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Identification of key transcription factors from transcriptome data by correlating
gene expression levels with transcription factor binding sites is important for
transcriptome data analysis. In a typical scenario, we always set a threshold to
filter the top ranked differentially expressed genes and top ranked transcription
factor binding sites. However, correlation analysis of filtered data can often result
in spurious correlations. In this study, we tested four methods for creating the
gene expression inputs (ranked gene list) in the correlation analysis: star
coordinate map transformation (START), expression differential score (ED),
preferential expression measure (PEM), and the specificity measure (SPM).
Then, Kendall’s tau correlation statistical algorithms implementing the
standard (STD), LINEAR, MIX-LINEAR, DENSITY-CURVE, and MIXED-DENSITY-
CURVEweightingmethodswere used to identify key transcription factors. EDwas
identified as the optimal method for creating a ranked gene list from filtered
expression data, which can address the “unable to detect negative correlation”
fallacy presented by other methods. The MIXED-DENSITY-CURVE was the most
sensitive for identifying transcription factors from the gene set and list in which
only the top proportion was correlated. Ultimately, 644 transcription factor
candidates were identified from the transcriptome data of 1,206 cell lines, six
of which were validated by wet lab experiments. The Jinzer and Flaver software
implementing thesemethods can be obtained fromhttp://www.thua45/cn/flaver
under a free academic license.
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1 Introduction

We started the analysis by creating the gene expression inputs (ranked gene list) for the
significance of differential expression in a specific cell line or tissue sample. Identifying cell-
specific expressed genes and the key transcription factors (TF) that regulate these genes
from transcriptome data continue to pose challenges. At present, there are five
representative state-of-the-art indexes for estimating and identifying the significance of
sample-specific gene expression. Let xi be the expression level of gene x in sample i, si
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summarize the expression levels of all genes in sample i, and n be the
number of samples, which are calculated as follows:

The sample specificity expressed index τ defined as formula 1
was proposed by Yanai et al. (2005).

τ �
∑n

i�1 1 − xi/ max
1≤ i≤ n

xi( )[ ]
n − 1

(1)

As presented by Yu et al. (2006), the extent of tissue or cell line-
specific expression is defined for each gene as EE (expression
enrichment), and was calculated according to formula 2.

EE � xi/ ∑n

i�1xi( ) ​ * ​ si/∑n

i�1si( )[ ] (2)

The Hg score measures the sample-specificity with entropy
(Schug et al., 2005), calculated as shown in formula 3.

Hg �∑n
i�1

− xi∑n
i�1xi

​ * ​ log2
xi∑n
i�1xi

( )[ ] (3)

The specificity measure (SPM) from the TiSGeD database (Xiao
et al., 2010) was calculated using formula 4.

SPM � x2i∑n
i�1x

2
i

(4)

The preferential expression measure (PEM), which estimates
how different the expression of the gene is relative to an expected
expression (Huminiecki et al., 2003), can be calculated using
formula 5.

PEM � log10 xi/ si ​ * ​ ∑n
i�1xi∑n

i�1si
( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (5)

In a previous study, Kryuchkova-Mostacci et al. conducted a
detailed evaluation and review of these indexes (Kryuchkova-
Mostacci and Robinson-Rechavi, 2017). All these indexes focus
on identifying genes that are specifically expressed in a certain
sample or cell line, particularly those expressed dominantly.

A variety of factors including transcription factor binding, DNA
accessibility changes, and sequence specificity determined the
transcriptional levels of genes. Current transcription factor
mining methods test the significance of a set of genes regulated
by a transcription factor (gene set) in a list of differentially expressed
genes (gene list) identified by gene expression profiling.
Representative software includes GOStats (Falcon and
Gentleman, 2007), ClusterProfiler (Yu et al., 2012), GSEA
(Subramanian et al., 2005), WebGestalt (Wang et al., 2017), and
Flaver (Yao et al., 2024), among others (Maleki et al., 2020). GOStats
software and its alternatives implement Fisher’s exact test (Yao et al.,
2024; Keenan et al., 2019; Magnusson and Lubovac-Pilav, 2021;
Lachmann et al., 2010), GSEA software implements the Kolmogorov
Smirnov statistics (Subramanian et al., 2005; Maleki et al., 2020), and
ClusterProfiler and WebGestalt implement both statistics (Yu et al.,
2012; Wang et al., 2017). Among these, GOStats (Falcon and
Gentleman, 2007) uses gene sets and gene lists without rank
attributes, whereas ClusterProfiler and GSEA software use gene
sets without rank attributes and gene lists with rank attributes.
The HOMER (Heinz et al., 2010) and MEME (Bailey et al., 2009)
software implemented comprehensive novel motif discovery and

motif scanning algorithms that were designed for regulatory element
analysis in genomics applications. ARACNE (Margolin et al., 2006)
was an algorithm for the reconstruction of gene regulatory networks
in a mammalian cellular context, and its partner VIPER (Alvarez
et al., 2016) which implemented the aREA algorithm, testing for a
global shift in the positions of each regulon genes when projected on
the rank-sorted gene expression signature which is similar to
GSEA’s concepts. The recently developed Flaver software (Yao
et al., 2024) employs weighted Kendall’s tau rank correlation
statistics, which support both ranked gene lists and ranked gene
set inputs. The rank attributes of the genes in the gene list can be a
measure of the degree of gene expression difference. The rank
attributes of genes in the gene set may be the true or false
possibilities for transcription factor binding sites.

In this study, a two-step pipeline was developed to analyze
transcriptome data. A ranked gene list was created using four
different methods: star coordinate map transformation (START),
expression differential score (ED), preferential expression measure
(PEM), and the specificity measure (SPM). TF-derived gene sets
with rank information were created using the Jinzer software with
updated promoter sequences and algorithms. Flaver software was
developed to identify significant correlations between ranked gene
sets and ranked gene lists. Finally, we applied the pipeline to
transcriptome data from 1,206 human cell lines and obtained
promising results, demonstrating its desirability as a gene set
discovery tool.

2 Materials and methods

2.1 Creation of a ranked gene list from
transcriptome data and four indexes

The transcriptome data used in this study were obtained from
the Protein Atlas database (Uhlén et al., 2015), including
1,206 human cell lines (quantile normalized). For the calculation
of the four indexes, the SPM and PEM scores were specified using
formula 4, 5 without modification. The index τ and Hg score only
estimated the overall sample-specific expression per gene. The EE
score was the same as the inverse logarithm form of PEM. These
three indexes were not included in this study. The expression
differential (ED) score was calculated using formula 6. The star
coordinate transformation method is as follows:

ED � xi − ∑n

i�1xi( )​ * ​ si/∑n

i�1si( )[ ] (6)

The star coordinate (START) method is based on parallel
coordinates (Heinrich and Weiskopf, 2009) and star coordinates
(Kandogan, 2000). This study adopted a similar strategy: first, gene
expression data were mapped to a two-dimensional space, and then
the degree of differential gene expression was calculated
(Supplementary Figure S1). The arrangement order of each
coordinate axis was determined by hierarchical clustering
method. The START method defines a two-dimensional vector
A = [A1, A2, A3, . . . , An] that starts at the origin (Ox, Oy) and
extends along the coordinate axis. Let the initial value of the data
points be D = (D1, D2, D3, . . . , Dn) and set to the lengths of the two-
dimensional vectors Ai. The Cartesian coordinates of the two-
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dimensional vector Ai corresponding to Di are (Di * cos Ɵ, Di * sin
Ɵ), where Ɵ is the angle of coordinates. The final Cartesian
coordinate value of data point D can be obtained from the sum
of Ai, as specified in formula 7:

P x, y( ) � Ox +∑n
i�1
Di• cos θ,Oy +∑n

i�1
Di• sin θ⎛⎝ ⎞⎠ (7)

The distance from point V, which is the vertical intersection
point for point P to the coordinate axis of the target sample to the
origin site O is a perfect measure of the degree of gene expression
difference (Supplemental document Figure 1A). Let δ be the angle of
OP, the length of VO can be calculated by formula 8:

VO �
�������
P2
x ​ * ​ P

2
y

2
√

​ * ​ cos θ − δ| | (8)

2.2 Development of an improved version of
transcription factor binding site
prediction software

In our previous study, we developed a genome-wide
transcription factor binding site prediction software, Grit (Huang
et al., 2022), based on comparative genomics and the mixed
Student’s t-test. In this study, we revised the calculation method
for the raw binding site score (RS), specified in formula 9, 10. This
revised score was denoted as “Jindex”. The reason for this revision is
that, according to Markov Chain theory, the relationship between
the probabilities of individual parts should be multiplicative rather
than additive.

RS � ln
1
Ms
∑Ms

L�1
∏w
k�1

q k, Lk( )
p Lk( ) (9)

Jindex � Max s ln

����������∏w
k�1

q k, Lk( )
p Lk( )

w

√⎧⎨⎩ ⎫⎬⎭; 1≤ s≤ l − w + 1 (10)

The Jindex calculation represents the maximum of repeated
averaging of log likelihood ratios (LLRs). The averaged LLR
indicated the possibility for a motif being present at one
particular location in a sequence, where w was the width of
the motif, L denoted the location being considered, Lk was the
nucleotide at position k within this location, p(Lk) is the
background probability of observing nucleotide Lk estimated
from the frequency of Lk in that sequence, and q(k, Lk) is the
probability of observing nucleotide Lk estimated from the
frequency of the Kth location in the motif. The Jindex for a
motif present in a sequence with length l was the maximum of
the average of LLRs taken over all locations of s, where Ms was
the number of locations in the sequence calculated as l–w + 1.
Jindex value >1.0 indicated that the probability of observing the
motif in the sequence is higher than the background
probability.

A total of 1,575 position weight matrixs (PWMs) for
transcription factors were obtained from public sources
(Vorontsov et al., 2024; Rauluseviciute et al., 2024). The
newest promoter sequence set (550-bp set) was obtained from
Jinzer’s website (Yao et al., 2024). Jinzer software was run with
PWMs and the promoter sequence set identified candidate
transcription factor binding site (TFBS) with Jindex ≥1.0. A
gene set was created by assigning target genes to TFs if the
gene had at least one TFBS. Each TF–target gene pair was
assigned a rank value, which was the Jindex of Jinzer’s output.
However, it should be aware that the analysis presented in the
manuscript focused on the −1 ~ −500bp upstream sequence
which will lose distal transcription factor binding site located
out of this region.

2.3 Identification of key transcription factors
from transcriptome data

Flaver software (Yao et al., 2024), which implements weighted
Kendall’s tau statistics, was used to identify the key transcription
factors within each cell line. This method allows for testing the
significance of the correlation between the rank orders of genes in
the gene set and their corresponding rank orders within the gene list.
Let Si and Li, i = 1, . . . , n be the ranks of the gene set or list,
respectively. Furthermore, let (i, Ri), i = 1, . . . , n be paired ranks,
where Ri is a rank entity of L, whose corresponding S has rank i
among Sj, j = 1, . . . , n. Kendall’s tau has the form of formula 11 and
the limiting distribution (LD), following the U-statistics of formula
12 approximated to N (0, 1). This method was implemented in Faver
software as an STD (-w 0 option):

τ � 2/n n − 1( )•∑n

i> jsgn i − j( )sgn Ri − Rj( ) (11)

LD � 3

��������
n n − 1( )
2 2n + 5( )

√
•τ (12)

Shieh (1998) discovered a weighted version of the rank
correlation, the weighted Kendall’s tau, which has the form of
formula 13:

τw � 2/ ∑n

i
vi( )2 −∑n

i
v2i[ ]•∑n

i> jvivjsgn i − j( )sgn Ri − Rj( ) (13)

FIGURE 1
The distribution of the Jindex score for the transcription factor
binding sites identified by Jinzer software. Left: A full-spectrum
distribution. Right: The partial distribution for Jindex >1.0. The plot
shows the distributions for all binding sites of 15 randomly
selected transcription factors in the human genome.
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The sgn(x) = −1, 0 or 1, if x <, = or >0, and vi represents the
weighting function bounded to [1, n] and ranges from (0, 1). The
limiting distribution (LD) can be derived using formula 14:

LDw � ��n√
τw

3 lim
n→∞

n−1∑n
i
vi

2

����������
lim
n→∞

n−1∑n
i
v2i

√ (14)

Where when n→∞, LD approximated to N(0, 1).
Four weighting functions were developed in this study,

ranging from 0 to 1. The first two weighting functions were
either based on the geometric mean of the gene ranks in gene set
is and gene list (il) or separately (formulas 15, 16) to determine
how the genes in the top-ranked TF–target gene pairs in the
gene set correlated with the top-ranked differentially expressed
gene in the gene list. The remaining two weighting functions
were either based on the geometric mean of the density of genes
in gene set ds and gene list (dl) or separately (formulas 17, 18).
The source code was deposited in GitHub and is available under
a free academic license (https://github.com/thua45/flaver). The
v1 to v4 methods were implemented in Flaver software as MIX-
LINEAR, LINEAR, MIXED-DENSITY-CURVE, and DENSITY-
CURVE, and can be specified by options w 1, 2, 7, and 8,
respectively.

v1 �
���������������������������
1 − is −0.5||

n
( )• 1 − il −0.5||

n
( )√

(15)

v2 � 1 − ix| | − 0.5( )/n, x � s or l (16)

v3 �
��������������������������
1 − ds

max ds( )( )• 1 − dl
max dl( )( )√

(17)

v4 � 1 − dx/max dx( )[ ], x � s or l (18)

2.4 Cell culture and flow cytometry assay

HL-60, MOLM-13, OCI-AML-3, and U-937 cell lines were
purchased from Procell (Wuhan, China). HL-60, MOLM-13 and
U937 cells were cultured in an RPMI 1640 medium supplemented
with 10% FBS, 1% glutamine and 1% penicillin–streptomycin
(ThermoFisher Scientific, Dreieich, Germany). OCI-AML-3 cells
were cultured in a complete medium consisting of 84% IMDM, 15%
FBS, and 1% penicillin streptomycin (ThermoFisher Scientific,
Dreieich, Germany). All these suspension cell lines were
maintained in culture at a density below 1 × 106 cells/mL and
were used for seeding in 6-well plates with 1 × 106 cells per well. All
cell lines were grown in a humidified air incubator at 37°C
containing 5% CO2. The cells were treated with shRNA lentiviral

FIGURE 2
The distribution of the rank values of the gene list created by the DE, PEM, START, and SPM indexes. The DE and PEM indexes shown in plot (A, B),
respectively, were approximately normal distributed. The START and SPM indexes shown in plot (C, D) were severely skewed. The boxes show the 25%
and 75% percentile, and the whiskers show the 5% and 95% percentile.
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vectors targeting ZNF460, SPI1, SPIB, ZNF384, ZNF784, and
BATF3 (detailed information available in Supplemental
document) following manufacturer’s instructions, and cell
proliferation was measured using CellTrace™ CFSE Cell
Proliferation Kit (ThermoFisher Scientific, Cat NO. C34554).

3 Results

3.1 Overview of ranked gene sets

The Jinzer run took 2 h on a 8-core Dell desktop computer and
identified a total of 5.91 million significant TFBS (Jindex ≥1.0). The
number of target genes found in at least one TFBS for the PWMs
varied from 1,548 to 7,150. TGIF1 and OVOL2 had the highest and
lowest number of target genes, respectively. Compared to the
11,539 human H3K27ac Chip-Seq datasets collected from the
Chip-Atlas database (Zou et al., 2024), 60.4% of the TFBS
candidates were supported by experimental evidence. For
example, NFKB1 transcription has 3,879 candidate target genes
with at least one TFBS identified by Jinzer. Among these, 68.3% of

the targets had a Chip-Seq pick covering the TFBS, in line with our
prediction. The Jinzer gene set file was created by assigning a RANK
score to each TFtarget gene pair, which was assigned from the
Jindex value.

The distribution of Jindex for the transcription factor binding
sites identified by Jinzer is shown in Figure 1. The results indicated
that the Jindex values of the binding sites for the TF-target gene pairs
were approximately normally distributed (Figure 1A). Because
binding sites with higher Jindex values are more likely to be true
binding sites, we set a threshold value for Jindex in practice; that is,
binding sites with Jindex scores greater than the threshold value
were considered candidate sites (Figure 1B). These candidate loci
can be converted into a ranked gene set and used as an input file for
Flaver, denoted as “Jinzer set” in this study.

3.2 Creation of ranked gene list

Transcriptome data from 1,206 human cell lines were
transformed into ranked cell-specific gene lists using the four
indexes described in the Materials and Methods section. The

FIGURE 3
Simulated gene set and gene list datasets. The simulated data were generated using the “mvrnorm” function in R. Plot (A) shows the simulated
dataset for a full-spectrum distribution with covariance (R) = 0.8. Plot (B) shows the simulated dataset with RANK >0 for both the gene list, gene set, and
R = 0.8. Plot (C) shows the simulated dataset with RANK >0 for gene set, full-spectrum distribution for gene list, and R = 0.8. The dataset in plot (D) is the
same as that of plot (C) except R is the gradient correlation (i.e. R = 0.8 for gene list >1.5, R = 0.4 for 1.0 < gene list ≤1.5, and R = 0 for gene list ≤1.0).
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ranks of the ED (Figure 2A) and PEM (Figure 2B) indexes were
similar and approximately normally distributed. The major
difference between the distributions of the ranks of the ED
and PEM indexes was that the standard deviation of the ED
index was significantly higher than that of the PEM index. The
results of the START (Figure 2C) were unique, informative, and
interesting. The gene list created using the SPM index was
severely skewed and distributed (Figure 2D). We performed a
gene search according to the gene’s Gene Ontology (GO)
annotation and found an average of 22.3% overlap between
the GO gene sets annotated with sample-specific functions
and the cell-specific gene lists identified by the four indexes.
This suggested that many genes with known sample-related
functions were also dominantly or recessively expressed in the
corresponding transcriptome data and vice versa. The gene lists
created by the four indexes, named the CELLINE list, were used
as inputs for the Flaver software.

3.3 Generate and test simulated dataset

R (version 4.2) was used to generate four synthetic gene sets and
gene list data to simulate the gene expression and transcription
factor binding site data to the real data distribution properties. The
gene set and gene list in simulated dataset 1 were normally

distributed random data with covariance (R) range of [-1, 1]
(Figure 2A shows the simulated data with R = 0.8). For
simulated dataset 2, a threshold condition of RANK >0 was set
for both the gene set and gene list, in addition to simulated dataset 1,
which was used to simulate filtering high-scoring binding sites and
upregulated genes when analyzing transcriptome data (Figure 2B
shows the simulated data with R = 0.8). The gene set and gene list in
simulation dataset 3 were also normally distributed random data
with a covariance range in [-1, 1]. However, in contrast to simulation
dataset 2, only a filter condition of RANK gene set greater than zero
was set, and the gene list had a full-spectrum distribution (Figure 2C
shows the simulation data with R = 0.8). Simulation dataset
4 introduces a covariance gradient in addition to simulation
dataset 3. The gene correlation coefficient for genes with
RANK >1.5 was set to R, the gene correlation coefficient for
genes with 1.0 < RANK ≤1.5 was set to R/2, and the gene
correlation coefficient for genes with RANK ≤1.0 was set to zero.
Simulation dataset 4 was used to simulate situations in which genes
with higher RANK had a higher degree of correlation, and genes
with lower RANK had lower or no correlation (Figure 2D shows
simulated data with R = 0.8).

The four weighting methods described in the Materials and
Methods section were used to test the four sets of simulated data. For
simulation data 1, the P-value and the covariance of the gene set and
gene list showed a good response relationship, with a “U-shaped”

FIGURE 4
Testing simulated data using four different weighted Kendall’s tau correlation statistical methods. Plot (A–D) show the results of simulation data 1-4,
respectively. Curves with different colors indicate the relationship between the P-values obtained by the different weighting methods and the covariance
values (R). Dark blue, yellow, dark brown, light green, and light gray indicate the MIXED-DENSITY-CURVE (W7), DENSITY-CURVE (W1), MIX-LINEAR (W8),
LINEAR (W2), and STD (W0) weighting methods, respectively.
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line graph. As shown in Figure 4A, on both sides of covariance = 0,
the P-value decreased rapidly with an increase in |covariance|, and
no significant difference was observed among the four weighting
methods. For simulation data 2, the overall shape of the line graph
was different from that of simulation data 1; namely, it was “J-
shaped.” Specifically, on the covariance (0, 1) side, the P-value
decreased rapidly with an increase in |covariance|, which is
consistent with simulation test data 1. By contrast, in the
covariance (−1, 0) side, no marked decrease was observed in the
P-value with an increase in |covariance|, and the results of the four
weighting methods were highly consistent. For simulated data 3, the
trend between the obtained P-value and the covariance of the gene
set and gene list was similar to that of simulation data 1; namely, it
was also “U-shaped,” that is, the P-value decreased rapidly with an
increase in |covariance| on both sides of covariance = 0. The
steepness of the curve was significantly lower than that of

simulation data 1, and slight differences were observed between
the four weighting methods. For simulated data 4, the curve between
the P-value and the covariance of the gene set and gene list was also
“U-shaped.” However, the steepness of the curve was flatter than
that of simulated data 3, and the P-values obtained by the four
weighting methods were significantly different. Specifically, the
W7 method was the steepest, followed by the W1, W2, W8,
and W0 methods.

3.4 Identification of cell line-specific key
transcription factors

The Flaver software was used to identify key transcription
factors in the sample-specific gene lists. The real-world gene list,
CELLINE list, described in the Materials and Methods section, and

FIGURE 5
Clustering analysis of Flaver results for genome-wide transcriptome data of 1,206 cell lines. Cell line samples are shown in the columns, while
transcription factors were shown in the rows. Green dots indicate positive correlations between gene set and gene list, while blue dots indicate negative
correlations. Color depth was calculated by -Log10 (P-value) according to the Flaver’s statistics.
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the Jinzer set created in the Jinzer software, were used as input
files for Flaver. The MIXED-DENSITY-CURVE function, which
has been proven to be the most sensitive method (W7), was used
to run the Flaver. A total of 644 transcription factors were
identified within a running time of 23 h (FDR <0.05). Figure 5
shows the clustering results according to the sign (Dir) * -log
(P-value) value of the transcription factors. Based on the
Spearman’s rank correlation coefficient distance, the 1,206 cell
lines were divided into nine categories (Figures 5A–I), and the
transcription factors were divided into 12 categories (Figures
1–5, 5–12).

The proportions of cell line types in each category are plotted in
Figure 6. Brain cancer samples were predominantly located in
cluster D, while leukemia, lymphoma, and myeloma samples
were mainly located in cluster H. Skin cancer samples were
located in cluster A, breast cancer samples in class F, and
colorectal cancer samples in clusters G and I. Head and neck
cancer samples were mainly located in class F, while kidney
cancer samples were distributed in cluster G. Uterine and ovarian
cancer samples were distributed in cluster C. Lung cancer samples
were found in clusters B, C, E, I, and D. Non-cancerous samples were
mainly located in cluster D.

3.5 Regulator module discriminated
cancerous and non-cancerous cell lines

From the clustering analysis results (Figure 5), we identified a set
of transcription factors (row 9) that showed the same regulatory
behavior in leukemia samples (column H). A significant positive
correlation was observed between the RANK values of the gene set
and the gene list for these transcription factors. This set of
transcription factors could be used to distinguish leukemia cell
lines from other cell types (Figure 7A). Based on the comparison
of the differences in -Sign (P-value) * Log10(P-value) for these
transcription factors between the leukemia cell lines and other types
of cell lines, we selected six transcription factors with the highest
differences between the leukemia and non-cancer groups for further
experimental verification, namely ZNF460, SPI1, SPIB, ZNF384,
ZNF784, and BATF3 (Figure 7B).

Four cell lines (HL-60, MOLM-13, OCI-AML-3, and U-937)
were used for experimental validation. The results which were
presented in Figure 8 showed that the ZNF460 shRNA lentiviral
vector significantly inhibited the proliferation of HL-60, MOLM-13,
OCI-AML-3, and U-937 cells, and that the ZNF460, SPI1, ZNF784,
and BATF3 shRNA lentiviral vectors exerted strong inhibitory

FIGURE 6
The proportion of disease types for cell lines in clusters obtained by Flaver analysis. The proportion of cell types for sample in each cluster are shown
as pie graphs from (A–I).
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effects. The inhibition rates of ZNF460, SPIB, ZNF784, and
BATF3 in MOLM-13 cells were over 20%. Only one
transcription factor (ZNF384) lentiviral vector did not reach
significance in the OCI-AML-3 cell lines. The ZNF460 lentivirus
vector inhibited the proliferation of 80% of the U-937 cells.

4 Discussion

Accurately mining key transcription factors and elucidating
their characteristics will help to determine the mechanism
underlying the genetic regulation of the cell transcriptome
(Meyer and Liu, 2020). This in turn requires the identification of
the transcription factor binding sites and their activation patterns.
By combining the activation and repression statuses of transcription
factors and changes in the transcription levels of their target genes,
we were able to identify the key transcription factors in the
transcriptome (Yao et al., 2024). Under experimental conditions,
high-throughput methods, such as RNA-seq, can be used to quantify
transcription and non-transcription factors in the transcriptome
simultaneously (Stark et al., 2019). Various well-developed
transcription factor binding site prediction software and ChIP-
Seq technologies have been used to identify a large number of

candidate transcription factor binding sites (Maleki et al., 2020;
MacQuarrie et al., 2011). This has in turn enabled the identification
of key transcription factors by correlating their binding affinities to
target genes with the expression levels of these genes. Recently, a
comparison of four state-of-the-art key transcription factor mining
tools found that the Flaver method, which is based on weighted
Kendall’s tau correlation coefficients, showed an improved
performance (Yao et al., 2024).

At present, there are three correlation analysis methods:
Pearson’s correlation coefficient, Spearman’s correlation
coefficient, and Kendall’s tau correlation coefficient. The
prerequisite for applying the Pearson’s correlation coefficient is
that the input numerical value is quantitative data with a normal
distribution (Akoglu, 2018). The Spearman’s correlation coefficient
can be used when the data do not follow a normal distribution
(Pripp, 2018), while Kendall’s tau correlation coefficient can be used
when the input data are ordered categorical variables (Arndt et al.,
1999). In a typical transcriptome profiling experiment, we set a
threshold for the degree of difference in gene expression levels to
obtain a gene list (Huang et al., 2018; Huang et al., 2020a). In
transcription factor binding site analysis experiments, the same
strategy is often used, namely setting a penalty threshold for
binding sites and selecting data higher than the threshold to

FIGURE 7
Comparative analysis of transcription factors between cancer and non-cancer groups. Plot (A) shows the normalized mean -Log10 (P-value) values
for transcription factors between the cancer (orange) and non-cancer groups (light green). Plot (B) shows the difference between the cancer and non-
cancer groups for each transcription factor, the top 6 of which were selected for wet-lab validation.
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identify candidate binding sites with a higher reliability (Huang
et al., 2022; Grant et al., 2011). This situation can be accurately
simulated using the data shown in Figure 3B. The test results of this
study showed that an incomplete distribution profile of data similar
to that shown in Figure 3B can cause fallacies when applying
Kendall’s tau statistical analysis; that is, when both gene list and
gene set are filtered with RANK > threshold (zero in Figure 3B),
negatively correlated transcription factors cannot be detected. The
reason for this fallacy is obvious: when the RANK threshold
screening condition is set, the data in the RANK < threshold

part is missing. Assuming that the RANK value of gene set to be
analyzed is positive, and negatively correlated with the gene list, the
distribution of the corresponding gene list values should be located
in the RANK < threshold region. As mentioned above, if the
RANK > threshold screening condition is set, this part is
missing, making the negatively correlated genes undetectable. In
fact, this can be rescued if either the gene set or the gene list has a
full-spectrum distribution; the simulation data in Figures 3C, D
illustrate the case when the simulated gene set has a semi-spectrum
distribution and the gene list has a full-spectrum distribution. The

FIGURE 8
Flow cytometry analysis of the proliferation rate of leukemia cells treated with shRNA lentiviral vectors targeting key transcription factors. Plot (A–D)
show the flow cytometry results for HL-60, MOLM-13, OCI-AML-3, U-937, respectively. The nontreated control samples and samples treated with
transcription factors of ZNF460, SPI1, SPIB, ZNF384, ZNF784, and BATF3 are colored in dark green to light green, respectively. Each experiment was run in
triplicate.
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results in Figures 3C, D are similar to those shown in Figure 3A,
when both the gene set and gene list followed a full-spectrum normal
distribution, and both positive and negative correlations could be
detected without failure.

In this study, four methods were used to transform
transcriptome data into a gene list. First, the star START method
was used to successfully convert high-dimensional data into two-
dimensional data. However, when applied to gene expression data, it
did not resolve the issue of arranging the order of coordinate axes
and estimating the degree of gene expression difference. As
previously mentioned, the order of samples can be determined by
the hierarchical clustering of gene expression data. The axes of each
sample in the START system were arranged in the order determined
by the cluster tree. Unique 2D scatter plots with self-organizing
features can be constructed for specific transcriptome data. Then,
the differential gene expression levels were measured by calculating
the vertical distance between the data points and the coordinate axis
in a two-dimensional scatter plot. The data points located near the
axis with a long vertical distance from the origin were the
dominantly expressed genes of the sample, whereas the data
points located near the axis with a short vertical distance from
the origin were the recessively expressed genes in the sample.
However, the START method can only identify genes with
RANK > zero in the gene list. Combined with the analysis results
of the four simulation datasets shown in Figure 3, the gene list
created by the START method suffered from the fallacy shown in
Figure 4B during Flaver analysis. The gene list transformed using the
SPM method also belongs to the incomplete skewed distribution
data type, such that it will also suffer the “unable to detect negative
correlation” fallacy. The ED and Hg methods are essentially the
same, and the RANK values for Hg method are the log form of the
ED method. According to the results presented in Figures 2A, B, the
distribution of the gene list created using the ED and Hg method
followed an approximately normal distribution. Therefore,
theoretically, it conforms to the simulated data presented in
Figures 3C, D, and thus does not commit the “unable to detect
negative correlation” fallacy shown in Figure 3B.

A possible solution is presented by Flaver software, which
emphasizing genes with a high RANK and de-emphasizing those
with a low RANK by implementing weighted Kendall’s tau statistics
to measure the correlation, an innovative feature that is well
demonstrated in this paper. The data in Figure 3D simulated the
gene set and gene list, which were correlated with gradient eco-
efficiency; that is, the high RANK regions were highly correlated, the
medium RANK regions were moderately correlated, and the low
RANK regions were not correlated. The effects of the five weighting
methods on this dataset were evident as they were significantly
different from the uniformly correlated simulated data shown in
Figure 3A. The STD method tested in this paper is a standard
implementation of Kendall’s tau correlation coefficient, the MIX-
LINEAR method is a mixed linear weighting formula based on
RANK of both gene set and gene list, the LINEAR method is a
linear weighting formula for gene list only, which have been
discussed previously (Yao et al., 2024). The MIXED-DENSITY-
CURVE method is a mixed density distribution curve weighting
formula based on the RANK of both the gene set and the gene list,
and the DENSITY-CURVE method is a density distribution
curve weighting formula for the gene list only. From the

evaluation results presented in Figure 4D, the MIXED-
DENSITY-CURVE method was identified as the most
sensitive, resulting in a steeper U-shaped curve than any of
the other four weighting methods.

As a result of transcriptome profiling experiments, most
genes in the genome were found to be expressed at average
levels (approximately normal distribution) in cells; genes with
specifically high and specifically low levels of expression only
accounted for a small number of genes (Huang et al., 2020b;
Conesa et al., 2016). Providing equal weights to all genes in a
weighted Kendall’s tau correlation analysis may obscure the genes
of greatest interest, namely those that are either highly and
weakly expressed, resulting in inappropriate statistical
inference (Yao et al., 2024). As shown in this study, the
MIXED-DENSITY-CURVE method is a hybrid density
distribution curve weighting formula based on the RANK of
both the gene set and gene list, which is symmetrically
distributed along the coordinate axis on both sides of the
origin. Theoretically, the MIXED-DENSITY-CURVE method
has advantages in emphasizing specifically highly expressed
and specifically low expressed genes, as well as weakening
non-differentially expressed genes. This is the essence of
weighted Kendall’s tau rank correlation, namely its ability to
avoid the artificial statistical biases caused by imbalanced weights
for upregulated or downregulated genes.
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