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Background: Hepatocellular carcinoma (HCC) accounts for over 80% of primary
liver cancers and is the third leading cause of cancer-related deaths worldwide.
Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a
newly discovered form of regulated cell death. This study aims to develop a novel
HBV-HCC prognostic signature related to disulfidptosis and explore potential
therapeutic approaches through risk stratification based on disulfidptosis.

Methods: Transcriptomic data from HBV-HCC patients were analyzed to identify
BHDRGs. A prognostic model was established and validated using machine
learning, with internal datasets and external datasets for verification. We then
performed immune cell infiltration analysis, tumor microenvironment (TME)
analysis, and immunotherapy-related analysis based on the prognostic
signature. Besides, RT-qPCR and immunohistochemistry were conducted.

Results: A prognostic model was constructed using five genes (DLAT, STC2,
POF1B, S100A9, and CPS1). A corresponding prognostic nomogram was
developed based on riskScores, age, stage. Stratification by median risk score
revealed a significant correlation between the prognostic signature and TME,
tumor immune cell infiltration, immunotherapy efficacy, and drug sensitivity. The
results of the experiments indicate thatDLAT expression is higher in tumor tissues
compared to adjacent tissues. DLAT expression is higher in HBV-HCC tumor
tissues compared to normal tissues.

Conclusion: This study stratifies HBV-HCC patients into distinct subgroups based
on BHDRGs, establishing a prognostic model with significant implications for
prognosis assessment, TME remodeling, and personalized therapy in HBV-HCC
patients.
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1 Introduction

Hepatocellular carcinoma (HCC) ranks sixth (4.3%) among newly diagnosed cancer
cases globally and is the third (7.8%) leading cause of cancer-related deaths worldwide (Bray
et al., 2024). In China, liver cancer is the third most common cancer and the second leading
cause of cancer-related mortality (Zheng et al., 2024). In African and Asian populations, the
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primary etiological factor among hepatocellular carcinoma patients
is chronic infection with hepatitis B virus (HBV) (Llovet et al., 2021).
Over time, patients often progress from chronic hepatitis B to
cirrhosis and eventually HBV-HCC. Due to the marked
heterogeneity of hepatocellular carcinoma, the early stages of the
disease often present with subtle symptoms, progress rapidly, and
make prognosis challenging. Many patients are diagnosed at an
advanced stage when symptoms appear, Once the opportunity for
surgical intervention is missed, non-surgical treatment options
generally offer limited efficacy for most patients (Yang et al.,
2019). Given the high incidence, mortality, and significant
heterogeneity of HBV-HCC, it is essential to identify more
efficient diagnostic biomarkers and new therapeutic targets.

Liu et al. (2023) discovered a novel metabolism-related form of
programmed cell death called disulfidptosis. They found that under
glucose deprivation, cells with high expression of solute carrier
family 7 member 11 (SLC7A11) experience accelerated depletion
of cytoplasmic nicotinamide adenine dinucleotide phosphate
(NADPH). The lack of NADPH prevents cells from reducing
cystine to cysteine, leading to the accumulation of disulfides. This
accumulation causes disulfide stress within the cell, resulting in
aberrant disulfide bonding between actin cytoskeleton proteins,
leading to actin network collapse and cell death. Inducing
disulfidptosis by exploiting cancer metabolism weaknesses could
provide new therapeutic approaches. Currently, disulfidptosis-
related genes have been used to screen for prognostic markers
and potential therapeutic targets in various malignancies such as
colorectal adenocarcinoma (Li et al., 2024) and lung cancers. HBV-
HCC, as one of the etiological types of hepatocellular carcinoma, is
also the most prevalent type of this cancer in Asia and Africa (Zheng
et al., 2024; Llovet et al., 2021). However, research related to HBV-
HCC is still lacking. Furthermore, compared to tumors of other
origins, hepatocellular carcinoma exhibits a high degree of
heterogeneity (Yang et al., 2019). This indicates that we need to
explore in greater depth and with more specificity the therapeutic
value that disulfide death-related genes can offer to patients.

This study aims to identify subtypes of HBV-HCC patients with
different prognoses, tumor immunity, somatic mutations, and
clinical characteristics based on the expression of disulfidptosis-
related genes (DRGs). We constructed a prognostic model for HBV-
HCC that includes five genes: DLAT, STC2, POF1B, S100A9, and
CPS1. We analyzed the tumor microenvironment of different risk
groups and assessed the efficacy of immunotherapy and drug
treatment based on risk scores. In summary, this study provides
a new method for predicting the prognosis of HBV-HCC patients
and offers new biomarkers for personalized treatment.

2 Materials and methods

2.1 Multiomics data collection and
processing

The screening criteria for our study population included: 1.
Positive results for serum hepatitis B virus surface antigen (HBsAg),
positive HBV-DNA results, or a history of hepatitis B; 2.
Pathological results indicating primary hepatocellular carcinoma.
Patients who met at least one of the criteria in point 1 and also met

the criteria in point 2 were identified as HBV-HCC patients in our
study. We downloaded transcriptome data for 424 liver cancer cases
from The Cancer Genome Atlas database (TCGA, https://gdc.
cancer.gov/). After screening, we obtained 23 samples of adjacent
normal tissue and 226 samples of HBV-HCC tumor tissue. We also
obtained clinical data for 377 patients and gene mutation data
(Simple Nucleotide Variation, SNV) for 368 liver cancer patients
from the TCGA database. Additionally, we downloaded the
GSE45114 dataset from the Gene Expression Omnibus database
(GEO, https://www.ncbi.nlm.nih.gov/geo/), which includes RNA
transcriptome data for 19 HBV-HCC samples. And we
downloaded the GSE14520 (Roessler et al., 2010) dataset along
with the corresponding follow-up data, which were then
processed and filtered for analysis. The GSE14520 dataset
contains the results of gene expression profiling conducted by
Roessler et al. on tumor and paired non-tumor samples, as well
as normal liver samples from 64 patients. From the UCSC Xena
server (https://xena.ucsc.edu/), we acquired copy number variation
(CNV) data. We have collected 118 disulfidptosis-related genes
(Supplementary Data 2) from previous studies (Liao et al., 2023;
Liu et al., 2023).

2.2 Identification and CNV analysis of
disulfidoptosis-related genes in
HBV-HCC patients

We used the “edgeR” R package to identify differentially
expressed genes (DEGs) between HBV-HCC samples and normal
tissues with a history of HBV in the TCGA database under the
criteria |log2FC|>0.585 and Padj<0.05. By intersecting the genes
included in GSE45114 with DRGs and DEGs, we define the resulting
gene set as BHDRGs refers to the disulfidptosis-related genes in
hepatitis B virus-associated hepatocellular carcinoma. We merged
the TCGAHBV-HCC transcriptome data with the GSE45114 HBV-
HCC transcriptome data using the “sva” and “limma” R packages
and averaged gene expression levels for duplicate samples.
Subsequently, we reassessed the differential expression of
BHDRGs using the Wilcoxon rank-sum test. We evaluated the
prognostic significance of BHDRGs using Kaplan-Meier (K-M)
survival curves and univariate Cox analysis. Finally, we visualized
the results.

To reveal the genomic alterations of BHDRGs, we processed
CNV data of HBV-HCC patients and assessed the copy number
variation status of BHDRGs in HBV-HCC patients.

2.3 Identification of different subtypes of
HBV-HCC patients based on BHDRGs

Using the expression levels of BHDRGs and survival data, we
performed an initial consensus clustering analysis of the samples
using the “ConsensusClusterPlus” R package with the PAM
algorithm. The optimal number of clusters (K) was determined
using clustering heatmaps and the PAC method, and samples were
divided into different subtypes. We evaluated the distinction
between subtypes using principal component analysis (PCA).
Kaplan-Meier survival analysis was performed on different
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subtypes using the “Survival” and “Survminer” R packages, and
heatmaps were drawn combining clinical characteristics. To evaluate
the differences in enriched metabolic pathways between subtypes,
we performed GSVA (Gene Set Variation Analysis) using the
“GSVA” and “GSEABase” R packages with files
“c2.cp.kegg.symbols.gmt” and “c5.go.symbols.gmt” from MSigDB.
We then assessed immune infiltration levels between subtypes using
ssGSEA analysis. To explore potential reasons for the existence of
different subtypes in HBV-HCC patients, we identified differential
genes (interGenes) between groups using the “limma” R package
under the conditions |log2FC| > 1 and P < 0.05.

2.4 GO and KEGG enrichment analysis

To analyze the relevant biological functions and structures of
interGenes and to identify the corresponding enriched pathways, we
utilized the R packages “ClusterProfiler,” “org.Hs.eg.db,” and
“enrichplot” to conduct GO and KEGG analyses of the
upregulated and downregulated genes of interGenes. The results
were subsequently visualized using R.

2.5 Construction and validation of
prognostic model and subtypes based on
interGenes

We conducted a univariate Cox regression analysis on
interGenes to identify genes significantly associated with
prognosis (uniSigGenes). To investigate more thoroughly the
interactions and consistency among BHDRGs and to reveal the
finer differences among these subtypes, we performed a more
refined clustering analysis of the patients using
uniSigGenes.Using the “limma”, “ConsensusClusterPlus”,
“survminer”, and “survival” R packages, we performed clustering
analysis on the samples based on the expression levels of
uniSigGenes using the PAM algorithm, determined the optimal K
value and divided the samples into different gene subtypes
(genecluster) according to the PAC method and clustering
analysis results. Kaplan-Meier survival analysis was performed on
gene subtypes combined with survival data.

Next, we randomly divided the samples into validation and test
groups in a 1:1 ratio. Using the “glmnet” R package, we performed
10-fold cross-validation and 1000-cycle Least Absolute Shrinkage
and selection Operator (LASSO) analysis in the test group, followed
by multivariate COX regression analysis to determine the signature
genes and establish the prognostic model. We calculated risk scores
for samples based on the expression levels and related coefficients of
the signature genes. The risk score (RS) formula is as follows:

RS � β1 × expression of gene1( ) + β2 × expression of gene2( ) + ...

+ βn × expression of genen( ).

We performed Kaplan-Meier survival analysis and time-
dependent receiver operating characteristic (ROC) curve analysis
for high and low-risk groups, and calculated the area under the ROC
curve (AUC) to evaluate the model’s performance. The risk score
formula was applied to the validation set and the total dataset.

Patients were grouped based on risk scores, and heatmaps of
signature gene expression, risk score distribution, and survival
curves were drawn to validate the prognostic value of the risk
scores. We selected the GSE14520 dataset for external validation
of our model. The Kaplan-Meier survival curve and the ROC curve
were used to evaluate the model’s performance within this external
dataset. Additionally, we collected risk models from previous
relevant literature to compare with our proposed BHDRGs
model. The efficacy of each model was assessed using Kaplan-
Meier survival analysis and ROC curve analysis.

Using the “rms” and “regplot” R packages, we constructed an
HBV-HCC prognostic nomogram with the help of riskScores, age,
gender, stage (American Joint Committee on Cancer-Tumor Node
Metastasis staging), AFP (Alpha-Fetoprotein), grade (tumor
pathological grading). We plotted calibration curves for 1, 3, and
5 years to verify the accuracy of the nomogram, ROC curves to
validate the discrimination of the nomogram, and decision curve
analysis (DCA) curves to assess the clinical applicability of
the nomogram.

2.6 Immune cell infiltration analysis, TME
analysis, immunotherapy-related analysis,
and TMB analysis

We conducted an analysis of immune cell infiltration based on
risk scores, tumor microenvironment (TME) analysis,
immunotherapy-related analysis, and tumor mutation burden
(TMB) analysis.

First, we used the CIBERSORT algorithm (https://cibersort.
stanford.edu/) (Newman et al., 2015) combined with the
LM22 signature matrix (Newman et al., 2015) to analyze the
infiltration of 22 immune cell types in the TME. In the
“Configure Basic CIBERSORT Options” section, since the data
had already been normalized, we chose to reject the
normalization of the uploaded data, and all other configurations
were set to default. Based on the results of the CIBERSORT
algorithm, we generated visualizations illustrating the infiltration
of immune cells in high and low-risk groups. Furthermore, to assess
the levels of stromal and immune cells in the TME in HBV-HCC, we
employed the “estimate” R package to evaluate the differences in
immune scores, stromal scores, and estimate scores between
risk groups.

Subsequently, we performed differential analysis of immune
checkpoint gene expression in high and low risk groups. We also
assessed the effectiveness of immunotherapy between high and
low risk groups using the tumor immune dysfunction and
exclusion (TIDE) scores (http://tide.dfci.harvard.edu/). IMvigor
210 is a clinical trial cohort that investigates the efficacy of anti-
PD-L1 immunotherapy in patients with metastatic urothelial
carcinoma. We obtained transcriptomic data from the IMvigor-
210 and selected patient samples with complete immunotherapy
data. Using data from the IMvigor-210, we evaluated the ability of
our model to predict patient responses to immunotherapy.
Additionally, we evaluated the TMB of patients using TCGA
somatic mutation data, comparing the TMB status between
different risk groups. All results were visualized using the
R package.
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2.7 Drug sensitivity analysis

We obtained drug half-maximal inhibitory concentration
(IC50) data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. Subsequently, we performed drug sensitivity
analysis using the “pRRophetic” R package to predict differences
in drug therapy based on tumor gene expression levels between the
high-risk and low-risk groups. We also conducted a t-test to
compare the IC50 values between these two groups. The analysis
results were visualized using the “ggplot2” R package.

2.8 RT-qPCR and immunohistochemistry

We collected tumor and adjacent non-tumor tissues from
20 patients with HBV-HCC at the First Affiliated Hospital of
Wenzhou Medical University. The study protocol was approved
by the Ethics Committee of the First Affiliated Hospital of Wenzhou
Medical University (reference number: 2020-074). Written
informed consent was obtained from all participants, and the
study adhered to the standards outlined in the Declaration
of Helsinki.

2.8.1 RT-qPCR
Total RNA from cells was extracted using TRIzol reagent.

According to the manufacturer’s instructions, RNA was reverse
transcribed into cDNA using the HiScript IV All-in-One Ultra RT
SuperMix. RT-qPCR was performed using TB Green Premix Ex Taq
II. The reaction conditions were set as follows: 95°C for 30 s, followed
by 40 cycles of 95°C for 5 s and 60°C for 30 s. GAPDH mRNA was
used as an internal control, and relative mRNA levels were
determined using the 2−ΔΔCT method. The primer sequences were
as follows: DLAT forward primer: 5′-CCGCCGCTATTACAGTCT
TCC-3′; DLAT reverse primer: 5′-CTCTGCAATTAGGTCACC
TTCAT-3′. GAPDH forward: GCTGAGAACGGGAAGCTTGT,
GAPDH reverse: GCCAGGGTGCTAAGCAGTT.

2.8.2 Immunohistochemistry
Tissues were fixed in formalin, embedded in paraffin, and

sectioned into 5 μm slices. The primary antibody for IHC
staining was DLAT (13426-1-AP, Proteintech, Chicago,
United States). The antibody dilution ratio and subsequent
experiments were performed according to the manufacturer’s
instructions. IHC staining was carried out using DAB solution.

2.9 Statistical analyses

Unless otherwise specified in the text, we used the Wilcoxon
rank-sum test to compare differences in continuous variables
between the two groups, and the Kaplan-Meier curve along with
the log-rank test to evaluate survival outcomes among different
groups. Cox proportional hazards regression analysis was employed
to identify independent prognostic factors. The Kruskal–Wallis
rank-sum test was utilized to assess differences in gene
expression across different patient classifications. Chi-square tests
were conducted to compare the associations of categorical variables.
Lastly, Pearson correlation analysis was used to evaluate the linear

correlation between two continuous variables. R version 4.2.0 was
used for statistical analyses. Perl was used to organize the data. To
minimize batch effects within the dataset, we applied the ComBat
function from the “sva” R package for data adjustment (Leek et al.,
2012). For statistical significance in the entire text, numbers, and
figure legends, the following terms were used: ***p < 0.001, **p <
0.01, *p < 0.05.

3 Result

3.1 Identification of disulfidptosis-related
gene sets in HBV-HCC

The overall process of this study is illustrated in Figure 1.
Comparing the gene expression between HBV-HCC samples
from the TCGA and normal tissue samples with a history
of HBV infection, we identified 8,110 DEGs, including
2,620 downregulated genes and 5,490 upregulated genes
(Figure 2A). We intersected these genes to obtain 17 BHDRGs
and plotted a box plot of their differential expression in HBV-HCC
tumor and non-tumor tissues (Figure 2B). We also analyzed the
copy number variation frequency of the BHDRGs in the samples
(Figure 2C), finding that the increase in BOP1 copies was
significantly higher than the deletion frequency, while the
deletion frequency of WASF2 copies was significantly higher
than the increase. Figure 2D illustrates the locations of
BHDRGs on the chromosomes along with their copy number
variations.

Next, we examined the somatic mutation data in the samples,
finding mutations in 29 out of 224 HBV-HCC, with MYH7B
having the highest mutation rate (Figure 2E). We then
combined the GSE45114 data with the TCGA data, obtaining
240 HBV-HCC samples. The univariate Cox analysis results of
BHDRGs in HBV-HCC samples are shown in Table 1. We
evaluated the association between significant genes from
univariate analysis and patient prognosis using K-M survival
analysis (Figures 3A–N). The results indicating that MYH3,
GLUD1, and EPAS1 are protective factors, while WASF2,
SQSTM1, SLC7A11, PPM1F, PPIH, NDUFS1, MYH7B, ME1,
FLNC, FLNA, DBN1, BOP1, ACTN2, and ACTG2 are risk
factors for the prognosis of HBV-HCC patients. As shown in
Figure 3O, the prognostic network outlines the interactions,
interconnections, and prognostic value of BHDRGs in HBV-
HCC patients.

3.2 Identification and validation of
HBV-HCC subtypes

To clarify the relationship between BHDRGs and HBV-HCC,
we performed consensus clustering analysis on HBV-HCC samples.
Using the PAC algorithm in combination with clustering results
(Figure 4A), we divided the samples into BHDRG cluster A and
BHDRG cluster B. Principal component analysis (PCA) was then
used for dimensionality reduction and visualization (Figure 4B). The
PCA results showed good discrimination between the two subtypes.
Subsequently, we conducted KM survival curve analysis (Figure 4C),
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showing that the 1 year, 3 year, and 5 year survival rates of group B
were significantly better than those of group A. Combined with age,
sex and T stage, we plotted a heatmap of BHDRG subtypes in HBV-
HCC patients (Supplementary Figure 3A).

GSVA shows the differences between the top20 most
significant pathways in cluster A and cluster B (Supplementary
Figure 3B). The results indicate that, compared to the BHDRG
cluster A, pathways such as linoleic acid metabolism, alpha-
linolenic acid metabolism, maturity-onset diabetes of the young,
alanine, aspartate, and glutamate metabolism, nitrogen
metabolism, and glycine, serine, and threonine metabolism, as
well as signaling pathways including the peroxisome proliferator-
activated receptor signaling pathway, olfactory transduction, and
neuroactive ligand-receptor interaction, are more active in the
BHDRG cluster B. In contrast, gene sets related to lysosomes,

pathogenic Escherichia coli infection, endocytosis, epithelial cell
signaling in Helicobacter pylori infection, neurotrophin signaling
pathway, pathways in cancer, small cell lung cancer, pancreatic
cancer, and colorectal cancer show higher expression levels in the
BHDRG cluster A.

And the boxplot showed the difference of immune cell
infiltration in different subtypes (Figure 4F).In the BHDRG
cluster A group, the infiltration levels of activated CD4 T cells,
activated dendritic cells, CD56dim natural killer cells, immature
B cells, immature dendritic cells, myeloid-derived suppressor cells
(MDSCs), natural killer T cells, natural killer cells, plasmacytoid
dendritic cells, regulatory T cells, and T follicular helper cells are
significantly higher than those in the B group. Conversely,
neutrophils exhibit higher infiltration levels in the BHDRG
cluster B group.

FIGURE 1
Flow chart of the study. N: cancer-adjacent normal tissue, T: tumor tissue.
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FIGURE 2
Expression and genetic alteration of BHDRGs in HBV-HCC. (A) DEGs between HBV-HCC samples and normal tissues with a history of HBV in the
TCGA. (B) The expression of 17 BHDRGs in HBV-HCC and normal tissues. (C) The copy number variation frequency of BHDRGs in HBV-HCC. (D) Variation
in the copy number of the BHDRGs at various places on the chromosome. (E) The mutation frequency of BHDRGs in HBV-HCC. *p < 0.05, p < 0.01.
***p < 0.001.

TABLE 1 UniCOX and K-M analysis of BHDRGs.

BHDRGs HR HR.95L HR.95H P value K-M

WASF2 1.78043622910376 1.33708070924039 2.37080166066124 7.87677978821637e-05 3.55311100652678e-07

SQSTM1 1.33434998953886 1.12369068176839 1.58450178814362 0.00100117663758269 0.00066210872624306

SLC7A11 1.35762116142048 1.17961462647855 1.56248928808126 2.01192813861604e-05 3.65573307781197e-06

PPM1F 1.62514167477145 1.12844017346628 2.34047451090492 0.00907394105517528 0.00538794975274259

PPIH 2.18143064042544 1.6213976377083 2.93489982242286 2.56912300734912e-07 2.76170289970068e-07

NDUFS1 1.21898491734471 0.865744634008937 1.71635395744025 0.256705454486927 0.0329665526095082

MYH7B 1.14261723745651 0.937396363715234 1.39276639196496 0.186861745676822 0.020684402272597

MYH3 0.98503791298912 0.763288530555492 1.27120957696012 0.907771739843421 0.136449672094353

ME1 1.2325939115488 1.08366386526288 1.40199170562785 0.00145817633742628 9.11067761032447e-05

GLUD1 0.892011843294768 0.721576548346996 1.10270369845154 0.290836039536036 0.123585664108539

FLNC 1.22894947368026 1.10570641068638 1.36592932288548 0.000131489245536833 0.000219279329147892

FLNA 1.18987568102055 1.03015079711054 1.37436590861773 0.0180849428266241 0.0100213101547357

EPAS1 0.957076779594197 0.733693140720981 1.24847284402615 0.746308276377221 0.256481526551826

DBN1 1.24577417569125 1.07092137164908 1.44917576388397 0.00440032456372329 0.000461759687809371

BOP1 1.50442492833529 1.23080057477749 1.83887984079452 6.67787043017316e-05 1.70019810341593e-07

ACTN2 1.07559076254638 0.947829902277709 1.22057289572211 0.258696643330815 0.0137511891716948

ACTG2 1.17245421855475 0.961409896557714 1.42982602896921 0.11611473165463 0.0149672918688798
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3.3 Obtaining differential Genes, GO and
KEGG enrichment analysis

To explore the potential reasons for the prognostic differences
between subtypes, we performed differential analysis to obtain
interGenes (Supplementary Data 1). And we performed GO and
KEGG enrichment analyses to identify the functions and pathways

enriched for the upregulated and downregulated genes of interGenes.
TheGO analysis demonstrated (Figure 5A) that the downregulated genes
in interGenes were significantly enriched in collagen-containing
extracellular matrix, extracellular matrix organization, extracellular
structure organization, and external encapsulating structure
organization. And the upregulated genes were primarily enriched in
collagen-containing extracellular matrix, blood coagulation, lipid

FIGURE 3
The K-M analysis revealed that 14 genes within the BHDRGs were significantly associated with HBV-HCC patient prognosis. (A) ACTG2. (B) ACTN2.
(C) BOP1. (D)DBN1. (E) FLNA. (F) FLNC. (G)ME1. (H)MYH7B. (I)NDUFS1. (J) PPIH. (K) PPM1F. (L) SLC7A11. (M) SQSTM1. (N)WASF2. (O) Prognostic network
of BHDRGs.
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transport, and peptidase inhibitor activity. The KEGG enrichment
analysis results indicated (Figure 5B) that the downregulated genes
were involved in biological pathways such as Proteoglycans in cancer,
Cytoskeleton inmuscle cells, ECM-receptor interaction, protein digestion
and absorption, and focal adhesion. Meanwhile, the upregulated genes
showed significant enrichment in the complement and coagulation
cascades, PPAR signaling pathway, and various metabolic pathways.

3.4 Consensus clustering and risk model
construction based on differential genes in
disulfidptosis

For more accurate sample typing, we conducted univariate Cox
regression analysis on interGenes to identify uniSigGenes. Based on

uniSigGenes, we performed another clustering analysis (Figure 6A).
Both the clustering heatmap and PAC algorithm suggested that the
optimal clustering model was achieved when K = 2, resulting in
geneclusterA and geneclusterB. KM survival curve analysis
(Figure 6B) showed that the prognosis of group B was
significantly better than group A. We plotted a heatmap of gene
clusters, considering patients’ age, sex, and T stage (Figure 6C). We
also evaluated the differential expression of BHDRGs between gene
clusters (Figure 6D).

In the test group, we conducted LASSO-Cox analysis on the
expression levels of uniSigGenes (Figures 6E, F), identifying 9 genes
(DLAT, SLC2A1, STC2, SLC38A1, POF1B, S100A9, AP1M2,MMP9,
CPS1) with optimal λ values. We then performed multivariate
regression analysis on these 9 genes to construct a new
prognostic risk model, including key genes such as DLAT, STC2,

FIGURE 4
(A) The clustering analysis of HBV-HCC samples based on gene expression profiles. (B) The principal component analysis of subtypes. (C) Kaplan-
Meier survival analysis shows the two clusters. (D) The differential analyse between immune cells mong the two clusters. *p < 0.05, **p < 0.01, *** k
p < 0.001.
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POF1B, S100A9, and CPS1. The risk scoring formula for the model is
as follows:

RS � expDLAT*0.43798077 5786097

+ expSTC2*0.24041938 9109836

+ expPOF1B*0.17373046 5002983

+ expS100A9*0.19007896 8663933

− expCPS1*0.11323419 4208144

We assigned risk scores to all samples based on the risk formula,
dividing patients into high-risk and low-risk groups using the
median risk score and conducting Kaplan-Meier survival analysis
(Figure 6G). The survival curves of the total group, training group,
and test group all showed that the survival rate of the low-risk group
was significantly higher than that of the high-risk group. We plotted
1 year, 3 year, and 5 year ROC curves to evaluate the sensitivity
and specificity of the gene signature and calculated the area under
the ROC curve (AUC), indicating that our model has good
predictive power (Figure 6H). And we validated patient groups
and their prognostic differences in the GSE14520 dataset
(Supplementary Figure 1). Additionally, we compared our model
with previous risk models (Supplementary Figure 2). Compared to

the Tang signature (Tang et al., 2020), Tian signature (Tian et al.,
2024), Li signature (Li et al., 2022), and Weng signatures (Weng
et al., 2023),BHDRGs signature demonstrated superior performance
in predicting the prognosis of HBV-HCC patients.

We also evaluated the risk score differences between BHDRG
subtypes and gene clusters (Figure 6I) and plotted heatmaps related
to risk grouping (Supplementary Figure 4). We found that the risk
score of genecluster-A was significantly higher than that of
genecluster-B, and the risk score of BHDRG cluster A was higher
than that of BHDRGcluster-B, consistent with our previous survival
analysis results. Finally, we evaluated the expression differences of
BHDRGs between high-risk and low-risk groups (Figure 6J). The
genes MYH7B, MYH3, and GLUD1 show no differential expression
between the high-risk and low-risk groups. In contrast, the
expression levels of genes such as EPAS1, WASF2, SQSTM1,
SLC7A11, PPM1F, PPIH, NDUFS1, ME1, FLNC, FLNA, DBN1,
BOP1, ACTN2, and ACTG2 are significantly higher in the high-
risk group compared to the low-risk group.

Next, we used Sankey diagrams (Figure 6K) to show the
distribution of HBV-HCC patients in the clustering process.
Most genecluster-A samples came from the BHDRGcluster-A
group, which had worse survival data. In the risk scoring, they
were mainly distributed in the high-risk score group, with deceased

FIGURE 5
GO and KEGG analysis (A) Analysis of GO enrichment demonstrated the possible function of the interGene. (B) KEGG pathway enrichment analysis
revealed the possible pathways.
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FIGURE 6
(A) Concordance matrix of subtypes. (B) Kaplan-Meier survival curve of the geneClusters. (C) A heatmap illustrated the expression patterns. (D)
Expression of BHDRGs between geneCluster A and geneCluster (B, E) LASSO regression analysis. (F) Partial likelihood deviance on the prognostic genes.
(G) Kaplan-Meier survival curves for patients in the high- and low-risk groups defined by the prognostic model in the all set, test set, and train set. (H) ROC
curve analyses for 1 year, 3 year, and 5 year survival rates in the all set, test set, and train set. (I) The differences in risk score in the BHDRGcluster and
the geneCluster. (J) The expression of BHDRGs in the high- and low-risk groups. (K) Sankey diagram shows the construction of the prognostic model.
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FIGURE 7
(A, B) The forest plots for univariate andmultivariate. (C) The nomogram of the risk and clinical parameters (age, stage) of all sets. (D) The calibration
curves displayed the accuracy of the nomogram in the l year, 3 year, and 5 year. (E) The ROC curve of the nomogram. (F) The DCA curve of
the nomogram.
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FIGURE 8
(A) correlation between the signature and immunecells. (B) comparison of ESTIMATE scores, Stromal scores, and Immune scores between the high-
risk and low-risk groups. (C) Differential expression of immune checkpoints between the high-risk and low-risk groups. (D) Differences in TIDE score
between high-risk and low-risk groups. (E) The ability of model to predict patient responses to immunotherapy in IMvigor 210. (F) The frequency of
mutations in the high-risk and (G) low-risk groups. (H) Differences in TMB between high-risk and low-risk groups.

Frontiers in Genetics frontiersin.org12

Zhang et al. 10.3389/fgene.2024.1522484

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1522484


patients primarily concentrated in the high-risk group. The Sankey
results were consistent with previous analysis results.

3.5 Construction and validation of
a nomogram

We conducted univariate and multivariate Cox regression
analyses on the clinical features of all cases combined with
riskScores (Figures 7A, B). Univariate Cox regression analysis
showed that riskScore, age and stage were significantly associated
with patient survival probability. Multivariate Cox regression
analysis also found that riskScores, age and stage were
independent predictors of prognosis. We then constructed a
nomogram comprising riskScores, age, and stage (Figure 7C). We
verified the accuracy of the nomogram by plotting calibration curves
(Figure 7D). The ROC curve of the nomogram (Figure 7E) suggested
that it had good discriminative power compared to other influencing
factors. The DCA curve (Figure 7F) also showed that the nomogram
had good applicability in clinical practice. Next, we compared our
nomogram with those of Tian (Tian et al., 2024), Tang (Tang et al.,
2020), and Li (Li et al., 2022). Our findings indicated that
(Supplementary Figure 5), in the ROC analysis, calibration
curves, and DCA curve, our nomogram consistently
demonstrated superior performance. Parameters such as
specificity, sensitivity, precision, positive and negative likelihood
ratios, and Youden index can be found in Supplementary Data 3.

3.6 Tumor microenvironment, immune
infiltration, and immunotherapy-
related analysis

To assess the therapeutic value of the risk model for HBV-HCC
patients, we explored immune cell infiltration between high-risk and
low-risk groups. Immune infiltration analysis (Figure 8A) indicated
that Macrophages M0 and M2 were positively correlated with risk
scores, while T cells gamma delta and T cells CD8 were negatively
correlated. In the tumor microenvironment scores (Figure 8B),
StromalScore, ImmuneScore, and ESTIMATEScore were all
significantly higher in the high-risk group than in the low-risk
group. To assess the value of risk scores in immunotherapy, we
examined the differential expression of immune checkpoint genes
between high-risk and low-risk groups (Figure 8C). Results showed
differential expression of 40 immune checkpoint genes between the
two groups, with higher expression in the high-risk group,
suggesting that high-risk patients might benefit more from
immunotherapy. We used TIDE scores to evaluate the potential
clinical efficacy of immunotherapy in different risk groups.
Typically, higher TIDE scores indicate a higher likelihood of
tumor immune escape and poorer efficacy of immune checkpoint
inhibitors. The results suggested (Figure 8D) that high-risk patients
had lower TIDE scores than low-risk patients, implying that high-
risk patients might achieve better efficacy from immunotherapy.
And the IMvigor 210 cohort revealed that (Figure 8E), patients who
responded to anti-PD-L1 immunotherapy had higher risk scores in
our risk model compared to those who did not benefit from the
treatment. Additionally, we evaluated the mutation frequency of

HBV-HCC patients between different risk groups (Figures 8F, G),
showing that TP53 had the highest mutation frequency, with a
significant difference in mutation frequency between high-risk and
low-risk groups. However, we found that there was no significant
difference in TMB between high-risk group and low-risk
group (Figure 8H).

3.7 Drug sensitivity analysis

We assessed the predictive capability of our gene signature for
drug treatment in HBV-HCC patients. High-risk groups showed
greater sensitivity to drugs such as Bortezomib, Camptothecin,
Cisplatin, Cytarabine, Epothilone B, Etoposide, Gemcitabine,
Paclitaxel, Sorafenib, and Tipifarnib. Low-risk groups were more
sensitive to Axitinib, Erlotinib, Metformin, PD 0332991
(Palbociclib), Roscovitine, and Temsirolimus (Figure 9).

3.8 RT-qPCR and immunohistochemistry in
tumor tissues of HBV-HCC patients

We conducted RT-qPCR analysis on 10 pairs of clinical samples
from HBV-HCC patients. The results showed (Figure 10A) that the
mRNA expression of DLAT in tumor samples was significantly
higher than that in normal samples. Additionally, we conducted
immunohistochemical analysis on another 10 pairs of clinical
samples from HBV-HCC. Our immunohistochemical analysis
revealed that DLAT protein expression in HBV-HCC tumor
tissues was markedly elevated compared to adjacent normal liver
tissues (Figure 10B).

4 Discussion

In recent years, the incidence of liver cancer has been on the rise
(Siegel et al., 2022), with hepatocellular carcinoma (HCC)
constituting the majority of liver cancer diagnoses and deaths
(Llovet et al., 2021). A history of HBV infection has become one
of the most common risk factors for HCC. Recently, Xiaoguang Liu
and colleagues proposed a new regulatory form of cell death,
disulfidptosis, which could be utilized in cancer treatment (Liu
et al., 2023). Research has indicated the significant role of
disulfidptosis in various tumors, including lung cancer (Wang
et al., 2024), renal cell carcinoma (Xu et al., 2023). However, in
the study of hepatocellular carcinoma (HCC), research related to
disulfidptosis remains limited. Zhao et al. developed (Zhao et al.,
2023) a tumor prognosis signature based on disulfidptosis to assist in
clinical decision-making. However, they simultaneously noted that
the impact of viral infection was not considered in their study. Given
that the etiology of potential liver disease may influence prognosis,
they suggested that the prognostic assessment could be biased.
Therefore, the prognostic role of disulfidptosis and its value in
guiding treatment strategies for HBV-HCC patients require further
investigation. We conducted additional research on HBV-HCC
based on the differential expression of BHDRGs and identified
two subgroups within the HBV-HCC patient population that
exhibited different clinical characteristics and survival outcomes.
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Additionally, we constructed a prognostic model for HBV-HCC
patients to guide clinical treatment and facilitate risk stratification.

This study performed two clustering analyses based on
BHDRGs, leading to the identification of two subtypes with
distinct clinical characteristics and significantly different
prognoses. The first clustering analysis provided a general
classification of this population, while the second clustering
analysis allowed for a more detailed subdivision of these
subtypes, revealing finer differences among them. Notably, in the
context of high-heterogeneity tumor research, the second clustering
analysis aids in uncovering the pronounced heterogeneity of tumors
and offers deeper insights into the roles and mechanisms of
BHDRGs in the prognostic differences among the various
subtypes. By employing the second clustering analysis, we can

more accurately identify the different subtypes within tumors and
design more targeted treatment strategies.

In the first clustering analysis, patients were categorized into two
distinct subtypes, each exhibiting different clinical characteristics
and prognostic outcomes. K-M survival analysis revealed a poorer
prognosis for group A compared to group B in the BHDRGs
subtypes. Immune infiltration analysis suggested higher immune
cell abundance in group A samples, indicating a more active tumor
immune microenvironment. To further explore the possible reasons
for the survival performance differences between subtypes, GSVA
pathway analysis was conducted. This analysis revealed the
enrichment of pathways related to small cell carcinoma, prostate
cancer, colorectal cancer, and bacterial infection in group A samples.
In contrast, group B was mainly enriched in various metabolic

FIGURE 9
Drug sensitivity analysis between the high-risk and low-risk groups. (A) Bortezomib, (B)Camptothecin, (C)Cisplatin, (D)Cytarabine, (E) Epothilone B,
(F) Etoposide, (G) Gemcitabine, (H) Paclitaxel, (I) Sorafenib, (J) Tipifarnib, (K) Axitinib, (L) Erlotinib, (M) Metformin, (N) PD 0332991 (Palbociclib), (O)
Roscovitine, (P) Temsirolimus.
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pathways, such as those involving amino acids, arachidonic acid,
and linoleic acid. Additionally, multiple ligand-receptor signaling
pathways were enriched in group B. Mossmann et al. has indicated
(Mossmann et al., 2023) that while the mechanisms and targets of
metabolic reprogramming remain unclear, it is certain that

metabolic reprogramming plays a significant role in the
occurrence and progression of tumors. Furthermore, several
studies (Kudo et al., 2020; Lin et al., 2024; Liu et al., 2018)
suggest that metabolic reprogramming could serve as a new
direction for cancer treatment.

FIGURE 10
(A) Verify the mRNA expression levels of DLAT. (B) IHC staining was performed on tumor tissues and adjacent normal tissues to verify the expression
of DLAT.
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To further analyze the connection between BHDRGs and HBV-
HCC, GO functional enrichment analysis and KEGG pathway
enrichment analysis were performed on interGene. The research
findings indicate that interGenes are significantly enriched in
various functions and structures, including extracellular
structures, the extracellular matrix, and the cytoskeleton, and are
involved in multiple metabolic and signaling pathways. Notably,Wu
et al. indicated (Wu et al., 2023) the association of the extracellular
matrix with the progression of various tumors, including
hepatocellular carcinoma, pancreatic ductal adenocarcinoma, and
breast cancer. Extracellular matrix stiffening promotes cell
proliferation, epithelial-mesenchymal transition, cancer cell
metastasis, and drug resistance (Pickup et al., 2014; Walker et al.,
2018). The functional and pathway differences between these two
subtypes are closely related to the mechanism of disulfidptosis,
which may be one of the contributing factors to the differences
in patient prognosis.

The five key genes in our risk model are DLAT, STC2, POF1B,
S100A9, and CPS1. Previous studies have found that all of these
genes are involved, to varying degrees, in the development and
progression of various tumors. STC2 is a glycoprotein that is
expressed in multiple tumor tissues, and several studies have
indicated (Cheng et al., 2018; Qie and Sang, 2022) that
overexpression of STC2 promotes cell proliferation and
migration, and is associated with tumor growth, invasion,
metastasis, and poor prognosis. Inhibiting STC2 overexpression
may be a promising candidate for targeted liver cancer therapy.
Lacombe et al. indicated (Lacombe et al., 2006) that POF1B is located
in a critical region for normal ovarian function, encoding a protein
that binds to non-muscle actin filaments and plays an important role
in the occurrence and development of premature ovarian failure.
Crespi et al. suggest that POF1B may function in regulating cell
adhesiveness (Crespi et al., 2015). S100A9 is an important immune-
related protein associated with inflammation or cancer, and is
believed to promote the occurrence, development, and metastasis
of tumors. Zhan et al. reported (Zhan et al., 2023) that HBV-induced
activation of S100A9 triggers the RAGE/TLR4-ROS signaling
pathway, leading to the formation of numerous neutrophil
extracellular traps, thereby promoting the growth and metastasis
of HBV-HCC cells. Inhibiting S100A9 significantly inhibits the
growth and metastatic ability of HCC. CPS1 encodes the rate-
limiting enzyme of the urea cycle, which can more effectively
clear ammonia from the body. Aberrant overexpression of the
CPS1 is associated with the rapid proliferation of tumor cells,
increasing the activity of pyrimidine biosynthesis through
metabolic reprogramming (Zhang et al., 2023). The
overexpression of CPS1 promotes the proliferation of tumor cells
by increasing the de novo biosynthesis of pyrimidine nucleotides,
making CPS1 a novel target for anti-tumor drugs (Owusu-Ansah
et al., 2023). Interestingly, Zhang et al. (2023) found that the urea
cycle key enzyme CPS1 is often low in HCC, and is positively
correlated with patient prognosis. The contradictory findings
suggest that the impact of CPS1 on the prognosis of HBV-HCC
patients may involve more complex mechanisms, which require
further investigation. As one of the core components of PDC,
dihydrolipoyl transacetylase (DLAT) is essential for glucose
metabolism and the tricarboxylic acid (TCA) cycle (Park et al.,
2018). Previous studies have indicated that DLAT plays a positive

role in the occurrence, development, and metastasis of various
tumors (Chen et al., 2022; Li et al., 2023). Increasing evidence
suggests that abnormal PDC activity is correlated with the
malignant progression of cancer and poor clinical prognosis
(Anwar et al., 2021; Jiang et al., 2024). Furthermore, studies have
indicated (Tsvetkov et al., 2022) a strong correlation between DLAT
and cuproptosis. Recently, Li et al. provided the first evidence that
(Li et al., 2023) high expression of DLAT accelerates the progression
of hepatocellular carcinoma, offering a promising therapeutic target
for HCC treatment. Additionally, we noted that DLAT exhibited the
highest coefficient weight in our risk model. Encouraged by these
results, we decided to conduct further research onDLAT. Analysis of
clinical HBV-HCC samples indicates that DLAT expression levels
are significantly higher in cancerous tissues compared to adjacent
normal tissues.

We believe that the differential expression of these five signature
genes may play a crucial role in the prognostic differences between
genetic subtypes. Therefore, we scored HBV-HCC samples
according to the model, obtaining corresponding risk scores.
Patients were divided into high-risk and low-risk groups based
on the median risk score. Kaplan-Meier survival analysis revealed
a significant difference in prognosis between the high-risk and low-
risk groups. Additionally, we found significant differences in risk
scores between both BHDRGs and genetic subtypes, with higher risk
scores observed in subtypes with poorer prognosis. We validated the
performance of the signature using both internal and external
independent datasets. ROC analysis also demonstrated its strong
predictive ability. Compared with previous studies, our BHDRGs
signature showed relatively good performance and holds potential as
a prognostic tool for predicting outcomes in HBV-HCC patients.

To illustrate the clinical utility of the signature, we constructed a
nomogram integrating patient risk scores, age and stage to better
predict the survival probability of HBV-HCC patients. By
comparing our nomogram with the nomograms developed by
Tian, Tang, and Li, and incorporating the results of ROC
analysis, calibration curve analysis, and decision curve analysis
(DCA), we further validated that our nomogram demonstrates
good predictive ability, accuracy, and clinical applicability.
Overall, our proposed nomogram is a practical tool for
predicting the prognosis of HBV-HCC patients.

The TME is a crucial factor influencing tumor progression and
treatment outcomes (Pitt et al., 2016). Therefore, we evaluated the
TME of different risk groups. We found that the StromalScore,
ImmuneScore, and ESTIMATEScore were significantly higher in the
high-risk group compared to the low-risk group. Immunocyte
correlation analysis showed that Macrophages M0 and
Macrophages M2 were positively correlated with risk scores,
whereas T cells CD8 and T cells gamma delta were negatively
correlated with risk scores. Previous studies have found (Lu et al.,
2023; Tao et al., 2022) that Macrophages M2 promote the
development, progression, and metastasis of liver cancer.
Macrophages M2 are associated with tumor immune evasion and
immunosuppression, often indicating poor patient prognosis (Yang
et al., 2020). Raskov et al. indicated (Raskov et al., 2021) that CD8+

T cells play a crucial role in immunotherapy, and the relative
enrichment of CD8+ T cells in the low-risk group facilitates an
effective anti-tumor response. T cells gamma delta, a new direction
in immunotherapy, have been confirmed by previous research to
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predict a favorable prognosis when infiltrated in tumors (Gao et al.,
2023). However, TIDE score results showed that low-risk patients
had significantly higher TIDE scores than high-risk patients,
indicating that low-risk patients have higher immune escape
potential and are more prone to immune tolerance. Geels SN
et al. (Geels et al., 2024) reported that PD-1-mediated activation
of CD8+ T cells can indirectly promote an increase in Tregs, leading
to tumor immune escape. This also explains why, in our study,
patients in the low-risk group may face a higher risk of
immune escape.

There are ongoing debates regarding whether TMB can
accurately predict the efficacy of immunotherapy. McGrail et al.
have argued that (McGrail et al., 2021) further research is needed to
determine whether a high tumor mutation burden can serve as a
universal marker for immunotherapy across all types of solid
tumors. Similarly, Anagnostou et al. have noted that
(Anagnostou et al., 2022) while TMB holds potential as a broad
biomarker for immunotherapy, it cannot yet serve as an
independent predictor of immunotherapy response, as patients
with low TMB scores may still benefit from treatment.
Additionally, methods for detecting TMB require further
refinement. Therefore, although the TMB scores between the
high- and low-risk groups in our study did not show significant
differences, this does not undermine our conclusions. We also
concur that further research is necessary to explore both the
value and limitations of TMB.

Subsequently, we analyzed the differential expression of
immune checkpoint genes between the risk groups. We found
that the expression levels of 40 immune checkpoint genes,
including the CD274, CD276, HAVCR2, and CTLA4, were
significantly higher in the high-risk group compared to the low-
risk group. The expression results of immune checkpoint genes
suggest that the poor prognosis of the high-risk group might be
related to HBV-HCC cells evading immune system recognition
through activated immune checkpoints. Conversely, high-risk
patients may achieve more significant therapeutic effects from
immune checkpoint inhibitors. We found that in IMvigor 210,
patients who responded significantly to immunotherapy typically
had higher risk scores than those with poor immunotherapy
outcomes. This trend aligns with our conclusions. In summary,
our signature genes could serve as biomarkers for predicting the
efficacy of immunotherapy in HBV-HCC patients.

Given the significant role of pharmacotherapy in the treatment
of HBV-HCC, we assessed the capacity of signature genes to predict
HBV-HCC responses to diverse pharmacological treatments. In the
drug sensitivity data provided by the GDSC database, we found
differences in drug sensitivity for 75 drugs between the high-risk and
low-risk groups. Notably, patients in the high-risk group exhibited
higher sensitivity to sorafenib compared to those in the low-risk
group. Sorafenib (Huang et al., 2020) is a multi-kinase inhibitor that
suppresses tumor cell proliferation in advanced hepatocellular
carcinoma and is currently an effective first-line therapy.
However, some liver cancer patients develop resistance to
sorafenib early in the treatment phase. Witt-Kehati et al. (2018)
suggested that HBV, through HBx, participates in the induction of
pMAPK14 in liver cancer cells, leading to resistance to sorafenib
treatment. We found that low-risk patients had significant
sensitivity to palbociclib. Bollard et al. (2017) reported that

palbociclib inhibits the proliferation of human liver cancer cell
lines by promoting cell cycle arrest. The combination of
palbociclib and sorafenib significantly improved the survival rate
of HCC samples. Therefore, we believe that the signature genes
identified based on BHDRGs have important value for personalized
treatment of HBV-HCC patients.

However, our study has some limitations. First, our data were
derived from various public databases. Although we applied batch
effect corrections, data from different sources inevitably harbor
biases that may influence our findings. Thus, further validation
using independent cohorts is needed. Additionally, we have only
validated the association between DLAT and poor prognosis in
HBV-HCC patients. Further research is needed to determine
whether other key genes independently or synergistically affect
patient outcomes. And we lack more extensive experimental
studies to elucidate the specific functions and mechanisms by
which these signature genes regulate the biological behavior of
HBV-HCC. The efficacy of the immunotherapy predicted by our
model was evaluated solely in a cohort of patients with platinum-
treated locally advanced or metastatic urothelial carcinoma
receiving anti-PD-L1 immunotherapy. Therefore, further
validation of our results is needed in a cohort of HBV-related
hepatocellular carcinoma patients undergoing immunotherapy. In
the future, we will continue to collect more data to assess the
accuracy of our model, and we plan to conduct additional in vivo
and in vitro experiments to further explore the regulatory
mechanisms of the signature genes in HBV-HCC.

5 Conclusion

In summary, our study stratifies HBV-HCC patients into
subgroups with different biological behaviors and clinical
characteristics using BHDRGs, develops a prognostic model
consisting of five signature genes, and constructs a prognostic
nomogram. This model can effectively help predict the overall
prognosis of patients. Finally, we evaluated the potential of
signature genes in chemotherapy and immunotherapy for
different risk groups, providing new ideas and directions for
future treatment strategies for HBV-HCC patients.
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