia2.cancer-pku.cn/#degenes) online database was used
to analyze the DEGs in TCGA as follows: CESC, |Log2FC|Cutoff:
1, q-value Cutoff: 0.05, Differential Methods: ANOVA. The criteria
for screening DEGs based on the RNA-seq results were as follows:
DESeq2: |log2FC| ≥ 0.5, Q-value ≤ 0.05.

First, the significantly upregulated or downregulated genes
among the four datasets of the GEO database were combined
and duplicated, and the overlapping genes were removed. Then,
a combined analysis of the results from the GEO and TCGA
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databases was used to screen common upregulated and
downregulated genes between the CC and normal cervical
samples. The duplicated genes were removed. Finally, by
combining the results of the GEO and TCGA databases and
RNA-seq, we identified genes that were upregulated or
downregulated in CC compared with normal cervical samples,
while the expression patterns of these genes were the reversed in
GA-treated CC cells. The final differentially expressed genes are
referred to as the “DEGs” in the following text for convenience.

2.6 Function analysis of the DEGs

The identified DEGs were subjected to Gene Ontology (GO,
biological process, cellular component, and molecular function) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis using the Metascape database (https://
metascape.org/gp/index.html). The enrichment criteria were as
follows: Min overlap ≥3, P-value cutoff ≤0.05, min
enrichment ≥1.5, and default values for the rest.

The Search Tool for the Retrieval of Interacting Genes (STRING,
https://cn.string-db.org/) was employed to analyze and visualize the
interaction relationship between proteins. The final set of DEGs was
uploaded to STRING using the following settings: Meaning of
network edges: confidence, Minimum required interaction score:
high confidence (0.700), Network display options: disable structure
previews inside network bubbles, hide disconnected nodes in
the network.

2.7 Screening for therapeutic candidate
genes of GA

Gene sets with interaction relationships were imported into the
Cytoscape software to create a visible network. First, the
Gentiscape2.2 plug-in was employed to calculate the network and
topological characteristics of each node. The genes corresponding to
the nodes with degree value ≥Mean + SD and Betweenness
value ≥Mean + SD nodes were referred to as hub and bottleneck
genes, respectively. With the MCODE plug-in, the parameters were
set as degree cutoff ≥3, K-core ≥4, and default values for the rest. The
core genes that constitute the stable network structure were screened
out. Finally, the potential therapeutic candidate genes that were in
common among the hub, bottleneck, and core genes were identified
using the “Calculate and draw custom Venn diagrams” online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.8 Quantitative real-time PCR (qRT-
PCR) analysis

The total RNA was reverse transcribed to cDNA using the
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific), which was used as a template for qRT-PCR
amplification. The PCR mixtures were prepared to a final volume
of 20 µL using the PowerUpTM SYBRTM Green Master Mix
(Applied Biosystems) with four wells for each sample. The PCR
assay was performed using the ABI Q5 real-time PCR platform (ABI

Life Technologies), and the cycling parameters were as follows: 1
cycle of 50°C for 2min, 1 cycle of 95°C for 2 min, 40 cycles of 95°C for
15 s and 60°C for 1 min. Fold changes were calculated and
normalized via the ΔΔCt method using the glyceraldehyde 3-
phosphate dehydrogenase gene as the internal normalization
control. The primers used were as follows: (5ʹ-3ʹ): CDC20 (F:
CTGGATCAAAGAGGGCAACTA, R: GGCAGAGTGACTGGT
CATATT); DLGAP5 (F: GTTGTGCAGCCTGTAATGCC, R:
TAGCAGCTCTTGTGACTGGC); KIF20A (F: TGCTGTCCG
ATGACGATGTC, R: AGGTTCTTGCGTACCACAGAC); and
GAPDH (F: CAATGACCCCTTCATTGACC, R: GACAAGCTT
CCCGTTCTCAG).

2.9 Upstream miRNAs, lncRNAs, and
circRNAs analysis of candidate genes

The candidate genes were submitted to the MirDIP (http://
ophid.utoronto.ca/mirDIP/index_confirm.jsp), miRDB (https://
mirdb.org/), and ENCORI (https://rnasysu.com/encori/) online
databases to predict their upstream interaction with miRNAs.
Then, the reliability of the miRNAs was verified using TarBase V
9.0 software (https://dianalab.e-ce.uth.gr/tarbasev9). The miRNAs
were submitted to the ENCORI online tool for analyzing the
relationships between miRNA and lncRNA (parameters setting:
Clip-data ≥2 datasets, Degradome Data ≥1), and miRNA and
circRNA (parameter setting: Clip-data ≥2 datasets, Degradome
Data ≥3, and default value for the rest).

2.10 Construction of the LncRNA/CircRNA-
miRNA-mRNA-pathway regulatory network

The relationships between the upstream lncRNAs and circRNAs
with miRNAs, miRNAs with candidate genes, and the candidate
genes with pathways that met the screening criteria were evaluated.
The file was imported into the Cytoscape software to establish a
visual lncRNA/circRNA-miRNA-mRNA-pathway
regulatory network.

2.11 Statistical analysis

The data were analyzed using GraphPad Prism 9.0.0 software
(La Jolla, CA, United States) (https://www.graphpad.com). The
control and GA groups were compared using the Student’s t-test.
A significant difference (P < 0.05) was indicated between the groups
based on the means +SEM.

3 Results

3.1 GA inhibited the proliferation of CC cells

The CCK-8 assay was used to assess the proliferation of HeLa,
SiHa, and C-33 A cells treated with different GA concentrations (0,
100, or 200 µM) was assessed. The results indicated that GA
significantly inhibited the proliferation of CC cells (Figure 1).
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3.2 Identification of DEGs in the treatment of
CC with GA

Four raw expression microarray datasets of CC (GSE7803,
GSE9750, GSE63514, and GSE527) were analyzed using GEO
online. After filtering out 64 genes with opposite expression
trends, we screened 5,234 DEGs between normal cervical and CC
tissue samples, including 2,806 upregulated and
2,428 downregulated genes (Figure 2A).

In the TCGA database, 6,072 genes were screened out (three
duplicates and one gene with opposite expression removed),
including 2045 upregulated and 4,027 downregulated genes.
Combining the results of both databases, we screened the genes

with the common expression trend, which included 629 upregulated
and 630 downregulated genes (Figure 2B).

As GA significantly inhibited the proliferation of CC cells, we
treated HeLa cells with GA and then performed an RNA-seq
analysis to identify the target genes. A total of 2,343 DEGs were
screened out, including 1,501 upregulated and 842 downregulated
genes (Figure 2C).

Combining the results from the GEO and TCGA databases with
RNA-seq, we identified the upregulated and downregulated genes in
CC compared with normal cervical samples. After treatment with
GA, the expression of these genes was reversed, with downregulated
genes becoming upregulated and vice versa. Finally, we screened out
127 DEGs, including 40 upregulated and 87 downregulated genes, in

FIGURE 1
Gallic acid inhibits the proliferation of cervical carcinoma cells. (A) HeLa, (B) SiHa, and (C) C-33 A cells were treated with methanol vehicle control
and diluted gallic acid, and their proliferation was assessed using the CCK-8 assay. The values are shown as themean ± SEM (Student’s t-test was used for
the statistical analysis (*p < 0.05, **p < 0.01, ***p < 0.001 vs. the corresponding control).

FIGURE 2
Analysis of differentially expressed genes. (A, B) A volcano plot of differentially expressed genes in Gene expression omnibus (A) and the Cancer
Genome Atlas (B) databases. (C) Heat map comparing the control and experimental groups of cervical cancer cells treated with gallic acid.
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the GEO and TCGA databases, which were downregulated and
upregulated after treatment with GA, respectively, showing an
opposite trend (Table 1).

3.3 GO function and KEGG pathway
enrichment analysis of the DEGs

The DEGs were uploaded to the Metascape database for GO
(biological processes, cellular components, andmolecular functions)
and KEGG pathway enrichment analysis.

A total of 221 biological processes, 82 cellular components, and
63 molecular functions were enriched. The top 20 clusters of
biological processes are shown in Figure 3A, such as negative
regulation of organelle organization, regulation of nuclear
division, cell morphogenesis, elastic fiber assembly, and positive
regulation of organelle organization. The top 18 clusters of cellular
components, as shown in Figure 3B, included the extracellular
matrix, basal plasma membrane, neuromuscular junction, nuclear
envelope, and cytoplasmic side of the membrane. As shown in
Figure 3C, the top 19 clusters of molecular function included
extracellular matrix structural constituents, anaphase-promoting
complex binding, growth factor binding, integrin binding, and
organic anion transmembrane transporter activity.

Furthermore, 36 KEGG pathways were enriched, and the top
10 clusters with their representative enriched terms included protein
digestion and absorption, the Pl3K-Akt signaling pathway, “Glycine,
serine and threonine metabolism,” human T-cell leukemia virus
1 infection, and EGFR tyrosine kinase inhibitor resistance (Figure 4).

The protein–protein interaction relationships corresponding to
the DEGs were analyzed and visualized using the STRING online
tool. According to the setting parameter criteria, 87 proteins without
interaction were hidden, and a protein interaction network with
61 edges of the remaining 40 node-proteins was
constructed (Figure 5).

3.4 Screening of therapeutic candidate
genes and analysis of upstream MiRNA,
LncRNA, and CircRNA

The protein–protein interaction network was imported into the
Cytoscape software with the MCODE plug-in. The eight core genes
constituting the stable structure of the network were screened out

(Figure 6A; Table 2). Using the Gentiscape2.2 plug-in, eight hub and
seven bottleneck genes were screened out (Table 2). The core, hub,
and bottleneck genes, which were in common and are critical to the
network, were considered the candidate genes. These included cell
division cycle 20 (CDC20), disks large homolog associated protein 5
(DLGAP5), and kinesin family member 20A (KIF20A) (Figure 6B;
Table 2). We used real-time PCR to detect the RNA expression levels
of the candidate genes in the HeLa control and GA groups. The
results showed that the expression of three candidate genes (CDC20,
DLGAP5, KIF20A) matched the RNA-seq analysis (Figure 6C).

Furthermore, the three candidate genes were submitted to the
MirDIP, miRDB, and ENCORI online databases to predict their
upstream miRNAs. Reliability was verified using TarBase
V9.0 software, and 13 miRNAs were screened (Table 3).
Subsequently, these miRNAs were submitted to the ENCORI
database and four upstream lncRNAs and 42 circRNAs were
obtained after removing duplicate genes.

3.5 lncRNA/CircRNA-miRNA-mRNA-
pathway regulation network

All relationships, including the candidate genes with their
associated KEGG pathways, the upstream lncRNAs and
circRNAs with the miRNAs, and the miRNAs with the candidate
genes, were imported into the Cytoscape software for constructing
and visualizing the lncRNA/circRNA-miRNA-mRNA-pathway
regulatory network. This network comprised 63 nodes
(3 candidate genes, 1 KEGG pathway, 13 miRNAs, 4 lncRNA,
42 circRNAs) and 95 edges (Figure 7).

4 Discussion

Multiomics and multilevel biomedical data enable a holistic
understanding of different biological mechanisms. Biomedical data
are widely dispersed and complex; thus, bioinformatics is
increasingly being used to diagnose and treat various diseases.

TCGA and GEO are the two most widely used tumor databases.
In the GEO database, four raw expression microarray datasets
related to CC were examined (GSE527, GSE7803, GSE9750, and
GSE63514), excluding 64 genes with conflicting expression patterns.
In the TCGA online database, 6,077 genes, 3 duplicates, and one
gene with opposite results were also removed.

TABLE 1 Screening 127 differentially expressed genes (DEG) combining the GEO, TCGA database and RNA-Seq results.

A. 40 genes upregulated in GEO and TCGA, while downregulated after treated with gallic acid

ASPM, BRIX1, BUB1, CCNE2, CCNF, CDC20, CEBPG, CENPE, DEPDC1, DEPDC1B, DKC1, DLGAP5, EIF4EBP1, FAM111B, FAM72C, GINS2, HMGB3, KIF20A, KRT17,
LMNB1, LRRC8B, LYN, MANEAL, MCM6, MET, MKI67, MTHFD1L, NLN, PIF1, PSAT1, RAB3IP, SHMT2, SLC16A3, SLC38A1, SYNGR3, TEAD4, TIPIN, TMPO, TYMP,
UBE2S

B. 87 genes downregulated in GEO and TCGA, while upregulated after treated with gallic acid

ACSM3, ACVRL1, AGFG2, AOX1, AQP1, ARHGAP6, ARPC4-TTLL3, ATOH8, C14orf132, CFAP70, COL14A1, COL21A1, COL6A1, CPA3, CRMP1, CYP11A1, DCLK1,
DCN, DKK3, ECM2, EFEMP2, FAM153A, FAM214A, FAXDC2, GNG11, GRIK5, GRIP2, GSN, HIC1, HPGD, HPSE2, IGF2, IGFBP6, IL1R1, KALRN, KCNAB1, KCTD17,
KLF8, LAMA2, LRRK2, MAOB, MASP1, MATN2, MEOX1, METTL7A, MFNG, MRGPRF, MROH7, MSX1, MXD4, MYZAP, NACAD, NFASC, NFATC4, PDK4, PHYHIP,
PKD1L2, PLCD1, PLXNA4, PPP1R3C, PROS1, PRPH, PTGDS, PTN, QPRT, RGS11, RHBDF1, SBSPON, SH3BGRL2, SHC3, SLC11A1, SLC27A1, SLC7A8, SLCO2A1, SPON1,
SYNGR1, TACR1, TCP11L2, THSD4, TIMP4, TNXB, TOM1L2, TPRG1, TRIOBP, TTLL3, TUBA1A, VAT1
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Using the Cytoscape software Gentiscape2.2 and MCODE plug-
ins, we screened three candidate genes (CDC20, DLGAP5, and
KIF20A) involved in the therapeutic effects of GA on CC and
predicted their upstream miRNAs using the MirDIP and TarBase
online tools. CDC20 is highly expressed in several tumor types,
making it a potential therapeutic target for cancer (Jeong et al., 2022;
Tsang and Cheeseman, 2023; Zhang et al., 2019). In patients with

mantle cell lymphoma, high CDC20 expression correlated with
unfavorable clinicopathological features and poor prognosis
(Chen et al., 2023). There is a significant correlation between the
expression of DLGAP5, which is highly expressed in many cancer
types, and poor prognoses in patients with cancer (Chang et al.,
2022). Moreover, DLGAP5 promotes the proliferation and invasion
of hepatocellular carcinoma (HCC) (Tang et al., 2021), bladder

FIGURE 3
Gene Ontology (GO) enrichment analysis results of the DEGs. The top (A) 20 clusters of biological processes, (B) 18 clusters of cellular components,
and (C) 19 clusters of molecular functions with their representative enriched terms.
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cancer (BLCA) (Zhou et al., 2024), and breast cancer (Li et al., 2023).
KIF20A is highly expressed in cancer cells, making it a promising
therapeutic target for various cancers (Jin et al., 2023). KIF20A
promotes the progression of castration-resistant prostate cancer by
activating androgen receptor signaling (Copello and Burnstein,
2022) and promotes the progression of fibrosarcoma via the

PI3K-Akt signaling pathway (Jin et al., 2022). After analyzing the
upstream lncRNAs and circRNAs of the miRNAs using the
ENCORI online tool, we imported the identified relationships
into Cytoscape to create a visual regulatory network involving
lncRNAs, circRNAs, miRNAs, mRNAs, and the
molecular pathways.

FIGURE 4
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results of DEGs. Of the 36 KEGG pathways enriched, the top
10 clusters are shown with their representative enriched terms.

FIGURE 5
Protein–protein interaction analysis of the DEGs. A protein interaction network with 61 edges of the remaining 40 node-proteins was constructed.
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FIGURE 6
Screening therapeutic candidate genes. (A) Interaction diagram of the core genes. (B) Venn analysis of the core genes, hub genes, and bottleneck
genes. (C) ThemRNA expression levels of the common genes analyzed using qRT-PCR assay after treating HeLa cells with methanol control and 200 μM
gallic acid. The statistical analysis was shown. Student’s t-test was used for the statistical analysis, **p < 0.01, ***p < 0.001.

TABLE 2 Screening result of therapeutic candidate genes.

Types Names

Core genes ASPM, BUB1, CDC20, CENPE, DEPDC1, DLGAP5, KIF20A, MKI67

Hub genes CDC20, KIF20A, DLGAP5, BUB1, DEPDC1, ASPM, CENPE, MKI67

Bottleneck genes CDC20, KIF20A, MET, DCN, DLGAP5, COL6A1, LMNB1

Candidate genes CDC20, DLGAP5, KIF20A

TABLE 3 Analysis of miRNA, lncRNA, circRNA of upstream interaction of candidate genes.

Types Names

miRNA hsa-miR-147a, hsa-miR-210–3p, hsa-miR-25–3p, hsa-miR-29a-3p, hsa-miR-29c-3p, hsa-miR-32–5p, hsa-miR-34a-5p, hsa-miR-374a-5p, hsa-
miR-374b-5p, hsa-miR-378a-5p, hsa-miR-629–5p, hsa-miR-92a-3p, hsa-miR-92b-3p

lncRNA KCNQ1OT1, MAGI2-AS3, MALAT1, SNHG7

circRNA HDGF, HDLBP, IARS, TPT1, DCXR, ELAVL1, NDUFS6, SH3GLB2, MGRN1, OTUD3, ATP5G3, C5orf24, ZDHHC5, RECQL5, ENO1,
EDARADD, HNRNPH1, SUN1, SET, COL5A1, RPS24, KIAA1598, C11orf10, AHNAK, RPLP0, TPM1, TRIM28, MTSS1L, ATP5F1, LAMB2,
ALG3, POM121, CASP2, EI24, GAPDH, P2RX5-TAX1BP3, SRSF7, ANXA1, HSBP1, LUZP6, MTPN, USP9X
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FIGURE 7
Regulatory network of lncRNA/circRNA-miRNA-mRNA. This pathway consists of 63 nodes (3 candidate genes, 1 KEGG pathway, 13 miRNAs,
4 lncRNA, 42 circRNAs) and 95 edges.
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5 Conclusion

In this study, we demonstrated that GA inhibits the
proliferation of CC cells via cell biology experiments.
Furthermore, using bioinformatics methods and RNA-
sequencing, we identified candidate genes and associated
regulatory networks underlying the therapeutic effects of GA
in CC. Real-time quantitative PCR results confirmed the
significant differences in the expression of these candidate
genes. However, further investigations are required to
elucidate the mechanisms underlying the therapeutic effects
of GA on CC. Additionally, to comprehensively evaluate
the therapeutic efficacy of GA against CC, more animal
models and clinical trials are essential to assess its
safety, optimal dosage, administration routes, and
treatment duration.
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