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Background: Neoadjuvant, endocrine, and targeted therapies have significantly
improved the prognosis of breast cancer (BC). However, due to the high
heterogeneity of cancer, some patients cannot benefit from existing
treatments. Increasing evidence suggests that amino acids and their
metabolites can alter the tumor malignant behavior through reshaping tumor
microenvironment and regulation of immune cell function. Breast cancer cell
lines have been identified as methionine-dependent, and methionine restriction
has been proposed as a potential cancer treatment strategy.

Methods:We integrated transcriptomic and single-cell RNA sequencing (ScRNA-
seq) analyses based on The Cancer Genome Atlas (TCGA) database and Gene
Expression Omnibus (GEO) datasets. Then we applied weighted gene co-
expression network analysis (WGCNA) and Cox regression to evaluate
methionine metabolism-related genes (MRGs) in BC, constructing and
validating a prognostic model for BC patients. Immune landscapes and
immunotherapy were further explored. Finally, in vitro experiments were
conducted to assess the expression and function of key genes APOC1.

Results: In this study, we established and validated a prognostic signature based
on eight methionine-related genes to predict overall survival (OS) in BC patients.
Patients were further stratified into high-risk and low-risk groups according to
prognostic risk score. Further analysis revealed significant differences between
two groups in terms of pathway alterations, immune microenvironment
characteristics, and immune checkpoint expression. Our study shed light on
the relationship between methionine metabolism and immune infiltration in BC.
APOC1, a key gene in the prognostic signature, was found to be upregulated in BC
and closely associated with immune cell infiltration. Notably, APOC1 was
primarily expressed in macrophages. Subsequent in vitro experiments
demonstrated that silencing APOC1 reduced the generation of tumor-
associated macrophages (TAMs) with an M2 phenotype while significantly
decreasing the proliferation, invasion, and migration of MDA-MB-231 and
MDA-MB-468 breast cancer cell lines.
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Conclusion:We established a prognostic risk score consisting of genes associated
with methionine metabolism, which helps predict prognosis and response to
treatment in BC. The function of APOC1 in regulating macrophage polarization
was explored.
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1 Introduction

Breast cancer is the most prevalent cancer among women and
the second leading cause of cancer-related mortality (Siegel et al.,
2024), characterized by significant tumor heterogeneity, which poses
numerous challenges for clinical treatment. Currently, the treatment
strategy for breast cancer has shifted towards a multimodal
approach (Coles et al., 2024), incorporating surgical intervention,
chemotherapy, radiotherapy, endocrine therapy, anti-HER2
targeted therapy, and immunotherapy. Despite the widespread
use of these methods in clinical practice, some patients still do
not derive benefits from them. Prognosis is primarily assessed
through factors such as tumor size, molecular subtype, lymph
node status, mutations in high-risk genes, and the presence of
distant metastases. However, these traditional assessment
methods often fail to adequately predict patient survival or
recurrence risks, resulting in delays in timely and effective
treatment for high risk patients (Leon-Ferre and Goetz, 2023).
Consequently, there is an urgent need to develop more precise
prognostic tools and biomarkers to better identify high risk patients
(Rizzo and Ricci, 2022), facilitating personalized predictions and
precision therapies for breast cancer, ultimately aiming to improve
treatment outcomes and patient survival rates.

Recent advances in immunotherapy have brought new hope for
breast cancer treatment (Yan et al., 2022). The IMpassion130 trial
demonstrated that the combination of the PD-L1 inhibitor
atezolizumab with nab-paclitaxel significantly prolonged the
overall survival (OS) of PD-L1-positive patients with advanced
triple-negative breast cancer (TNBC) (Ahmed et al., 2020).
Additionally, the KEYNOTE-355 trial confirmed that
pembrolizumab in combination with chemotherapy significantly
extended the OS in patients with a PD-L1 CPS ≥10, leading to FDA
approval of pembrolizumab as a first-line treatment for PD-L1-
positive advanced TNBC (Cescon et al., 2024). However, despite
PD-L1 being the most widely used biomarker for immunotherapy
efficacy, numerous studies have revealed that even PD-L1-negative
patients may benefit from immunotherapy. This indicates the
current need for more precise biomarkers to accurately identify
patients who can truly benefit from immune checkpoint
blockade therapy.

In parallel, metabolic reprogramming has increasingly been
recognized as a hallmark of malignant tumors, enabling cancer
cells to utilize diverse nutrients, generate energy, and synthesize
essential biomacromolecules (Faubert et al., 2020). The nutrient
metabolism of cancer cells, particularly amino acid metabolism,
differs significantly from that of normal cells. Amino acids play
crucial roles in cancer cells, serving not only as nutrients and
signaling molecules but also regulating gene transcription and

epigenetic modifications. Cancer cells typically alter amino acid
metabolism to support proliferation, resist apoptosis, promote
metastasis, and adapt to hypoxic environments (Liu et al., 2024).
Studies have shown that the metabolism of glutamine/glutamate,
cystine/cysteine, asparagine/aspartate, methionine, glycine, serine,
and tryptophan differs from that in normal cells, with abnormal
regulation of amino acid interconversion and transport. Amino acid
metabolism not only plays a critical role in shaping the tumor
microenvironment (TME) and facilitating immune evasion. For
instance, many tumor cells upregulate IDO expression, leading to
the breakdown of tryptophan into kynurenine, which suppresses
effector T-cell activity and promotes the expansion of regulatory
T cells (Tregs), thereby driving immune evasion (Stone and
Williams, 2023). Additionally, tumor cells increase serine and
glycine metabolism, which affects macrophage polarization and
weakens T-cell function, further reducing the efficacy of
immunotherapy (Shan et al., 2022). Based on these
characteristics, targeting specific amino acids to modulate their
metabolic pathways has emerged as a potential adjunctive
therapeutic strategy for cancer cells (Chen et al., 2024).

Methionine (Met) is converted to S-adenosylmethionine (SAM)
by methionine adenosyltransferase (MAT), participating in several
critical biochemical processes such as redox maintenance,
polyamine synthesis, and providing methyl groups for DNA,
RNA, and histone methylation (Martinez et al., 2017). Many
types of tumor cells are methionine-dependent, meaning they
cannot survive in the absence of methionine, even when its
precursor homocysteine (Hcy) is available. This reflects the
metabolic reprogramming of methionine metabolism in tumors.
Dietary restriction of methionine, an essential amino acid, may
affect cancer treatment outcomes by modulating the one-carbon
metabolic pathway (Lu and Luo, 2023). Studies have shown that
methionine restriction can disrupt tumor metabolic pathways and
enhance therapeutic responses in RAS-driven cancer models, such
as colorectal cancer and soft tissue sarcoma (Gao et al., 2019). The
metabolic reprogramming of methionine may affect the
differentiation and functionality of various immune cells within
the TME (Wang and Zou, 2020). In vitro studies have shown that the
demand for methionine in lipopolysaccharide (LPS)-induced
M1 macrophages arises from exogenous uptake. Exogenous
methionine serves as a primary methyl donor for the generation
of SAM and subsequent methylation reactions, which are crucial for
the production of IL-1β. Furthermore, methionine significantly
enhances the secretion of TNF-α from macrophages while
reducing Arg1 activity, indicating that methionine promotes the
M1 polarization phenotype of macrophages (Zhang et al., 2023). It
can be inferred that tumor cells deplete methionine, leading to
decreased levels of this amino acid in the TME, thereby inhibiting
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M1 polarization in macrophages and diminishing the anti-tumor
efficacy of tumor-associated macrophages (TAMs), ultimately
facilitating tumor progression. Tumor cells compete with T cells
for methionine via SLC43A2, resulting in metabolic and epigenetic
impairment of T cell function and weakening tumor immunity
(Peng et al., 2023). Mahesh Pandit et al. found that methionine
consumption by cancer cells progressively upregulates PD-1
expression in CD4+ T cells, promoting tumor immune evasion
(Pandit et al., 2023; Siska and Rathmell, 2015; Wang et al., 2019).
Recent studies have also demonstrated that methionine deficiency
enhances anti-tumor immunity by altering the m6A methylation of
immune checkpoint transcripts (Li et al., 2023).

In summary, the reprogramming of methionine metabolism not
only impacts tumor cell survival and proliferation but may also
influence the effectiveness of cancer therapies by modulating
immune cell function. In this study, we integrated single-cell
RNA sequencing and bulk RNA sequencing to construct and
validate a reliable methionine metabolism-related feature model
for predicting survival in breast cancer patients. Subsequently, we
explored the potential relationships between this feature, immune
infiltration, and immune checkpoint expression. Additionally, we
evaluated the model’s predictive potential for responses to
immunotherapy and chemotherapy.

2 Materials and methods

2.1 Data acquired

We employed TCGAbiolinks to download and process BC
transcriptomic data from the TCGA database, ultimately
including 1,088 BC samples in our analysis. The data were
provided in TPM format and were converted to log2 for
subsequent analysis. Additionally, we downloaded the
GSE58812 dataset (n = 107) from the GEO database as an
external independent validation cohort. We also obtained
scRNA-seq data for four untreated BC samples from the GEO
database with the accession number GSE161529. We used the
GeneCards database as a source for MRGs, ultimately selecting
1,639 MRGs with a relevance score exceeding the median score for
further investigation (Supplementary Table S1).

2.2 ScRNA-seq data analysis

We performed quality control on the ScRNA-seq data using the
“Seurat” R package and analyses were conducted using R software
(version 4.2.3). Low-quality cells with less than 500 or over
10,000 expressed genes, or over 25% unique molecular identifiers
(UMIs) derived from the mitochondrial gene, or over 5% UMIs
derived from the hemoglobin genes were removed. And we keep
genes which were expressed in at least 3 cells.

Finally, A total of 20,233 cells and 22,315 genes were retained for
further exploration. We used harmony to correct for batch effects
across datasets. We first applied the LogNormalize method to
normalize the remaining data, correcting for differences in total
expression across cells. Top 2,000 highly variable genes were
identified using the FindVariableFeatures function. Following

this, we applied the ScaleData function to scale the data,
reducing discrepancies in gene expression levels. Finally, we
performed principal component analysis (PCA) on these highly
variable genes to reduce dimensionality. Cell clusters were identified
using the FindClusters function (resolution = 0.4) (Petegrosso et al.,
2020). Subsequently, the FindAllMarkers function was employed to
identify marker genes for each cluster, with a log fold change
threshold set at 0.25. Finally, the clusters were annotated to
known cell types using CellMarker 2.0 based on the identified
marker genes (Jiang et al., 2021; Hu et al., 2023).

2.3 AUCell

Univariate Cox regression analysis identified 195 prognosis-
related MRGs (Supplementary Table S6). Next, using the AUCell R
package on the scRNA-seq dataset, the AUC value for each cell was
calculated based on the selected MRGs, with higher gene expression
leading to higher AUC values. Cells were then divided into high and
low AUC groups based on the median AUC score, and visualization
was performed using the “ggplot2” R package.

2.4 ssGSEA analysis

single-sample Gene Set Enrichment Analysis (ssGSEA) was used
to determine the MRG score for each TCGA-BC sample, and the
samples were divided into two groups based on the median score.

2.5 WGCNA analysis

Weighted Gene Co-expression Network Analysis (WGCNA)
was used to describe gene co-expression patterns across multiple
samples. We applied the “WGCNA” R package to identify gene
modules associated with MRG scores in breast cancer (BC). The
module most significantly correlated with the glutamine metabolism
was selected for further analysis.

2.6 Construction and validation of MRGs-
based prognostic signature

We used the breast cancer dataset from TCGA as the training set
to construct the prognosis model and utilized the GSE58812 dataset
as an external validation set for verification. We combined LASSO
(Least Absolute Shrinkage and Selection Operator) with the Cox
proportional hazards regression model to identify the model genes
and their corresponding risk coefficients. Subsequently, by utilizing
the “glmnet” R package, we constructed a risk feature related to
MRGs that can predict the survival of BC patients in the training set.
We calculated risk scores for each breast cancer patient using the
algorithm and categorized patients into two subgroups based on the
median risk score. Additionally, we assessed the prognostic value of
the risk model in the testing set and an external validation set
(GSE20711). Kaplan-Meier survival curves were plotted, and log-
rank tests were conducted to evaluate the statistical significance of
the prognosis. The accuracy of the risk model in predicting overall
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survival for BRCA patients was assessed using receiver operating
characteristic (ROC) curves. To predict 1-, 3-, and 5-year survival of
BC patients, we further developed a nomogram by combining risk
scores with independent prognostic factors such as age and stage.
ROC curves and calibration curves were used to evaluate the
predictive accuracy of the nomogram.

2.7 Characterization of the immune
microenvironment

To evaluate immune cell infiltration characteristics between two
groups, we employed the “CIBERSORT” and “Xcell” R packages to
quantitatively analyze the infiltration levels of various immune cells
using the LM22 signatures. The relative abundances of stromal,
immune, and tumor cells were assessed via the “ESTIMATE”
algorithm, and these values were compared across different risk
categories (Yoshihara et al., 2013). The expression of immune
checkpoints reflects the immunosuppressive status within the
tumor microenvironment, providing insights into how tumors
evade immune surveillance. We compared the expression levels
of established immune checkpoint genes between the two groups.

To predict the likelihood of response to immunotherapy, we
utilized the TIDE algorithm to determine tumor immune
dysfunction and exclusion scores, and downloaded
Immunophenoscores (IPS) from The Cancer Immunome Atlas
(TCIA) database (https://tcia.at/home). Additionally, we
conducted a correlation analysis between APOC1 and immune
cell infiltration using the Tumor Immune Estimation Resource
(TIMER) website (http://timer.cistrome.org/).

2.8 Functional enrichment analysis

We used “clusterprofile” r packages to perform Gene Ontology
(GO) enrichment analysis andGene Set Enrichment Analysis
(GSEA). GSEA on APOC1 was performed using LinkedOmics
website (https://www.linkedomics.org).

2.9 Cell culture

Human monocytic cell lines (THP-1) and Human BC cell lines
(MDA-MB-231 andMDA-MB-468) were purchased fromCell Bank
of Type Culture Collection of Chinese Academy of Sciences
(Shanghai Institute of Cell Biology of the Chinese Academy of
Sciences). THP-1 cells were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) and incubated
in sterile culture flasks at 37°C in a humidified incubator with 5%
CO₂. The MDA-MB-231 and MDA-MB-468 cell lines were
maintained in high-glucose DMEM supplemented with 10% FBS
under similar conditions.

2.10 Macrophage generation

THP-1 cells line were pretreated with 100 ng/mL PMA for 48 h
to generate M0 macrophages. M0 macrophages were co-cultured

withMDA-MB-231 andMDA-MB-468 for 48 h in a 6-well transwell
co-cultivation system, allowing them to be influenced by the secreted
factors from the tumor microenvironment, thereby acquiring a
TAM-like phenotype.

2.11 Transfection

The siRNAs targeting APOC1 were purchased from Tsingke
Biotechnology (Beijing, China) and transfected using Lipofectamine
3000 according to the manufacturer’s instructions. After
transfection, the cells were cultured for an additional 24 h, and
gene knockdown efficiency was evaluated using RT-qPCR.

2.12 EdU

To evaluate the proliferation ability of MDA-MB-231 and
MDA-MB-468 tumor cells after co-culture with macrophages, the
5-Ethynyl-2′-deoxyuridine (EdU) incorporation assay was
performed using an EdU assay kit (BeyoClick™ EdU Cell
Proliferation Kit with Alexa Fluor 488, Beyotime, China)
according to the manufacturer’s protocol. The treated tumor cells
were seeded at a density of 5 × 104 cells per well in 96-well plates.
After the co-culturing, EdU was added to the tumor cells, followed
by incubation according to the protocol. After incubation, the cells
were fixed with 4% paraformaldehyde (PFA) for 15 min, and then
permeabilized with 0.5% Triton X-100 for 10 min. Next, the click
reaction solution was added to the wells and incubated at 37°C for
30 min in the dark. Subsequently, the cells were stained with
Hoechst 33342, and excess dye was washed away with PBS.
Finally, the proliferation of tumor cells after co-culturing was
assessed by analyzing the fluorescence signals using THUNDER
Imaging Systems.

2.13 Transwell assay

To assess the invasion abilities of the cells, we conducted a
Transwell experiment. Matrigel, diluted in serum-free medium, was
added to the upper chamber to simulate the extracellular matrix. In
the upper chamber, 1 × 104 cells were seeded per well in serum-free
medium, while the lower chamber contained 600 μL of complete
medium. After incubating for 24 h at 37°C, the upper chamber was
gently swabbed with a cotton swab to remove non-invasive cells. The
cells that invaded through the membrane were then fixed with 4%
paraformaldehyde for 15 min, stained with 0.1% crystal violet, and
counted under a light microscope after washing off excess stain.

2.14 Wound healing assay

MDA-MB-231 and MDA-MB-468 cells co-cultured with
macrophages were seeded in 6-well plates at a density of 1 × 106

cells per well and cultured until they reached 90% confluence. A
straight line was scraped down the center of the wells using a 200 μL
pipette tip, and any unattached cells and debris were gently washed
away twice with PBS. Images of the scratch wounds were captured at
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0 h and 48 h, and the width of the scratches was measured using
ImageJ software.

2.15 RT-qPCR

Total RNA was extracted from cell lines using SteadvPure RNA
Extraction Kit (Accurate Biology, China) according to the
manufacturer’s instructions. Subsequently, cDNA was synthesized
using the PrimeScript™ RT Kit (R232-01, Vazyme). Real-time
quantitative PCR (RT-qPCR) was performed using SYBR Green
Master Mix (Q111-02, Vazyme), and expression levels were
quantified using the 2−ΔΔCT method. All samples were tested in
triplicate. The primer sequences used in the RT-qPCR are listed in
Supplementary Table S2 and were provided by Tsingke Biotech
(Beijing, China).

2.16 Flow cytometry

For the macrophage suspension, antibodies (CD163 from
Biolegend, United States) were added and incubated at 4°C for
30 min. After washing the labeled cells twice, they were resuspended
in 200 μL of flow cytometry buffer and analyzed using a flow cytometer
(FACS Calibur, BD Biosciences, United States), with data processing
performed using CytExpertsoftware and FlowJo_v10.8.1.

2.17 Statistical analyses

All statistical analyses were performed using R software (version
4.2.3) or GraphPad Prism (version 8.0.2). Correlation analyses were
conducted using Spearman or Pearsonmethods as appropriate. Data
from three independent experiments are presented as mean ±
standard deviation (SD). Differences between groups were
assessed using the Wilcoxon test or unpaired t-test. P-value
of <0.05 was considered statistically significant (*p < 0.05; **p <
0.01; ***p < 0.001).

3 Results

3.1 Myeloid cells were identified to exhibit
higher MRG score via scRNA-seq analysis of
breast cance

A total of four breast cancer single-cell sequencing samples were
included in this study (Supplementary Figure S1A). We performed
quality control on the single-cell dataset by setting limits on the
number of features (nFeature), total counts (nCount), and the
percentages of mitochondrial genes, ribosomal genes, and red
blood cell genes (Supplementary Figure S1B). As seen in
Supplementary Figure S1C, sequencing depth and total
intracellular sequences exhibit a strong positive correlation (R =
0.88). We found several clusters were composed one sample,
suggesting there were potential batch effects, thus we corrected
the batch effects using Harmony (Supplementary Figures S1D, E). A
total of 25,932 cells were divided into 14 clusters (Figure 1A). We

then identified 7 cell types based on marker genes for future analysis
(Figure 1B), including endothelial cells (cluster 13), epithelial cells
(clusters 0, 1,2,3,5,6,12,14), B cells (clusters 10), T cells (clusters 4),
myeloid cells (cluster 7), fibroblasts (cluster 8,11), and plasma
(cluster 9) (Figures 1C, D). To explore the expression
characteristics of MRGs, we analyzed the MRGs activity of each
cell using the “AUCell” R package. All cells were assigned an AUC
score corresponding to MRGs, with cells expressing more MRGs
showing higher AUC values. The results indicated that myeloid cells
exhibited higher AUC values (Figure 1E). Cells were divided into
high methionine-AUC and low methionine-AUC groups by the
median AUC score (Figure 1F).

3.2 WGCNA identified gene modules
associated with methionine metabolism and
LASSO cox regression analysis developed a
prognostic model

We used theWGCNAR package to explore gene sets that covary
with methionine metabolism. As shown in Figure 2A, when the soft-
thresholding power was set to 5, the data better conformed to a scale-
free network, and the mean connectivity stabilized, making the data
suitable for further analysis. A total of eight modules were obtained
after merging modules with a similarity lower than 0.25 and setting
the minimum number of modules to 100 (Figure 2B). We found that
the greenmodule, which contains 1,189 genes (Supplementary Table
S3), was most strongly associated with methionine metabolism
(COR = 0.33, P < 0.001) in non-gray modules (Figure 2C). To
further investigate howMRGs relate to the prognosis of BC patients,
we intersected the most relevant genes affecting glutamine
metabolism activity obtained from both single-cell and bulk
RNA-seq analyses, ultimately selecting 54 genes for subsequent
analysis (Figure 2D). We then employing LASSO Cox regression
analysis to develop a prognostic model in TCGA-BRCA (Figure 2E).
Under the optimal regularization parameter, we ultimately selected
eight model genes (CD74, RNASE1, CD14, CHI3L1, CCL5, TGFBI,
APOC1, IL2RG). Of the eight genes used to construct the model,
three were risk factors and five were protective factors (Figure 2F).

The risk score for each sample was computed using the above
formula where Coefi and Expi represent the coefficient and expression
level of each model gene, respectively (Supplementary Table S4). Patients
were divided into high risk and low risk groups with the median score as
the threshold. The proportion of deceased patients in the high risk group
was higher than that in the low risk group (Figure 3A). Additionally,
patients who died during the follow-up period exhibited increased risk
scores (Figure 3B). Kaplan-Meier analysis showed that patients with low
risk had a much better overall survival (OS) rate (p = 0.00043) in the
TCGA cohort (Figure 3C). Time-dependent ROC analysis revealed that
the area under the curve (AUC) values for predicting 1-, 3-, 5-, 7- and 10-
yearOSwere 0.677, 0.682, 0.628, 0.630 and 0.629, respectively (Figure 3F).

3.3 Validation of theMRGs-based prognostic
signature for BC patients

To validate the reliability of the MRGs-based prognostic
signature developed from the training set, we used a GEO cohort

Frontiers in Genetics frontiersin.org05

Gao et al. 10.3389/fgene.2024.1521269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1521269


(GSE58812) as an external validation set. Survival analysis and ROC
curve analysis were performed on the GEO cohort. Using the same
risk score calculation formula and median risk score, patients in the
validation cohort were divided into low risk and high risk groups. In
the survival analysis, patients in the low risk group demonstrated
higher OS rate compared to those in the high risk group (p = 0.0035),
consistent with the results from the training set (Figure 3D). The

AUC values for the external validation GEO cohort were 0.711,
0.639, and 0.613 at 3, 5, and 7 years, respectively, further confirming
the prognostic value of our signature (Figure 4G). Limiting
methionine has been shown to effectively inhibit the migration
and invasion of TNBC cells in both in vivo and in vitro experiments.
Survival analysis and ROC curve analysis conducted on the TNBC
samples (n = 121) from TCGA cohort produced favorable results,

FIGURE 1
Analysis of single-cell RNA sequencing data and identification of differentially expressed genes. (A) UMAP visualization of dimension reduction
cluster analysis results. A total of 25,932 cells were divided into 15 clusters. (B) The expression of cell type marker genes. (C) UMAP visualization of major
cell types. (D) Depicting the expression of EPCAM, PTPRC,CD68, CD3E genes. (E, F) All cells were scored according to methionine metabolism-related
genes (MRGs) and were divided into high and low groups.
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reinforcing the prognostic significance of our findings
(Figures 3E, H).

To enhance patient risk assessment and inform future treatment
strategies, we developed a prognostic nomogram that integrates the
risk score along with two additional clinicopathologic factors—age
and stage. This approach allows for a more precise quantification of
risk in breast cancer patients (Figure 3I). The calibration plot
demonstrated the stable performance of the nomogram
(Figure 3J). Moreover, our nomogram had better predictive
accuracy than the AJCC staging system (AUC at 5 years:
0.78 versus 0.72) (Figure 3K).

3.4 Biological pathway analysis reveals key
mechanisms for poor prognosis in high risk
breast cancer patients

To explore the underlying mechanism that could lead BC
patients in the high risk group to a poor prognosis, we performed
differential expression analysis between the two risk groups and
identified 465 differentially expressed genes (DEGs) (adjusted
p-value <0.05, |Log2-fold change| > 1) (Supplementary Table S5).
Gene Set Enrichment Analysis (GSEA) revealed that the Estrogen
signaling pathway, Biosynthesis of unsaturated fatty acids,

FIGURE 2
Weighted Co-Expression Network Analysis and identification ofMRGs to establish a risk signature. (A–C)Weighted Co-ExpressionNetwork Analysis.
The green modules were most associated with methionine metabolism, of which 2,783 genes were extracted. (D) The intersection of genes obtained in
ScRNA-seq and bulk-RNA analysis. (E) LASSO Cox regression analysis to develop the prognostic model. (F) Identification of eight model genes.
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Retinol metabolism, Fatty acid elongation, Melanoma, Fatty acid
metabolism, and Glutamatergic synapse were significantly
enriched in high risk group. The low risk group exhibited
enrichment in pathways related to Antigen processing and
presentation, Th1 and Th2 cell differentiation, T cell receptor
signaling, NF-kappa B signaling, JAK-STAT signaling, Natural

killer cell-mediated cytotoxicity, and TNF signaling (Figures 4A,
B). Additionally, we conducted GO analysis on both upregulated
and downregulated genes. The results indicated that upregulated
genes were significantly enriched in pathways related to signal
transduction and DNA replication-dependent nucleosome
assembly. In contrast, downregulated genes showed significant

FIGURE 3
Construction and validation of prognostic model. (A, B) Distributions of risk scores and survival status in patients from TCGA. The risk scores of
patients who diedwere higher than those of patients who lived. (C–E) Survival analysis in the patients form TCGA train cohort, GEO test cohort and TNBC
cohort classified based on themedian risk score (P < 0.05). (F–H) The area under the curve (AUC) values at 1, 3, 5, 7and 10-years for the TCGA train cohort,
GEO test cohort and TNBC cohort. (I) Prognostic nomogram considering the risk score, age and stage to assess the risk of BC patients. (J)Calibration
curves for the nomogram. (K) Prognostic ROC curves of age, stage, risk score and the nomogram in predicting 5-year OS.
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enrichment in immune system processes, regulation of immune
system processes, and immune receptor activity (Figures 4C, D).
These findings suggest that the established signature is closely
related to immune activities, fatty acid metabolism, and signal
transduction, thereby enabling it to predict the survival of
BC patients.

3.5 Differences in immune landscape
between low-risk and high-risk breast
cancer patients

Tumor-infiltrating immune cells (TIICs) are a crucial
component of the tumor microenvironment (TME), and their

FIGURE 4
Enrichment analysis and immune microenvironment patterns. (A, B) KEGG pathways enriched in the high- and low-risk patients, as determined by
GSEA. (C, D) GO analysis on both upregulated and downregulated genes, revealing differentially activated pathways. (E) Comparison of 22 tumor-
infiltrating immune cells (TIICs) levels calculated by CIBERSORT analysis between the two risk groups. (F, G)Correlation analysis of immune cell infiltration
levels and the risk score. The immune score, ESTIMATE score, Stromal score and tumor purity were estimated by the ESTIMATE algorithm.
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absence can lead to poor responses to immune checkpoint blockade.
We evaluated the infiltration levels of various TIICs between the two
risk groups to uncover differences in the immune
microenvironment. Immune cell infiltration levels were assessed

in each sample using the CIBERSORT and xCell methods.We found
that immune cell infiltration was overall higher in the low risk group
than in the high risk group. Notably, NKT cells, M1 macrophages,
CD4+ T cells, and CD8+ T cells were more abundantly infiltrated in

FIGURE 5
Correlation analysis of immune checkpoint in the TCGA cohort and expression analysis of APOC1. (A) Correlation analysis of eight model genes and
immune checkpoint genes. (B) The expression levels of immune checkpoint genes between high and low risk groups. (C) Differences in ips score
between high and low risk groups. (D) The difference in TIDE scores between high and low-risk groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001). The ns indicates No significance. (E) Expression of APOC1 in normal and paired tumor tissues of BC. (F) Expression of APOC1 in normal and
tumor tissues of BC. (G) The surviva analysis of APOC1 in Kaplan-Meier plotter. (H) Heatplot showed genes associated with APOC1. (I) GSEA of
APOC1 using LinkedOmics.
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the low risk group (p < 0.05). These cell types are widely recognized
for their antitumor activities within the tumor microenvironment,
suggesting a favorable prognosis. Conversely, Tregs, monocytes,
M0 macrophages, M2 macrophages, and resting mast cells were
more prevalent in the tumors of the high risk group (p < 0.05).
However, immune cells with antitumor functions, including plasma
cells, follicular helper T cells, and activated NK cells, were also more
abundant in the high risk group (p < 0.05) (Figure 4E). We further
analyzed the correlation between the abundance of TIICs and the
risk score. According to the ESTIMATE algorithm, the low risk
group exhibited higher stromal scores, immunological scores, and
ESTIMATE scores (P < 0.05) (Figures 4F, G). The risk score was
strongly negatively correlated with the immune score and positively
correlated with tumor purity, indicating a higher overall immune
level and immunogenicity within the TME of the low risk group.

3.6 Immune checkpoint analysis and
immunotherapy response prediction

We subsequently investigated the correlation between MRGs
based signature and immune checkpoints, assessing its potential role
in predicting responses to immunotherapy. The bubble plot
illustrated the relationships between the model genes and
46 immune checkpoint genes (Figure 5A). Notably, TGFBI,
RNASE1, CD74, CD14, CCL5, and APOC1 exhibited significant
correlations with various immune checkpoint genes. We compared
the expression levels of several immune checkpoint genes between
the two groups. Most analyzed immune checkpoint genes, including
IDO1, IDO2, LAG3, CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2,
TIGIT, CD70, TNFSF9, and PDCD1, were markedly upregulated in
the low risk group (p < 0.05). This suggests that patients with this
tumor subtype may benefit from targeted therapies directed against
the upregulated immune checkpoints. Conversely, only three
immune checkpoint genes (ICOSLG, TNFSF4, and NRP1) did
not show significant upregulation in the low risk group (Figure 5B).

Additionally, the Immune Phenotype Score (IPS) can be
instrumental in identifying patients who are likely to respond to
immunotherapy. In our study, the low risk group exhibited higher
IPS scores compared to the high risk group, indicating that low risk
patients may be more susceptible to anti-CTLA-4 and anti-PD-
1 therapies, potentially deriving greater therapeutic benefits
(Figure 5C). This observation may be attributed to increased
infiltration of Tregs and elevated expression levels of PD1 and
CTLA4 in the low risk group (Figure 5B).

To further predict whether patients may benefit from
immunotherapy, we employed TIDE analysis to comprehensively
assess the differences in the tumor microenvironment between high
risk and low risk groups. Compared to the low risk group, the high
risk group exhibited lower TIDE and Dysfunction Scores, alongside
higher MDSC and Exclusion Scores (Figure 5D). These findings
suggest that T cells in the high risk group can function to some
extent; however, the elevated levels of MDSCs and the stronger
exclusion mechanisms within the tumor microenvironment still
indicate a state of immune suppression. Furthermore, the low
levels of T cell infiltration in the high risk group may
significantly contribute to tumor progression and poor prognosis.
Although the low risk group demonstrates less suppression from

MDSCs and exclusion mechanisms, allowing for easier T cell
infiltration, the higher TIDE and Dysfunction Scores imply that
immune evasion in this group primarily relies on T cell dysfunction,
preventing effective tumor cell destruction (Jiang et al., 2018). This
apparent contradiction between the immune escape observed in the
low risk group and their favorable prognosis may reflect the
predominant role of other non-immune factors, such as genetic
mutations and tumor proliferation rates, in tumor progression
within this cohort. Thus, these results underscore the complexity
of the tumor microenvironment and its impact on responses to
immunotherapy, highlighting the importance of considering
multiple biological factors when designing immunotherapeutic
strategies.

3.7 APOC1 is highly expressed in breast
cancer and is associated with a
poorer prognosis

In both paired and unpaired samples, the expression level of
APOC1 was significantly higher in BC tissues compared to normal
tissues (Figures 5E, F). The expression of the other seven model
genes in normal and tumor tissues were presented in Supplementary
Figures S1F–L. Kaplan-Meier survival analysis demonstrated that
BC patients with high APOC1 expression had shorter overall
survival times (p < 0.05) (Figure 5G). Subsequently, we identified
genes associated with APOC1 (Figure 5H) and performed GSEA
using LinkedOmics. As shown in the bar plot (Figure 5I),
APOC1 exhibited a strong positive correlation with several
critical signaling pathways involved in immune regulation and
cellular processes, including cell adhesion molecules (CAMs),
antigen processing and presentation, natural killer cell-mediated
cytotoxicity, cytokine-cytokine receptor interaction, chemokine
signaling pathway, and the NF-kappa B signaling pathway,
suggesting that APOC1 may play a role in tumor initiation,
progression, and metastasis by modulating immune responses
and cellular processes within the tumor microenvironment.

ScRNA-seq analysis of BC samples revealed that APOC1 was
almost exclusively expressed in macrophages (Figure 6A). Previous
cross-tissue ScRNA-seq analyses have also confirmed that APOC1 is
primarily expressed in macrophages. Correlation analysis between
APOC1 expression and 22 types of immune cells showed that
neutrophils and M2 macrophages were positively correlated with
APOC1 expression, which is associated with poor prognosis, while
plasma cells and naive B cells were negatively correlated (Figure 6B).
Further assessment of APOC1 expression and immune infiltration
levels in BC using TIMER revealed that APOC1 expression was
positively associated with the infiltration levels of CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells
(Figure 6C). Additionally, APOC1 expression was significantly
correlated with markers of macrophages (Figure 6D), including
CD68 (r = 0.17, P = 6.93e-09), CD86 (r = 0.54, P = 1.77e-82),
CD163 (r = 0.37, P = 2.21e-37), CCL18(r = 0.48, P = 4.20e-64),
CCL17 (r = 0.35, P = 7.81e-32), CXCL9 (r = 0.45, P = 1.46e-54) and
IL10 (r = 0.40, P = 5.71e-44). In summary, these findings indicate
that APOC1 is predominantly expressed in macrophages, and its
role in tumor immunity is likely mediated through its impact on
macrophage function.

Frontiers in Genetics frontiersin.org11

Gao et al. 10.3389/fgene.2024.1521269

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1521269


3.8 Inhibition of APOC1 of TAMs reduced
M2 polarization of macrophages in vitro
experiment

To further investigate the role of APOC1 in macrophage
polarization, functional experiments were conducted using THP-1

cell lines. We silenced APOC1 expression using siRNA. Human
THP-1 monocytes were differentiated into M0 macrophages through
PMA treatment for 24 h, followed by co-culture with MDA-MB-
231 and MDA-MB-468 cell lines for 48 h to induce the formation
of tumor-associated macrophages (TAMs). Then we performed RT-
qPCR to assess the expression of M2 phenotype-related genes in TAMs

FIGURE 6
Inhibition of APOC1 of TAMs reduced M2 polarization of macrophages. (A) APOC1 was mainly expressed in macrophages through ScRNA-seq
analysis. (B) APOC1 was closely related to infiltration of M2 macrophages among the immune infiltration cells. (C) The expression of APOC1 was
significantly correlated with the infiltration level of various types of immune cells in BRCA. (D) APOC1 was significantly co-expressed with CD68, CD86,
CD163, CCL18, CCL17, CXCL9, IL10 in BRCA. (E) The mRNA level of CD163, CD206, ARG1 were significantly downregulated in siAPOC1-TAMs via
RT-qPCR experiment (*P < 0.05, **P < 0.01, ***P < 0.001). (F) The morphology of macrophage in THP1(×40, scale bar, 200 μm), M0, M2, siAPOC1-
TAM(×200, scale bar, 50 μm).
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and si-APOC1 TAMs after co-culturing with MDA-MB-231 and
MDA-MB-468 cell lines. Consistent with previous studies (Jiang
et al., 2021; Ren et al., 2022; Rey-Giraud et al., 2012), we confirmed
that macrophages co-cultured with cancer cells exhibited high
expression of CD163, CD206, Arg1, and IL-10, markers indicative of
an M2 phenotype. RT-qPCR analysis revealed that silencing
APOC1 significantly reduced the expression of M2 macrophage
markers CD163, CD206, ARG1, and IL-10 (Figure 6E). After co-

culturing with tumor cells, macrophages typically adopt a spindle-
like, elongated morphology, indicating M2 polarization. This change
may also reflect their role in migration and extracellular matrix
remodeling in the tumor microenvironment. Silencing
APOC1 expression altered TAM morphology, causing them to lose
the typical elongated M2-like shape (Figure 6F).

Flow cytometry further confirmed that the expression of
CD163 was markedly downregulated after silencing APOC1

FIGURE 7
Inhibition of APOC1 of TAMs reduced BC progression in vitro experiment. (A) C163 were significantly downregulated in siAPOC1-TAMs via flow
cytometry analysis. (B)Macrophages silencing APOC1 inhibited themigration of MDA-MB-231 andMDA-MB-468 cell lines via wound healing assay (×40,
scale bar, 100 μm). (C) Macrophages silencing APOC1 inhibited the invasion ability of MDA-MB-231 and MDA-MB-468 cell lines via Transwell assays
(×100, scale bar, 100 μm). (D)Macrophages silencing APOC1 inhibited the proliferation ability of MDA-MB-231 and MDA-MB-468 cell lines via EdU
test (×100, scale bar, 50 μm). The experiments were performed in triplicate, and the data are presented as mean ± SD, *P < 0.05, **P < 0.01, ***P <
0.001 vs. control group.
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(Figure 7A). These results indicate that in vitro-generated TAMs
exhibit an M2 phenotype, and inhibiting APOC1 expression
effectively prevents tumor cells from promoting the polarization
of macrophages towards the M2 phenotype. This provides new
insights into the mechanisms by which APOC1 regulates
macrophage polarization within the tumor microenvironment
and reveals its potential role in tumor-associated immune
modulation.

3.9 Inhibition of APOC1 of TAMs reduced BC
progression in vitro experiment

We further investigated the effects of APOC1-silenced
macrophages on cancer cells by employing a co-culture system
with the MDA-MB-231 and MDA-MB-468 cell lines. In the
wound healing assay using the MDA-MB-231 and MDA-MB-
468 cell lines, co-cultured macrophages significantly promoted
the migration of tumor cells, while APOC1-silenced TAMs
largely reversed this effect (Figure 7B). Similarly, Transwell assays
demonstrated that APOC1-silenced TAMs suppressed the invasion
capability of the tumor cells (Figure 7C). Furthermore, results from
EdU proliferation assays indicated that, compared to the control
group, APOC1-silenced TAMs effectively slowed down the
proliferation of tumor cells (Figure 7D). These findings suggest
that APOC1 plays a critical role in regulating TAM-mediated
support for the proliferation, migration, and invasion of breast
cancer cells. Thus, inhibiting APOC1 expression may help limit
the progression of breast cancer.

4 Discussion

In this study, we constructed a robust survival risk signature
based on methionine metabolism-related genes, which performed
well in both internal (TCGA) and external (GEO) validation
cohorts. Additionally, we developed a nomogram that integrates
the prognostic model with clinical-pathological factors. This risk
signature outperformed traditional features such as age and stage in
predicting OS, demonstrating superior accuracy and discriminatory
ability. Most of the included genes have been reported to play
functional roles in various malignancies and are closely
associated with immune cell infiltration.

Apolipoprotein C1 (APOC1), the smallest member of the
apolipoprotein family, has been primarily studied in the context of
lipid metabolism (Jong et al., 1999). Increasing evidence indicates that
APOC1 is overexpressed in various cancers and is significantly
associated with poor patient prognosis. However, the mechanisms of
APOC1 in tumorigenesis, progression, and metastasis, particularly in
tumor immune regulation, remain unclear. Further investigation into
the function of APOC1 within the tumor immune microenvironment
could provide valuable insights into the mechanisms underlying cancer
progression and offer novel therapeutic opportunities. Previous studies
have indicated that APOC1 serves as a prognostic marker for cervical
cancer, ovarian cancer, and liver cancer (Shi et al., 2020; Yang et al.,
2024), and it promotes glioblastoma tumorigenesis by inhibiting
ferroptosis regulated by the KEAP1/NRF2 and CBS (Zheng et al.,
2022). Recent research has also found that APOC1 facilitates the

M2 macrophages polarization through ferroptosis, thereby
remodeling the tumor immune microenvironment (Hao et al.,
2022). However, there is currently limited information regarding the
role of APOC1 in breast cancer. In this study, we investigated the role of
APOC1 in BC by analyzing data from the TCGA and GEO databases,
utilizing various platforms including LinkedOmics, TIMER, and
Kaplan-Meier Plotter. Our results indicate that APOC1 expression is
significantly upregulated in BC compared to normal tissues, and higher
levels of APOC1 are associated with poorer patient prognosis.
APOC1 is primarily expressed in tumor cells and macrophages and
shows a positive correlation with the expression of genes such as CD68,
CD86, CD163, CXCL17, CXCL8, and IL-10, suggesting that
APOC1 may promote tumor progression by influencing
macrophage polarization. Previous work by Jinhua Wang et al. has
demonstrated in vitro that silencing APOC1 expression reverses the
M2 polarization of tumor-associated macrophages (TAMs) co-cultured
with renal cell carcinoma cells, while macrophages overexpressing
APOC1 promote the metastasis of renal cell carcinoma through
CCL5 (Ren et al., 2022). Building on this, our further in vitro
experiments revealed that knocking down APOC1 in the
M0 macrophages significantly reduced markers of M2 macrophages
when co-cultured with 231 cell lines. These findings provide additional
support for the hypothesis that APOC1 plays a role in breast cancer by
promoting M2 polarization of macrophages. Many previous studies
have shown that APOC1 may be involved in breast cancer progression
and metastasis through mechanisms such as epithelial-mesenchymal
transition (EMT) and the MAPK/JNK signaling pathway (Zhang et al.,
2022). However, this study lacks a more in-depth exploration of the
underlying mechanisms by which APOC1 exerts its effects.

5 Conclusion

In conclusion, our study developed a predictive model based on
MRGs, demonstrating its effectiveness in forecasting OS and
immunotherapy response in breast cancer patients. Additionally,
through in vitro experiments, we explored the role of APOC1 in
macrophage polarization. These findings provide valuable insights
for the development of novel therapeutic strategies for breast cancer.
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