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For complex human traits, a large portion of genetic heritability remains
unaccounted for beyond common genetic variants; therefore, estimating the
contribution of rare variants (RVs) to the etiology of complex traits is of interest.
Research in this domain has primarily focused on gene-based RV testing
methods, in which information from multiple variants is combined to
maximize statistical power in detecting genes associated with the trait of
interest. However, after discovering an association, estimating individual
effects becomes challenging due to sample size limitations. Hence, the focus
may shift to estimating the average genetic effect (AGE) for the group of RVs
analyzed. This study demonstrates that both AGEs and individual variant effects
can be influenced by competing upward and downward biases, resulting from the
winner's curse and the heterogeneity of individual variant effects, respectively.
Various bias-correction techniques, including bootstrap resampling and
likelihood-based methods, have been proposed to address the winner's curse
bias. We conduct a simulation study to illustrate the ramifications of these
competing biases on variant effect size estimation and how they complicate
the precision of pooled estimates obtained from different bias-correction
techniques. We then examine the individual effect estimates of the causal
variants across the simulation replicates to show how they may contribute to
the observed upward and downward biases when RVs are pooled.

genome-wide association study, rare variants, joint analysis, estimation, selection bias,
winner's curse, effect heterogeneity

1 Introduction

Common genetic variants generally account for only a portion of genetic heritability
(Pritchard, 2001; Bodmer and Bonilla, 2008; Visscher et al., 2017). One of the proposed
explanations for this missing heritability is that genetic architectures are highly polygenic,
involving numerous variants with individually small effects that collectively contribute to
complex traits (Park et al., 2010). Park et al. (2010) demonstrated that the distribution of
effect sizes in genome-wide association studies (GWASs) follows an exponential-like decay,
suggesting that many susceptibility loci remain undetected due to limited power in current
study designs. Furthermore, linkage disequilibrium (LD) structure plays a key role in the
proportion of heritability captured by GWASs as causal variants that are poorly tagged by
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genotyped markers lead to the underestimation of genetic
2012). These
particularly relevant for rare variants (RVs), which, despite

contributions (Yang et al, challenges are
potentially larger effect sizes, remain difficult to detect due to
their low minor allele frequency (MAF) and weaker LD with
neighboring markers (Manolio et al., 2009; Wang et al., 2021).

To improve detection power, gene-based or pooled association
tests have been developed to aggregate information across multiple
RVs, allowing for the joint evaluation of their contribution to trait
variation (Morgenthaler and Thilly, 2007; Li and Leal, 2008; Madsen
and Browning, 2009; Price et al., 2010; Neale et al., 2011; Wu et al.,
2011). Most of these gene-based RV tests belong to either the class of
linear tests (e.g., the burden test) or the class of quadratic tests (e.g.,
variance components or SKAT methods) (Derkach et al.,, 2014). As
each type of test can be more powerful under different scenarios,
hybrid tests have also been proposed to combine the association
evidence from two or more complementary approaches (Lee et al.,
2012; Derkach et al., 2013; Liu et al., 2019).

Following association testing, it is of interest to estimate and
understand the genetic effect sizes of the significant RVs. The gene-
based approach, although effective at association testing, limits our
ability to estimate the individual genetic effect size (f3) for each RV.
A common workaround approach to effect size estimation in this
setting is to consider the average genetic effect (AGE) and estimate
Bace> the effect of one single collapsed genotype variable (Liu and
Leal, 2012). However, this approach has limitations as the group of
RVs analyzed likely contains some null variants not associated with
the trait of interest. Additionally, among the truly associated RVs,
their effect directions may differ. Subsequently, the inclusion of null
RVs or RVs with effects in opposite directions may lead to a
downward bias of the effect size estimate; this downward bias is
underappreciated in the literature. On the other hand, hypothesis
testing and effect estimation performed using the same sample lead
to an upward bias due to the well-known phenomenon of the
winner’s curse or selective inference (Goring et al., 2001; Sun and
Bull, 2005; Efron, 2011; Taylor and Tibshirani, 2015).

For the analysis of individual common variants, several
approaches have been proposed to correct for the winner’s curse,
including bootstrap resampling (Sun and Bull, 2005; Faye et al.,
2011), likelihood-based approaches (Zollner and Pritchard, 2007;
Ghosh et al., 2008; Zhong and Prentice, 2008; Xiao and Boehnke,
2011), and Bayesian approaches (Xu et al., 2011). More recently,
additional work has explored the winner’s curse and proposed
methods for correcting estimation in genome-wide association
and polygenic risk score studies, along with eQTL and mediation
analyses (Shi et al., 2016; Huang et al., 2018; Hu et al., 2019; Xie et al.,
2021; Yang et al,, 2021).

Focusing on the joint analysis of multiple rare variants using the
combined multivariate and collapsing (CMC) method of Li and Leal
(2008), Liu and Leal (2012) estimated B,s; using a modified
bootstrap method, where the median of all bootstrap-based
estimates was used instead of the mean, as employed by Sun and
Bull (2005). Although they showed that the proposed method
provides reasonable bias-reduced f,;; estimates, the following
questions require further investigations: (1) Do the original
bootstrap and likelihood methods perform equally well under the
simulation scenarios considered? (2) Do the individual RV effect
estimates suffer equally from the winner’s curse, regardless of their

Frontiers in Genetics

10.3389/fgene.2025.1416673

true effect sizes or effect directions? (3) Will the biases depend on the
type of test used (e.g., linear vs. quadratic)? This report aims to
answer these questions through a simulation study.

Our investigation builds upon the recent work by Grinde et al.
(2017), with some notable distinctions. First, while Grinde et al.
(2017) focused on case-control studies and used the squared
difference of MAFs between cases and controls as the measure
for an individual variant effect, we use a conventional effect size
measure, which is the rate of change in outcome (either binary or
continuous) per unit change in the genotype. Second, we consider
both the individual variant effects and the average genetic effect.
Finally, while Grinde et al. (2017) centered on the overestimation
problem due to the winner’s curse, our study further considers the
competing downward bias due to effect heterogeneity, providing a
more nuanced understanding of the biases inherent in pooled
analysis of multiple rare variants.

The remainder of this paper is organized as follows. Section 2
reviews existing methods, including association testing of rare
variants, parameter estimation of the average genetic effect 8,
and the winner’s curse. Section 3 presents a simulation study
examining the complex biases in effect size estimation for rare
variants, including the previously underappreciated ramification
of effect heterogeneity between variants in this study setting.
Section 4 provides some concluding remarks.

2 Methods

2.1 Brief review of joint association testing of
multiple rare variants

As association analyses between individual rare variants (X)
and a complex trait (Y) have low power, gene-based pooled tests
have been proposed. These tests aggregate the trait-genotype
association information across multiple RVs and jointly test the
null hypothesis that the trait is independent of the group of RVs.
Let Y; be the trait value across n subjects, where i = 1,...,n, and
Xi; be the genotypes for a group of ] rare variants, where
j=1...,], and Xj; is generally 0 or 1, representing the
absence or presence of the rare minor allele. Consider the set of
association scores for the J RVs,

Si=>(Yi-Y)Xiy, j=L...J.

There exist two classes of score tests that aggregate these scores
in different ways (Derkach et al., 2013). The linear class T, obtains
the weighted average of S,

7
TL = U)TS = (wl,. .. ,w;)TS = Zw}S}
j=1

Depending on how the weights wjs are defined for the
individual variants, methods in this linear class include the CAST
(Morgenthaler and Thilly, 2007), the weighted sum statistic (WSS)
(Madsen and Browning, 2009), and the variable threshold (VT)
methods (Price et al., 2010). These methods are most powerful when
all or almost all aggregated RVs are causal and have the same
direction of effect, but they are sensitive to the signs of S;.
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In contrast, the quadratic class Ty, in essence, obtains the
weighted average of S?. More generally, let A be a positive
definite (or semi-definite) symmetric matrix, then

Tq = STAS,

where if A is a main-diagonal matrix {w;}, it is easy to see that
Wq = Z;zleS? Methods in this quadratic class include the
C-Alpha (Neale et al., 2011), SKAT (Wu et al, 2011), and
Hotelling’s T test. Based on the inherent squaring of the
individual association scores, this class of tests is robust to
bidirectional effects across the J variants but can lose power in
the absence of effect heterogeneity.

Hence, there exists another class of methods that can integrate
the linear and quadratic statistics, such as the SKAT-O method (Lee
et al.,, 2012), Fisher’s method (Derkach et al., 2013), or the more
recent ACAT approach (Liu et al, 2019). Penalized regression
approaches, which allow grouping of multiple regions at once,
form yet another class of methods.

For the purpose of this study, we examine the linear and
quadratic to  better
contributing to the estimation bias. Within the two classes,

classes characterize the key factors
without loss of generality, we then focus on the equal weighting
methods, namely, CAST (Morgenthaler and Thilly, 2007) and
C-Alpha (Neale et al., 2011), from the linear and quadratic
classes, respectively. Both are unweighted methods from their
respective classes, providing a straightforward interpretation of
results. To facilitate the study of 8., the parameter of interest
(Liu and Leal, 2012), we further consider the CMC RV testing
method (Li and Leal, 2008), in the
following section.

which we discuss

2.2 Average genetic effect and CMC
RV testing

It is usually desirable for investigators to estimate the genetic
effect size after achieving a significant association testing result. This
is commonly done for sample size estimation to conduct sufficiently
powered replication studies. For the analysis of rare variants, Liu and
Leal (2012) considered the following genetic model:

Y,* =a+ ZﬂcXic + &,

ceC

where C is the set of truly associated RV affecting the trait; the trait
is assumed to be normally distributed for simplicity but without loss
of generality. The parameters of interest for estimation are f3, along
with the trait variance explained by the group of causal RVs, 0% =
Var (chcﬁcXiC)'

Unfortunately, due to the same logic that limits power in
detecting causal SNPs individually, we are unable to estimate the
individual 3, efficiently. Additionally, in practice, it is not possible to
estimate these parameters directly as we are unable to distinguish
between the causal and non-causal variants.

Possibly, the most organic choice of the parameter estimation
method when association tests are based on weighting/collapsing
variants is the AGE, defined as the change in the trait value per unit
change in multivariate genotype coding K (X;) (Liu and Leal, 2012).
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Thus, the following fitted model (Equation 1) is used for the
inference and estimation of 3, of a group of J rare variants:

Yi=a+f,6:K(X) +e (1

where 8,5 corresponds to the effect of a single collapsed genotype
variable K.

Under the CMC RV association method (Li and Leal, 2008),
testing the null hypothesis Hy: 8, = 0 involves using an indicator
function K(X;) = I{(Zje]
the minor allele at any of the J rare variants analyzed jointly. As the

Xij) > 0}, which denotes the presence of

set of ] RVs included in the analysis and the set of C truly associated
RVs may not be the same and f§; = 0 for a null RV, Liu and Leal
(2012) showed that under the CMC method,

_ Yiernch i
AGE Y o

, )

where q; is the MAF of variant j. Finally, we note that, although the
CMC RV testing method does not fit into the three classes (linear,
quadratic, and hybrid) discussed in Section 2.1, it is fundamentally a
linear type of test as it is sensitive to the direction of the genetic
effect, as evident from Equation 2 and the results in Section 3.

2.3 Winner's curse and bias-
corrected estimates

When analyzing individual common variants that have been
filtered and selected based on statistically significant association, it is
well established that the effect size estimate, [AS
same sample used for association testing, tends to overestimate the

aive> ODtained from the
true effect size of the variant unless the association test has 100%
power (Goring et al.,, 2001). This upward estimation bias is also
known as the winner’s curse. To correct for the winner’s curse,
several approaches have been established, including likelihood-
based, resampling, and Bayesian, among which the bootstrap
resampling approach is one of the most flexible approaches (Sun
et al, 2011) and has been adapted for the rare variant setting (Liu
and Leal, 2012).

The bootstrap approach, in essence, splits the sample into two
independent sub-samples, using one for hypothesis testing and the
other for parameter estimation (Sun and Bull, 2005; Faye et al.,
2011; Sun et al, 2011). In brief, for each bootstrap sample, a
complete GWAS is conducted to determine the associated variants
of interest. For each associated variant identified in the bootstrap
sample, its effect size f3 is estimated twice. First, using the same
bootstrap sample, we obtain BD, which mimics the original GWAS

procedure for j Second, using the remaining sample

naive*
(consisting of individuals not selected for the bootstrap sample),
we obtain /§E directly without requiring significant association
results, thus avoiding the winner’s curse. The difference
between the two estimates, BD - BE, reflects the estimation bias,
Ag, owing to the winner’s curse. To stabilize the sampling
variation, Sun and Bull (2005) recommended repeated bootstrap
sampling and taking the average, Aﬁ = %Zle (ﬁDb - /§Eh). Finally,
subtracting the average bias from the original-sample naive
parameter estimate provides a bootstrap-corrected parameter

estimate, ﬁbogt = ﬁnaive - Aﬁ'
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For rare variants, Liu and Leal (2012) investigated the flexible
bootstrap correction approach (using the median, instead of the
mean, of {BDh - ﬁEh}) for 8, estimation under the CMC method.
After first demonstrating the winner’s curse bias in unadjusted 3,
Liu and Leal (2012) then showed that the bootstrapping method
works well in correcting for the winner’s curse across several
scenarios involving the pooling of causal and non-causal rare
variants in the analysis.

The following simulation study extends the investigation of Liu
and Leal (2012) in several ways. First, we examine whether the
original bootstrap procedure of using the mean of {8 Dy~ B £} works
equally well for estimating the bias. Second, we compare the
bootstrapping correction with the approximate likelihood-based
approach (Blike) of Ghosh et al. (2008). Unlike the bootstrap
method, which relies on resampling techniques to estimate bias,
the Ghosh likelihood method corrects for bias using an approximate
conditional likelihood. This method relies on the use of reported
estimates of genetic effect and its standard error, facilitating
correction of bias without requiring access to the original data.
Finally, we investigate the role of effect heterogeneity across the
different rare variants, including the previously underappreciated
downward bias due to opposing effect directions. These are
important considerations as researchers attempt to quantify the
usefulness of bias adjustment procedures for parameters, such as
B g for studies of rare variants.

To formalize the approach, we define the standardized effect size
as follows:

__b
SE(B)

U

Given an observed estimate [3’ and its standard error §E([§), the
naive test statistic follows

Z=;2=ALA~N<ALA,1>.
SE(B) SE(B)
Since only values where | Z| > ¢ are observed due to selection, this

induces bias in . The Ghosh method corrects for this bias by
modeling the conditional likelihood:

Pu(2) _ f(Z-u)
P.(1Z]>¢) F(-c+u)+F(c—p)

Le(u) = pu(z 1 1Z] >¢) =

where f(-) and F(-) denote the standard normal density and
cumulative distribution functions, respectively, (Ghosh et al., 2008).
The bias-corrected effect size is then obtained by maximizing L (),
ensuring that estimation explicitly accounts for the selection process.
This approach provides a correction that does not require access to
individual-level genotype data. Instead, it relies only on summary
statistics, such as reported effect sizes, standard errors, and
significance thresholds, making it computationally efficient for
large-scale GWASs and meta-analyses.

3 Simulation study

We conducted a simulation study using the Genetic Analysis
Workshop 17 (GAW17) data (Almasy et al, 2011). The

GAWI17 “mini-exome” dataset consists of real human DNA
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sequence data from the 1000 Genomes Project (Consortium
et al,, 2010) and various qualitative and quantitative phenotype
data simulated by the GAW17 data committee. For each phenotype,
200 replicate samples were generated by simulating different
phenotype data based on the true genotype-phenotype model,
conditional on the observed genotype data.

For this investigation, the sample for analysis consisted of the
n = 321 subset of unrelated Asian subjects (Han Chinese, Denver
Chinese, and Japanese), and the quantitative trait Q2 was chosen for
illustration without loss of generality. Among the 13 genes
influencing the trait, method evaluation focused on the SIRTI
gene, for which the best power possible is approximately 50% at
the 0.05 level. This gene has a total of J = 11 rare variants (MAF <
1%), among which C = 4 are assumed to be causal with effects in the
same direction (i.e., the unidirectional scenario) in the
GAW17 simulation, which we will extend to study bidirectional
effects; parameter details are provided in Table 1. First, to improve
inference stability, instead of analyzing the 200 replicates provided
by GAW17, 2,000 new replicate samples were created based on the
true SNP effect sizes from the four casual SNPs within SIRT1 for Q2.
Second, to examine the impact of effect heterogeneity, we allow one
of the four variants to have an effect in the opposite direction
(i.e., the bidirectional scenario).

3.1 Setup

For each replicate sample, we conducted a linear regression
analysis of the phenotype on the collapsed genotype parameter
under the CMC pooling method (1), yielding an effect estimate
(B 1) and corresponding Wald test p-value. To demonstrate the
winner’s curse bias in the rare variant setting, we compared the
distribution of the estimated e from all 2000 replicates to that
restricted to replicates with association p-values <0.05. The choice
of the liberal type-1 error level 0.05 was based on the overall low
power of detecting these genes due to the small sample size
(n =321), small genetic effect (individual variant ; ranges from
0.53 to 0.97), very small MAF (ranges from 0.003 to 0.009), and the
low proportion of the causal variants within the gene (4/11 = 36%
causal); recall that bias increases as power decreases, so more
stringent type-1 error levels would lead to greater biases.

Next, we assessed the performance of the bootstrapping
approach for effect size adjustment proposed by Liu and Leal
(2012) (described in Section 2.3) and the approximate likelihood-
based adjustment method proposed by Ghosh et al. (2008) by
applying them to each of the statistically significant simulation
replicates identified.

To identify the contribution of each of the four causal RVs to the
pooled genotype testing procedures and the f,; parameter
estimates, the phenotype was regressed on each causal variant
separately, yielding individual variant effect estimates ([3]-, j=
1,...,4) for each simulated replicate. We conducted this analysis
based on the results (significance testing) of CMC (Li and Leal,
2008), CAST (Morgenthaler and Thilly, 2007), and C-Alpha (Neale
etal, 2011) RV testing approaches. The CMC method was used by
Liu and Leal (2012) for bias correction in the RV setting, and CAST
reflects the linear class of combined test statistics, whereas C-Alpha
falls within the quadratic class, providing an interesting comparison.
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TABLE 1 GAW17 simulation summary statistics for 8, AGE estimates. .. is the true underlying AGE of all 11 SNPs under the CMC regression model 1 and
calculated using Equation (2). B, reflects the estimate of .., with the sample average (SE) calculated over all 2,000 simulation replicates; f, ,i.e: Bpoor- aNd
Biike reflect the averages (SEs) over only significant replicates (where CMC Wald-test p <0.05), for the naive method of taking the same average of ;¢
directly and the bootstrap- and likelihood-based bias correction methods, respectively, as described in Section 2.3. The underlying individual effect f;
(MAFs g;) = [0(0.0016), 0(0.0047), 0.83(0.0031), 0.97(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0031), 0.93(0.0016), 0.53(0.0047)], where,
under the bidirectional scenario, the sign for g,, is flipped. See Figure 1 for a visual display of the results.

Four causal with 1° in the opposite direction

Description Four causal in the same direction

Bace 030 0.19

Estimation, mean (SE), before significance testing across all 2,000 replicates

Bai 0.34 (0.27) 0.22 (0.27)

Estimation, mean (SE), after significance testing across 528 or 254 replicates

Power = 528/2000 = 26.4% Power = 254/2000 = 12.7%

B 0.67 (0.14) 0.64 (0.16)
naive

Booor 0.40 (0.24) 033 (0.24)
B 036 (0.25) 031 (0.23)

TABLE 2 GAW17 simulation summary statistics for 8, AGE estimates; very large effect sizes. 4 is the true underlying AGE of all 11 SNPs under the CMC
regression model 1 and calculated using Equation (2). 8, reflects the estimate of f,.., with the SE calculated over all 2,000 simulation replicates; f,.;.c.
Bpoot- aNd B reflect the averages (SEs) over only significant replicates (where CMC Wald-test p < 0.05) for the naive method of taking the same average of
the B, directly and the bootstrap- and likelihood-based bias correction methods, respectively, as described in Section 2.3. The underlying individual
effect f; (MAFs g;) = [0(0.0016), 0(0.0047), 0.83(0.0031), 2.0(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0031), 3.0 (0.0016), 0.53(0.0047)],

where, under the bidirectional scenario, the sign for B, is flipped.

Description Four causal in the same direction Four causal with 1° in the opposite direction
Bac 0.49 0.13
Estimation, mean (SE), before significance testing across all 2,000 replicates
B 0.55 (0.27) 0.15 (0.27)

Estimation, mean (SE), after significance testing across 528 or 254 replicates

Power = 1,058/2000 = 52.9%

ﬂnaive 0.75 (0.16)
Broot 0.44 (0.30)
Biice 0.50 (0.30)

It should also be pointed out that the CMC method can be viewed as
a linear type of test; thus, its performance is expected to be
characteristically similar to CAST.

We note that the effect sizes (;) were assigned as part of the
GAW17 simulation framework and do not necessarily reflect
empirical estimates from GWASs or exome sequencing studies.
Thus, in addition to the setup derived from GAW17, we extended
our simulation study to explore additional scenarios with a
higher proportion of causal variants. Specifically, 73% (8/11)
of the variants were assigned causal effects, with individual §;
values ranging from 0.53 to 0.97. Additionally, we considered
cases where certain SNPs had substantially larger effect sizes,
with 36% (4/11) of the variants exhibiting ﬂj values between
0.53 and 3.0. These extensions aim to enhance the generalizability
of our findings to a broader range of practical scenarios. In
particular, rare causal variants, such as protein-truncating
variants, are often associated with very large effect sizes
(Decker et al., 2017).

Frontiers in Genetics

Power = 149/2000 = 7.5%
0.57 (0.31)
0.20 (0.23)

0.27 (0.23)

3.2 Performance of the bootstrapping and
likelihood effect size adjustments

Summary statistics for the estimate of B,;; across the
GAW17 simulation replicates are reported in Tables 1-3. We
observed that the following results are qualitatively similar across
the scenarios explored, and thus, we focus our discussion on Table 1.
Consistent with the study by Derkach et al. (2013), the estimated
power for this linear-type test is greater when causal variants all
share the same direction of effect (power = 0.26) compared to when
variants with effects in the opposite direction are present (power
=0.13). This corresponds to 528 statistically significant (p <0.05)
replicates available for investigation under the unidirectional variant
effects scenario and 254 under the bidirectional scenario (Table 1).

First, without conditioning on the association testing results, the
parameter estimation is unbiased, as expected: ﬁull is 0.34, close to
0.3, the true 8, value for the unidirectional scenario, and it is
0.22 compared with 0.19 for the bidirectional scenario.
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TABLE 3 GAW17 simulation summary statistics for 8, AGE estimates; many casual variants. ., is the true underlying AGE of all 11 SNPs under the CMC
regression model 1 and calculated using equation (2). ,, reflects the estimate of S,,., with the SE calculated over all 2,000 simulation replicates; f,,;,c.
Broot: aNd B reflect the averages (SEs) over only significant replicates (where CMC Wald-test p < 0.05) for the naive method of taking the same average of
the B, directly and the bootstrap- and likelihood-based bias correction methods, respectively, as described in Section 2.3. The underlying individual
effect ; (MAFs q;) = [0(0.0016), 0.97(0.0047), 0.83(0.0031), 0.97(0.0016), 0.83(0.0016), 0(0.0016), 0(0.0016), 0.93(0.0016), 0.53(0.0031), 0.93(0.0016),

0.53(0.0047)], where, under the bidirectional scenario, the signs for 3 and g,, are flipped.

Description

Eight causal in the same direction

Eight causal with 2° in the opposite direction

Bace 0.64

Estimation, mean (SE), before significance testing across all 2,000 replicates

[;all 0.72 (0.27)

Power = 1,527/2000 = 76.3%

[; ‘ 0.83 (0.20)
naive

Bioot 0.66 (0.33)
Bie 0.65 (0.34)

Second, when the average estimate was calculated among only
the significant replicates, bias in Ball was considerable due to the
winner’s curse: ﬁmm —PBage =0.67-03=0.37 and =0.64 -
0.19 = 0.45 for the unidirectional and bidirectional scenarios,
respectively, and as expected, the bias increases as power decreases.

Third, similar to the results of Liu and Leal (2012), the bootstrap
bias adjustment works well under the CMC RV association testing
method. Using the bootstrap correction (Liu and Leal, 2012), the
average absolute bias owing to the winner’s curse was greatly reduced,
Buoot = Bace = 0.40 —0.30 = 0.10 and = 0.33-0.19 = 0.14 for the
unidirectional and bidirectional scenarios, respectively (Table 1;
Figures 1A,B). Of note, the results of using the mean of the
bootstrap samples [as originally proposed by Sun and Bull (2005)],
instead of the median [as used by Liu and Leal (2012)], were not
noticeably different from each other. Thus, only results using median
bootstrap bias estimates are reported in this study.

Fourth, the approximate likelihood approach proposed by Ghosh
et al. (2008) appears to perform as well as, if not better than, the
bootstrap approach, where [g’,ike —Bage = 0.36 - 0.30 = 0.06 and =
0.31 -0.19 =0.12 (Table 1; Figures 1CD). We observed one
exception to this; under the scenario that included very large effects
in opposing directions (Table 2), the likelihood method demonstrated
greater bias (Blike —Buge = 0.27 - 0.13 = 0.14) than the bootstrap
approach ([ﬂbom —Bage = 0.20 = 0.13 = 0.07). Due to its ease of
implementation and computational efficiency, the likelihood
approach may be preferred over the bootstrapping approach.

Finally, it is important to point out that 8., does not reflect the
true average effect size of the causal variants B,gp s+ Bage 1
attenuated compared with 8,z 4, due to the inclusion of variants
with no effects (i.e., 8 ;= 0). For example, in the unidirectional effect
scenario, while 8, = 0.3 [the MAF-weighted average of effect across
all 11 RVs, based on Equation 2], 8 AGEcausal = 0-74 when considering
only the four causal RVs. Additionally, the effect direction also affects
the interpretation of 8,5 4+ FOr example, under the bidirectional
effect scenario where the effect sizes are f3; =0.83, f3, =0.97,
B =—0.93, and B;; = 0.53, the average effect size among the four
causal effects is 8 g5, s = 0-47, which is substantially smaller than the
average magnitude of the four individual effects. This is not surprising
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0.48 (0.27)

Estimation, mean (SE), after significance testing across 528 or 254 replicates

Power = 844/2000 = 42.2%

0.72 (0.15)

0.46 (0.29)

0.46 (0.30)

considering the definition of 8 ,;, which is sensitive to the direction of
the effect.

3.3 Bias—variance tradeoff in effect
estimation

Estimates of effect sizes, such as the bias-corrected estimates
investigated in this study, require standard error estimates for
inference procedures. Ghosh et al. (2008) constructed confidence
intervals with correct conditional coverage by applying the original
Neymanian concept of confidence regions, where intervals are derived
from the known conditional distribution of the test statistic after
selection. Specifically, the acceptance region A(u,1— «) is defined
between «/2 and 1-a/2 quantiles of the conditional density
Pu(zl|1Z] > ¢), ensuring exact coverage probability 1 — « for any u.

Although Liu and Leal (2012) did not propose methods for
calculating confidence intervals (Cls) or standard errors (SEs) for
the bootstrap-corrected estimates of 3, the two-level bootstrap
sampling scheme described by Faye et al. (2011) for common GWAS
variants could be adapted to rare variant analyses to provide
resampling-based standard error estimators for f,;., thus
providing a basis for inference.

Rather than investigating and reporting such standard error
estimation methods, we report the empirical standard error
estimates to investigate the bias—variance trade-off related to the
bias-corrected estimate of f,;,. We find that bias-correction
methods result in increased standard errors compared to the
uncorrected “naive” estimates across all scenarios (Tables 1-3).
Interestingly, the SE estimates for the bias-corrected estimates
closely approximate those of the unbiased estimates Bull’ which
represent the true underlying effect sizes and standard deviations.

3.4 Individual variant effects

A limitation of the current state of the rare variant literature is a
demonstration of the bias associated with the individual causal
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FIGURE 1

Distributions of B, estimates before and after the corrections. (A—C) Settings where all causal variants have the same direction of effects
(unidirectional). (B-D) Bidirectional effects. The underlying individual effect f; (MAFs g;) = [0(0.0016), 0(0.0047), 0.83(0.0031), 0.97(0.0016), 0(0.0016),
0(0.0016), 0(0.0016), 0(0.0016), 0(0.0031), 0.93(0.0016), 0.53(0.0047)], where, under the bidirectional scenario, the sign for B, is flipped. The vertical
black line represents the empirical estimate of the “true” AGE value, f,,, the average of the effect size estimates from all 2,000 simulated replicates
(white bars); /Aj,m,,ve (vertical red line) reflects the average of the effect size estimates from the significant replicates with CMC rare variant testing Wald
P <0.05; Boonecteq (Vertical green line) reflects the average of the effect size estimates following correction using the bootstrap method (A,B) or the

approximate likelihood method (C,D). See Table 1 for a numerical summary.

effects contributing to the winner’s curse bias. To this end, we
examined the individual effect estimates of the causal variants over
the GAW17 simulation replicates to shed light on some of the
contributing factors that might play a role in the different scenarios
of pooled effects. To this end, we first applied three RV association
methods: CMC (Li and Leal, 2008), CAST (Morgenthaler and Thilly,
2007), and C-Alpha (Neale et al., 2011), jointly testing a group of
variants. We then summarized the individual variant effect
estimates, with or without conditioning on the testing results.
Results of the individual effect estimates (B i j=3,4,10,11; the
four causal variants) are summarized in Table 4 for RV joint testing
based on CMC, CAST, and C-Alpha. The average B ; over all replicates
and the average over only the significant (the association p-values <
0.05) replicates are presented for each of the four causal SNPs under
each of the two scenarios (unidirectional and bidirectional effects). As
both the pooled variant Wald (CMC) and linear combined score
(CAST) statistics represent the linear class of RV joint testing
approach, the results of the individual variant effect analyses
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conditional on these two testing methods are quite similar and thus
discussed jointly below. This similarity in the linear class methods’
results suggests that we could expect comparable outcomes among
quadratic class methods, such as those observed with C-Alpha.

Consistent with the previous literature on the power of RV
association testing, when all causal SNPs have the same direction of
the effect, the linear test has a slight advantage, but the power of the
quadratic test is comparable (power of 20% for C-Alpha compared
with 0.27 and 0.26 for CAST and CMC, respectively). On the other
hand, when one of the four causal SNPs (25%) has an effect in the
opposite direction to the others, the power is greater with the
quadratic test statistic (0.21 for C-Alpha compared with 0.15 and
0.13 for CAST and CMC, respectively). Moreover, consistent with
the previous literature on the winner’s curse for common variants,
the relative bias increases as power decreases.

However, under the linear testing approaches (CMC and CAST),
causal variants with effects in opposite directions (right side of Table 4) led
in the majority group

to an increased upward bias for the individual ﬁmive
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TABLE 4 Individual causal variant  estimate summary conditional on significant linear (CMC and CAST) or quadratic (C-Alpha) association testing. The
underlying individual effect g; (MAFs g;) = [0(0.0016), 0(0.0047), 0.83(0.0031), 0.97(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0016), 0(0.0031),

0.93(0.0016), 0.53(0.0047)], where, under the bidirectional scenario, the sign for B, is flipped. g, is the average ;
is averaged over only the significant replicates (p <0.05). Bias is the effect estimation bias of §, ; ., where the positive bias represents upward bias

ﬁnaive

estimates over all 2,000 replicates, and

away from 0, while the negative bias represents downward bias toward 0. The relative bias (rel.bias) is the bias divided by true B;-

Association testing based on CMC (

Four causal in the same direction

Power = 528/2000 = 26.4%

ﬂnaive bias

Four causal with 1° in the opposite direction
Power = 254/2000 = 12.7%

bias rel.bias

rel.bias Bau Braive

3 0.83 0.80 1.06 0.23 0.28 0.81 1.22 0.39 0.47
4 0.97 0.98 1.37 0.40 0.41 0.99 1.34 0.37 0.38
10 0.93 or —-0.93 0.93 1.24 0.31 0.33 -0.94 —-0.51 -0.42 —0.45
11 0.53 0.50 0.82 0.29 0.55 0.51 0.93 0.40 0.75

Association testing based on CAST (

Four causal in the same direction

Power = 536/2000 = 26.8%

RV B naive bias

index #

)

Four causal with 1° in the opposite direction
Power = 302/2000 = 15.1%

bias rel.bias

rel.bias Bau [ —

4 0.97 0.98 1.55 0.58 0.60 0.99 1.61 0.64 0.66
10 0.93 or —-0.93 0.93 1.18 0.25 0.27 -0.94 -0.56 -0.37 -0.40
11 0.53 0.50 0.78 0.25 0.47 0.51 0.83 0.30 0.57

Association testing based on C-Alpha (

Four causal in the same direction

Power = 400/2000 = 20%

bias

RV i B naive
index #

Four causal with 1° in the opposite direction
Power = 410/2000 = 20.5%

bias rel.bias

rel.bias [;all ﬁnaive

4 0.97 0.98 1.49 0.52 0.54 0.99 1.50 0.53 0.55
10 0.93 or —0.93 0.93 1.05 0.12 0.13 -0.94 -1.18 0.25 0.27
11 0.53 0.50 0.89 0.36 0.68 0.51 0.90 0.37 0.70

(3 of 4 SNPs sharing the same direction of effect) and a large downward
bias (shrinkage toward 0) in the magnitude of the minority group’s Bmive
(1 of 4 SNPs with the opposite direction of the effect), which is previously
unreported. Intuitively, causal variants with an effect in the opposite
direction (the minority group) dilute the collapsed genotype effect
(direction of the majority group) on average for a given linear testing
procedure. Thus, when the observed effects of these oppositional variants
are smaller, the collapsed genotype effect driven by the majority group is
more likely to be significant. Additionally, due to these oppositional
effects, the majority group’s causal variants need to demonstrate an even
stronger observed effect size for the linear testing procedure to yield a
significant pooled genotype effect.
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Unlike linear testing methods, quadratic testing (C-Alpha)
involving causal variants with effects in opposite directions does
not significantly alter the magnitudes of biases for the individually
estimated f8; compared to the scenario where all causal SNP effects are
unidirectional. Under the quadratic testing, the winner’s curse bias
yields an increased magnitude of bias for all individual SNP effect
estimates. This is also intuitive as the squaring method inherent in the
quadratic test ensures that each of the causal variants will contribute to
a significant test, regardless of which direction the extreme/large
effects point to. This is also reflected by the unchanged power
from the unidirectional scenario to the bidirectional scenario (both
approximately 20%), unlike the linear testing methods.
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4 Discussion

The upward bias in effect size estimation due to selective inference
conditional on significant association testing is well understood for
common variants and has been demonstrated for rare variants in the
context of 8,5, the average effect across all RV analyzed. However,
the possibility of downward estimation bias due to heterogeneous
effect directions among the RVs and its relationship with the RV
association testing methods used has previously gone unrecognized.
We investigated the combination of these factors through a simulation
study of rare variant testing and estimation based on GAW17 data.

Starting with previously defined 8,5, we first demonstrated the
upward bias in Bn aive> the naive estimate, replicating the earlier study
of Liu and Leal (2012)). We then demonstrated that the conditional
likelihood method and the original bootstrap method proposed for
common variants work well in providing bias-corrected estimates, in
addition to the modified bootstrap method of Liu and Leal (2012)).

We then examined how heterogeneous effect direction affects
our interpretation of f,p, along with the estimation of f8;, the
individual variant effect size.

First, as 8, is an MAF-weighted linear average of 3, opposite
effect directions result in a pessimistic f3 ;5. To check this, consider
the simplistic case of two causal variants with identical MAF and
effect magnitude but in opposite effect directions; then, 8,5 = 0.
Thus, the choice of how to define the average genetic effect across a
set of variants is important. One useful direction for future research
is the examination of the behavior of the non-centrality parameter of
the association test statistic, which not only depends on both MAF
and 8 l but is also directly related to power, which, in turn, is
inversely associated with estimation bias.

Second, our simulation results showed that individual SNP effect
estimate bias depends not only on the directionality of SNPs within the
set but also on the choice of linear or quadratic association testing
approach. For linear tests, individual estimates (3 ;8) can exhibit both
upward and downward biases, depending on the sign of the underlying
effects (8 js). For quadratic tests, the individual estimates are always
upwardly biased (ie., always larger in magnitude).

Although our simulation studies only focused on CAST
(Morgenthaler and Thilly, 2007) from the linear class and C-Alpha
(Neale et al, 2011) from the quadratic class, the general analytical
form of these tests suggests that our observations can be generalized to
other specific tests from each class, e.g., WSS (Madsen and Browning,
2009) from the linear class and SKAT (Wu et al., 2011) from the
quadratic class. The behaviors of tests from the hybrid class, such as
SKAT-O (Lee et al., 2012) and Fisher’s method (Derkach et al., 2013),
however, are unknown and warrant future studies.

As rare variant studies scale to exome- and genome-wide datasets,
computational efficiency becomes increasingly important. Bootstrap-
based methods, while flexible, can be computationally expensive for
large-scale analyses. Likelihood-based corrections, as evaluated in our
study, offer a more scalable alternative, particularly when computational
resources are limited. Additionally, for extremely rare variants (e.g.,
minor allele frequency <0.1%), a key challenge in bootstrap
resampling ensures that both subsamples contain at least one
instance of the effect allele. Random splits may lead to scenarios
where the effect allele is absent in one subsample, potentially
distorting the bootstrap distribution. A possible mitigation strategy is
stratified resampling, where subsamples are selected to ensure the
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representation of effect alleles. However, intentional selection of
subsamples risks introducing bias and is beyond the scope of this work.

Existing bias-correction methods for common variants can be
effectively applied to estimate the AGE for rare variants. However,
pooling rare variants presents challenges for estimating individual
effect sizes, particularly when causal variants have bidirectional effects.
As rare variant studies expand with whole-genome sequencing and
biobank-scale datasets, future work should focus on improving bias-
correction methods for both pooled and individual effect estimates.
Although likelihood-based methods are efficient, machine learning
and Bayesian approaches could provide more flexible models for
capturing complex effect architectures. Additionally, incorporating
corrected rare variant effects into polygenic risk scores may enhance
predictive accuracy, especially for diseases with strong rare variant
contributions. Developing methods that optimally combine linear and
variance-component tests, such as SKAT-O, could further improve
estimation in the presence of effect heterogeneity. Advancing these
techniques will strengthen our ability to quantify rare variant
contributions to complex traits and improve genetic risk prediction.
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