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Introduction: Pregnancy involves a double genome, and genetic variants in the
mother and her fetus can act together to influence risk for pregnancy
complications, adverse pregnancy outcomes, and diseases in the offspring.
Large search spaces have hindered the discovery of sets of single nucleotide
polymorphisms (SNPs) that act epistatically.

Methods: Previously, we proposed a method for case-parent studies, called the
Genetic Algorithm for Detecting Genetic Epistasis using Triads or Siblings
(GADGETS), that can reveal autosomal epistatic SNP-sets in the child’s
genome. Here we incorporate maternal SNPs, thereby extending GADGETS to
nominate SNP-sets containing offspring loci only, maternal loci only, or both. We
use a permutation procedure to impose a preference for epistatic over outcome-
related but non-epistatic SNP sets. Our maternal-fetal extension uses case-
complement-sibling pairs together with mother-father pairs, exploiting
Mendelian transmission and a mating-symmetry assumption.

Results: In simulations of 1,000 case-parents triads with 10,000 candidate SNPs,
GADGETS successfully detected simulatedmulti-locus effects involving 3-5 SNPs
but was somewhat less successful at distinguishing epistatic SNPs from sets of
non-epistatic SNPs that each conferred high risk independently. Though the
epistasis-mining algorithms MDR-PDT, TrioFS, and EPISFA-LD were originally
designed to find epistatic offspring variants, we generalize them to include
maternal SNPs and search more broadly. GADGETS outperformed those
competitors and could successfully mine a much larger list of candidate SNPs.
Applied to dbGaP data, GADGETS nominated several multi-SNP maternal-fetal
sets as potentially-interacting risk factors for orofacial clefting.

Discussion: The extended version of GADGETS can mine for epistasis that
involves maternal SNPs.
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1 Introduction

For health conditions with “complex” etiologies, risk is influenced by both genetic and
non-genetic factors. An interesting possibility, particularly for conditions with onset early in
life, is that the prenatal environment plays a role. That intrauterine exposures can impact
the health of the developing fetus is well established; for example, fetal alcohol syndrome
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can include brain damage, characteristic modifications in facial
features, and growth deficits (May et al., 2018).

The interplay of the mother’s genotype and that of her fetus can
also affect the gestation. For example, in pregnancies affected by Rh
incompatibility, in which the mother’s blood is Rh-negative and the
fetus is Rh-positive, the mother produces antibodies that attack fetal
red blood cells (Urbaniak and Greiss, 2000). Aside from the
immediate danger posed to the fetus, epidemiological evidence
suggests that related mechanisms may predispose the child to
schizophrenia later in life (Hollister et al., 1996; Cannon et al.,
2002). Indeed, SNPs in the gene that encodes Rh factor in both
mother and child genotypes appear to jointly influence the child’s
risk of schizophrenia (Palmer et al., 2002).

Three types of mother-genotype/child-disease associations have
been investigated: maternally-mediated genetic effects, maternal-
fetal interactions, and “imprinting.” This paper proposes methods
for detecting the first two of these. Maternally-mediated genetic
effects arise when the maternal genotype, possibly acting through
the intrauterine environment, affects the child’s disease risk,
regardless of the child’s genotype. Maternal-fetal interactions, in
contrast, arise when the maternal and child genotypes synergistically
affect the child’s disease risk. The genetic loci involved may be the
same in mother and child, but need not be. Some maternal-fetal
interactions involving the same locus in both genomes are called
“maternal-fetal genotype incompatibilities” (Sinsheimer et al., 2003;
Childs et al., 2011). We consider here only autosomal genetic effects.

Studies of maternally-mediated effects and maternal-fetal
interactions can effectively use a case-parents triad design, in
which individuals with the condition of interest and their
biological parents (regardless of parental case status) are
genotyped for the autosome. In addition, the triad design can be
used to study conditions that affect the mother or mother-child unit,
like preeclampsia or premature rupture of the membrane during
pregnancy. Weinberg, Wilcox and Lie (1998) described a log-linear
approach for estimating a maternal SNP’s effect based on the idea
that, under a mating-symmetry assumption, risk-related maternal
variants should be more common in the mother than in the father.
Sinsheimer, Palmer and Woodward (2003) extended the log-linear
approach to model maternal-fetal incompatibilities, and further
extensions accommodate a variety of additional data types and
assumptions (Kraft et al., 2004; Kraft et al., 2005; Minassian
et al., 2005; Hsieh et al., 2006; Childs et al., 2010; Childs et al.,
2011). Cordell, Barratt and Clayton (2004) described a related
method based on conditional logistic regression that could model
either maternally-mediated effects or maternal-fetal interactions.

These methods evaluate one or a few pre-specified loci. None
were designed to mine for higher-order maternally-mediated effects
or maternal-fetal interactions among a large collection of candidate
maternal and child SNPs. Identifying multi-SNP interactions
involves search spaces that are usually too large to examine all
possible combinations of SNPs, even among relatively few
candidates. For example, among 10,000 candidate SNPs, the
number of four-SNP sets exceeds 1014.

Existing algorithms designed to mine for epistatic genetic
interactions using triad data include GADGETS (Nodzenski
et al., 2022), MDR-PDT (Martin et al., 2006), TrioFS (Schwender
et al., 2011), and EPISFA-LD (Xiang et al., 2020). None can search
genome-wide, and they differ substantially in the number of

candidate SNPs they can accommodate. While GADGETS can
mine 10,000 candidates, the others generally allow only several
hundred (Nodzenski et al., 2022).

Our primary goal is to demonstrate that, by including maternal
SNPs as candidates, GADGETS’s search capabilities expand to
include both epistatic multi-SNP maternally-mediated effects and
maternal-fetal interactions. Further, we show that the same tactic of
including maternal SNPs also expands the capabilities of MDR-
PDT, TrioFS, and EPISFA-LD.

This paper is structured as follows. We begin by reviewing
GADGETS’s current implementation and then describe
modifications needed to incorporate maternal variants. We
discuss how those modifications impact previously developed
permutation-based inferential procedures and graphical
visualization techniques. Next, we carry out simulations to assess
GADGETS’s ability to detect epistatic multi-SNP maternally-
mediated effects or maternal-fetal interactions by searching
among 10,000 candidate SNPs. In scenarios with two
nonoverlapping epistatic SNP-sets, we attempt to identify both.
In scenarios that have an epistatic SNP-set together with a group
of non-epistatic risk-related SNPs, we attempt to isolate the epistatic
SNP-set. We then describe how to adapt MDR-PDT, TrioFS, and
EPISFA-LD to search for interactions involving maternal SNPs and
compare their performance with GADGETS’s using
25–500 candidate SNPs. Finally, we apply our extended version
of GADGETS to candidate SNPs from a case-parents GWAS of
orofacial clefting (Beaty et al., 2010) to nominate sets of maternal
and fetal variants as possibly jointly risk-associated. Throughout, we
assume a case-parents design in which the child has the condition
under study; however, our approach also applies to triads
ascertained because the mother or mother-child unit suffered a
shared condition, such as a pregnancy complication.

2 Materials and methods

2.1 Review of GADGETS’s original
implementation

GADGETS (Nodzenski et al., 2022) is an epistasis-mining
algorithm that takes as input a collection of autosomal candidate
SNPs and searches for SNP-sets that exhibit preferential joint
transmission to affected offspring, giving evidence that they are
synergistically related to the disease. GADGETS can broadly be
conceptualized as a two-stage process: 1) a search to nominate risk-
relevant SNP-sets, and 2) post-processing the nominated SNP-sets
to filter out non-epistatic ones. Its search strategy employs a
computational optimization technique known as a “genetic
algorithm,” also known as an “evolutionary algorithm,” which
mimics Darwinian evolution through natural selection in an
artificial population of SNP-sets (Holland, 1975). Post-processing
includes a permutation procedure and selection and weighting for
visualization.

2.1.1 Genetic algorithm
We assume a case-parent triad design and a list of candidate

autosomal SNPs. GADGETS’s genetic algorithm optimizes a fitness
function that maps a SNP-set, set of d SNPs, to a fitness score. The
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fitness score is designed to be larger for SNP-sets with stronger
evidence for joint transmission to affected offspring. For a fixed
SNP-set size d, the genetic algorithm searches for high fitness SNP-
sets by 1) generating an initial population of SNP-sets by randomly
sampling from the list of candidate SNPs; 2) assigning a fitness score
to each SNP-set; and 3) passing that population through a series of
generations in which high fitness SNP-sets are more likely to
propagate to the next-generation. At each generation, diversity is
enhanced through operations inspired by biological mutation and
crossover. To enable a broad search capable of recovering multiple
risk-related SNP-sets, we simulate this evolution-inspired process
separately within each of a thousand distinctly evolving island
populations (Andre and Koza, 1996), with occasional cross-
migration among islands within specified four-island clusters.
This island structure enables the analyst to exploit parallel
computing. Because the SNP-set size d is constant across
generations, we carry out separate runs of GADGETS across a
range of values for d, from two to five in this paper. At
convergence, results for each SNP-set size are aggregated across
islands and stored for integrated analysis.

Each SNP-set’s fitness score for GADGETS is based on the
paired genotype difference vectors from every triad. Genotypes are
coded as 0, 1, or 2, representing copies of an analyst-designated allele
(usually the minor allele, but the choice does not affect results). For
the ith triad, the difference vector, xi, is computed as xi � Di − Ci,
where Di is a vector of d elements containing allele counts for each
SNP in that SNP-set for the ith case, and Ci is the corresponding
vector of untransmitted parental alleles, comprising the
complement-sibling alleles. (We assume Mendelian transmission,
so none of the d SNPs is related to fetal survival.) Then, under the
null hypothesis that none of the SNPs is related to disease, the ith case
would be equally likely to inherit either allele from each parent.
Consequently, under a general no-effect null, each element of xi has
expectation zero.

This fitness score relies on the intuition that, if all SNPs in a
SNP-set act jointly, then those alleles should be inherited together by
cases more frequently than by their paired complement-siblings.
Consequently, across families, the associated difference vectors
should systematically differ from the zero vector and tend to lie
in the same orthant. The fitness score quantifies how well a SNP-set
aligns with that expectation by using a quadratic form that is similar
to a paired Hotelling’s T2 statistic.

To prioritize detecting SNP-sets with epistatic effects
compared to those where each SNP can influence risk even
without the others present (i.e., a set of SNPs with separate,
noninteracting effects), GADGETS uses several tactics. First, the
fitness score gives more weight to families whose difference vectors
are long, because they should be more informative about epistasis.
Second, GADGETS makes data-driven decisions about which
allele at each locus, and in the context of a particular SNP-set,
to designate a provisional risk allele and whether its mode of
inheritance in that set appears to be recessive. Finally, GADGETS
shrinks the length of the weighted mean difference vector because,
for truly epistatic SNP-sets, a case should carry provisional risk
alleles at all d loci in a SNP-set more often than does their
complement sibling. To further prioritize SNPs with joint
super-multiplicative effects, we set the paired-difference
covariances to 0 for the difference vector’s variance for SNPs in

the set that are not in linkage, e.g., those on different
chromosomes. Let �xw be the resulting shrunken weighted mean
genotype difference vector, w be the sum of the weights, and Σ̂ be
the corresponding weighted covariance matrix. The fitness score
(S), is S � w�xT

wΣ̂
−1
�xw (Nodzenski et al., 2022).

2.1.2 Permutation-based inference
We previously introduced (Nodzenski et al., 2022) an epistasis

test that is applicable to individual SNP-sets and assesses whether
the data suggest that the set’s component SNPs contribute super-
multiplicatively to disease risk. This test helps eliminate non-
epistatic SNP-sets from the sets nominated by the genetic
algorithm and aids visualization of interacting SNP-sets via
network plots. The permutations replicate the null scenario in
which the disease risk is attributable to a specific SNP-set only
due to multiplicative marginal effects across the constituent
unlinked SNPs, which contrasts with the alternative in which
there are epistatic effects involving the genetically unlinked
elements of the SNP-set. Any SNPs in the SNP-set considered
linked are treated as a single locus in the permutations. First, at
each component locus in the SNP-set, the genotypes for the mother,
father, and case are kept linked together. Then permutation-based
pseudo-families are formed by randomly reassembling those
fragmented triads (Supplementary Figure S1). Absent population
stratification, each such pseudo-family should have been equally
likely to be sampled as an observed family under a no-epistasis null
hypothesis. This permutation procedure preserves the marginal
effects for each unlinked component locus but destroys super-
multiplicative joint effects by ensuring that unlinked sets of SNPs
occur together independently within the reassembled pseudo-
families. The epistasis test p-value compares the fitness-score for
the SNP-set from the actual families to the distribution of fitness
scores from these permutation-based pseudo-families. We note
however that the resulting p-value is strictly valid as a p-value
only when the data used for testing are independent from those used
to nominate the specific SNP-set, e.g., when applied to a separate
data set or enough families have been studied to allow a hold-out set.
Because our simulations and our data application use the same data
for both, we use the term “h-value” to remind us of that limitation;
nevertheless, smaller “h-values” suggest epistasis. We use h-values
based on 10,000 sets of randomly re-assembled case-parent
pseudo-families.

2.1.3 Visualization
To visualize results for a particular dataset, simulated or real,

GADGETS aggregates evidence across runs with different SNP-set
sizes into a single network plot (Nodzenski et al., 2022). After the GA
evolution has converged for the island populations, graphical scores
are assigned to individual SNPs and, separately, to pairs of SNPs,
such that higher scores reflect stronger evidence that a particular
SNP or SNP pair participates in risk-related epistasis. The graphical
scores rely on a subset of the SNP-sets nominated by the genetic
algorithm together with h-values from the epistasis permutation test
for those SNP-sets. Nodzenski et al. (2022) proposed restricting
attention to the top 10 highest-fitness SNP-sets for each d. Then
single SNP scores and paired-SNP scores are computed based on the
h-values for the SNP-sets they are part of. In the resulting network
plot, a larger, darker node (representing a SNP) reflects a larger SNP-
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specific score, while a thicker, darker connection (edge) between
nodes corresponds to a larger pair score.

2.2 Proposed modifications to include
maternal SNPs

Extending GADGETS to search for epistatic maternally-
mediated effects or maternal-fetal interactions requires revising
the list of candidate SNPs, the fitness score, permutation testing,
and visualization. Otherwise, GADGETS operates as detailed in
Nodzenski et al. (2022). In particular, we used the default values for
all tuning parameters as specified in that paper.

2.2.1 List of candidate SNPs
If GADGETS is provided a list of candidates that includes autosomal

maternal loci in addition to autosomal child loci, the extended algorithm
can stochastically consider SNP-sets comprising child SNPs only,
maternal SNPs only, or a mix. To include maternal SNPs, we use
fathers as their paired controls, under an assumption of mating
symmetry in the study’s source population. Under that assumption,
mother-father pairs with genotypes (g1, g2) are as likely as are those with
genotypes (g2, g1), for any genotypes g1 and g2. (This assumption is
weaker than randommating and does not require absence of population
stratification.) If, conditional on the affected child’s genotype, those
parental SNPs are unrelated to the child’s risk of disease, there should
also be mating symmetry among the studied families.

The list of candidate SNPs that is input into GADGETS must
now designate maternal versus offspring loci. In our simulations we
always include both the maternal and child SNP at each given
candidate locus, so that, for p candidate loci, GADGETS would be
provided 2p candidate SNPs. This mirrored inclusion of the same
candidate maternal and child loci is not required. Although
maternal effects have mostly not been directly studied, variants
previously identified by case-control studies, e.g., in GWAS, but that
are actually only related to risk when the mother carries them, could
often nevertheless have produced observable case/control
differences through those maternal effects, simply because more
case mothers would have carried those variants and passed them on.
This argues for mirrored inclusion of the same SNPs in the fetus and
in the mother, allowing them to compete without prejudice in the
stochastic search.

A schematic showing GADGETS’s algorithm for combined
maternal and fetal candidate SNPs appears in Figure 1.

2.2.2 Fitness score
For a revised fitness score, if a SNP-set’s jth element is a maternal

SNP, then the jth element of that family’s genotype difference vector
is the difference in allele count between the mother and father. We
provide details regarding computation of the covariance matrix, Σ̂,
and carrying out mutations (Supplementary Methods S1).

For SNP-sets that include only child SNPs, this fitness score is
unmodified and should again reflect evidence of epistasis
(Nodzenski et al., 2022). For sets containing only maternal SNPs,
under mating symmetry, maternal SNPs that jointly increase risk,
i.e., those with maternally-mediated epistatic effects, should be
jointly carried more frequently by mothers of cases than by their
fathers. That asymmetry will also occur if risk is enhanced by a
maternal fetal interaction, such as the maternal-fetal incompatibility
of the Rh example in the Introduction. For example, in affected
triads one allele could be systematically absent in the mother but
systematically present in the fetus. Then, the evident maternal risk
allele and the evident fetal risk allele will be the two different alleles
at that locus and that maternal and fetal configuration of alleles will
tend to co-occur in affected triads. Elements of �xw that correspond
to maternal SNPs should therefore be large in magnitude only when
the SNPs are risk-related through maternal effects or maternal-fetal
interactions or incompatibilities.

2.2.3 Permutation-based inference
The h-value for the permutation-based epistasis test is computed

analogously in that we again create permuted data sets of

FIGURE 1
Flowchart of the GADGETS algorithm for a single island
subpopulation. In this schematic, we include four SNP-sets of size
d � 3. Details about the island model and migration among islands are
in Nodzenski et al. (2022).
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reassembled pseudo-families based on unlinked loci, and then
compare the observed fitness score to those based on permuted
data. For a SNP-set containing only child loci or one containing only
maternal loci, the process is exactly as before except for genotypic
source. For a SNP-set containing both maternal and child loci, we
consider a mother-child pair of loci from the same chromosome as
non-separable, as if linked, and permute them as a unit. This
precaution prevents the generation of Mendelian
incompatibilities within the resulting pseudo-families. A small
h-value again reflects evidence for multi-locus epistasis involving
only child SNPs, only maternal SNPs, or a combination
(Supplementary Methods S2).

With a SNP-set composed of both maternal and child SNPs, the
epistasis test does not focus on maternal-fetal interaction as a
separate alternative; its permutations are designed to preserve
only marginal effects by individual loci, not to preserve epistasis
between loci within either the maternal subset or the child subset. To
provide an h-value that instead specifically reflects evidence for joint
involvement of both maternal and child SNPs, we can employ the
same general approach as the epistasis test, but we now jointly
permute all maternal SNPs as a unit, and, separately, all child SNPs
(Supplementary Figure S2). These permutations allowmarginal SNP
effects and/or epistasis within the maternal and child subsets but
destroy any joint maternal-fetal effects. This test should only be done
when, within the SNP-set, no child locus is on the same
chromosome as any maternal locus.

2.3 Simulations

We simulated multi-SNP maternally-mediated effects and
maternal-fetal effects in triad data using the TriadSim R package
(Shi et al., 2018), slightly modifying the software to allow risk to
depend on both fetal and maternal SNPs but otherwise retaining
default settings. TriadSim uses actual parent data but removes any
systematic differences between parental autosomal genotypes by
interchanging them at random and then selects offspring to have the
condition where selection probabilities depend on genotype
according to a user-specified model for risk. To simulate triad
data for a scenario with an epistatic SNP-set of a pre-specified
size, the user specifies a baseline risk and the risk associated with the
SNP-set. We used a logistic model to simulate dominant genetic
interactions with a super-multiplicative effect of jointly carrying at
least one copy of each variant in the SNP-set. Some scenarios also
include non-epistatic SNPs that increase risk through a jointly
multiplicative effect, i.e., contributing just main effects in the
logistic model. To simulate realistic linkage disequilibrium
structure, the software uses actual data from dbGaP as a
template; we used data from chromosomes 10–13 from a GWAS
of orofacial clefting (Beaty et al., 2010), restricted to families from
Asian populations. SNPs designated as risk-related were spread
among these four chromosomes (Supplementary Material). We
used candidate SNP lists that were modestly pruned for linkage
disequilbrium (LD) (all pairwise R2 < 0.8) and minor allele
frequency (>0.01). Each simulated data set contained
1,000 families and 5,000 distinct genetic loci, 1,250 from each
chromosome. The datasets input into GADGETS thus included a
total of 10,000 input candidate SNPs (5,000 child and 5,000maternal).

We simulated data for 1,000 families from 24 different
scenarios (Supplementary Table S1). To see how stable the
results would be across multiple simulated datasets from the
same scenario, we simulated each scenario ten times. Twelve
scenarios included just one risk-related SNP-set: two with an
epistatic maternally-mediated effect; and ten with a maternal-
fetal interaction. Eight scenarios each included two risk-related
SNP-sets: five with both being maternal epistatic or both fetal or
both maternal-fetal, and three in which the effects were of two
distinct types (e.g., one maternal-fetal SNP-set, one maternal-only
SNP-set). We also included three scenarios with one epistatic SNP-
set together with four or five nonepistatic risk-related SNPs.
Regardless of scenario, the epistatic SNP-sets always included
between three and five SNPs. Finally, we included a scenario
without any epistasis, with four child and four maternal
independently risk-related SNPs. Scenarios that included non-
epistatic risk-related SNPs allowed us to probe how well
GADGETS could distinguish epistatic from non-epistatic (log-
additive) multi-SNP effects.

For visualization, we used the 10 SNP-sets with the highest
fitness scores for each d to construct graphical scores.

2.4 Comparison with competing methods

Although MDR-PDT, TrioFS, and EPISFA-LD were not
originally designed to consider maternal SNPs, we modified them
by using the same approach that we implemented to extend
GADGETS. Since these methods are all fundamentally based on
comparisons of case genotypes to control genotypes, we input
parental and fetal genetic data so that maternal SNPs were
treated like additional case SNPs and paternal SNPs as their
corresponding control SNPs.

We compared GADGETS’s performance in discovering
SNP-sets with epistatic maternal-fetal or maternal-only
effects to the performance of these competitors using
modified versions of simulation Scenarios 1, 2, 11, and 12.
We still based these simulations on 1,000 families but scaled
back the number of candidate SNPs from 10,000 to 24, 100, or
500 to accommodate limitations among the competitors. The
list of candidate SNPs now included 12, 50, and 250 distinct
genetic loci (each specified once as maternal and once as child),
comprising the three SNPs with a simulated epistatic effect
alongside SNPs randomly sampled from the remaining
4,997 simulated loci.

GADGETS, MDR-PDT and TrioFS require the analyst to pre-
specify a size for the SNP-sets considered (d in GADGETS, though
GADGETS later combines the evidence from several choices). We
specified the correct value (i.e., 3) so that each could nominate the exact
risk-related SNP-set. GADGETS and MDR-PDT nominate SNP-sets
only of that size, TrioFS nominates SNP-sets up to that size. EPISFA-
LD does not enforce a SNP-set size and can return sets containing any
number of SNPs. Though an appealing feature in real applications, it
complicates these comparisons because EPISFA-LD and TrioFS have
larger implicit search spaces than MDR-PDT and GADGETS. To
ensure comparable computational resources, we ran each method on a
single processor. Other computational tuning parameters matched
those reported for Scenario 2 in Nodzenski et al. (2022).
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2.5 Application

We used GADGETS to investigate whether genetic epistasis
involving maternal SNPs may be related to risk of cleft lip, with or
without cleft palate (CL/P). We selected candidate SNPs from a GWAS
of orofacial clefting (Beaty et al., 2010) and analyzed families of
European and Asian ancestry separately. (These data are publicly
available through dbGaP.) Because any SNP that participates in an
epistatic SNP-set should have been somewhat over-transmitted to cases
and thereby exhibit a small induced marginal effect, nominating
candidate SNPs from from previous GWAS results when searching
for epistatis is a principled way to keep the size of the candidate pool
manageable. Consequently, we included the candidate SNPs curated by
(Li et al., 2015), chosen based on marginal associations in children or
based on having a role in theWnt signaling pathway, and we separately
supplemented that list with loci that showed evidence for maternal-
effects (p ≤ 5 x 10−4 in either Asian or European ancestry groups) based
on results from Shi et al. (2012). In Asians, we analyzed 1,312 total
candidate SNPs (656 each for mothers and children) across
886 families. In Europeans, we analyzed 1,408 total SNPs (704 each
for mothers and children) across 652 families.

3 Results

3.1 Recovery of simulated epistatic SNP-sets
by GADGETS

Across the 24 simulation scenarios, GADGETS often recovered
SNP-sets involved in fetal-only epistasis, maternal-only epistasis,
and multi-SNP maternal-fetal interactions. For the ten scenarios
involving a single SNP-set with maternal-fetal interaction (Scenarios
1–10), when dwas equal to the true number of risk-related SNPs, the
top-scoring SNP-set was the risk-associated SNP-set for at least 80%
of replicates in seven of the ten scenarios (Supplementary Table S2)
and in 74 of the 100 total runs. For the two scenarios involving a
single 3-SNP set associated with a maternal epistatic effect
(Scenarios 11–12), when d was 3, the highest-fitness SNP-set was
always the true risk-related one.

GADGETS also frequently recovered both risk-related SNP-sets
in the eight scenarios that simulated two such SNP-sets
(Supplementary Table S3). When d was 3, at least one of the two
was always ranked among the top-two GADGETS-nominated SNP-
sets for each replicate of Scenarios 13–20. Additionally, the top two
GADGETS-nominated SNP-sets were the true risk-associated sets for
at least five of ten replicates in seven of the eight scenarios. Likewise,
GADGETS often recovered both risk-related SNP-sets when each had
a different type of epistatic effect, e.g., onematernal-fetal and the other
maternal-only (Scenarios 17–19), or when both epistatic SNP-sets
involved only fetal SNPs (Scenario 20). Scenario 21 was epistasis-null,
as it only included SNPs with individual effects on risk; with no truly
epistatic SNP-sets present, GADGETS-nominated SNP-sets,
regardless of size, always contained at least one, most often two of
the SNPs that had individual effects. For Scenarios 22 and 23, where
each had a 3-SNP epistatic set in competition with singletons with
strong independent effects (relative risk near 2), when using the
correct SNP-set size, GADGETS top-scoring nomination was the
correct epistatic SNP-set in five and six of the ten replicate scenarios,

respectively (Supplementary Table S2). Using larger SNP-set sizes, the
top scoring SNP-set often contained the correct epistatic SNP-set as a
subset. For Scenario 24, which had a 4-SNP epistatic set in competion
with singletons, GADGETS using the correct SNP-set size nominated
the correct set in seven out of ten replicates.

3.1.1 Simulated risk-related SNP-sets identified in
network plots

We constructed network plots for one randomly selected
replicate from each simulation scenario (Figure 2; Supplementary
Figures S3–S25). Of the 12 network plots for scenarios with one
simulated risk-related SNP-set and no singleton risk-related SNPs,
all contained the full SNP-set. Of the eight network plots from
simulation scenarios with two risk-related SNP-sets, seven of the
eight plots included both SNP-sets, while the remaining plot
(Supplementary Figure S21) included just one. For the three
scenarios with one epistatic SNP-set plus a number of SNPs with
strong but independent marginal effects, the epistatic SNP-set was
often, but not always, found in the network plots from the ten
replicates. The network plots for those scenarios tended to be
cluttered, however, and the epistatic sets were sometimes hard to
see distinctly, even when present. (e.g., Supplementary Figures
S22–S25). For Scenario 21 with no epistasis (Supplementary
Figure S22), weak visual evidence wrongly supported
possible epistasis.

3.2 Recovery of risk-related epistatic SNP-
sets by competing methods

By augmenting case and complement-sibling genotypes with
maternal and paternal genotypes as if they respectively represented
cases and matched controls, GADGETS, MDR-PDT, TrioFS and
EPISFA-LD all recovered risk-related SNP sets with higher-order
maternal-fetal interaction effects (Table 1; Supplementary Table S4).
GADGETS tended to run the fastest and was also most able to
identify the risk-related SNP-sets, particularly when searching at
least 100 candidate SNPs. It always nominated the full set of risk-
related SNPs as its highest ranked SNP set (Table 1). For
100 candidate SNPs, GADGETS often ran faster than any
competitor, while, for 500 candidates, it always ran substantially
faster than the others.

Although GADGETS’ performance was better, MDR-PDT,
TrioFS, and EPISFA-LD performed reasonably well in finding
maternal-fetal interactions. Regardless of scenario, when
considering 100 or fewer candidates, EPISFA-LD always
returned all three risk-related SNPs, although it usually
nominated at least one (and sometimes several) SNP that was
not risk-related along with the risk-related ones. It was unable to
output results for 500 candidate SNPs. Even for 500 candidates,
MDR-PDT frequently nominated at least two risk-related SNPs
among its top ten ranked models, sometimes as its highest
ranked model; long run-times were a limitation. TrioFS often
recovered at least two, and sometimes all three, risk-related
SNPs among its top models, even when considering
500 candidate SNPs.

Results were similar when searching for epistatic maternally-
mediated effects (Supplementary Tables S5, S6).
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3.3 Runtimes for competing methods

We used a high-performance computing cluster that allowed up to
135 simultaneous single core jobs per user (NVIDIAV100 Tensor Core
GPU, 16G – 32Gmemory). Making use of those distributed computing
resources, when d ranged from 2 to 5, for 1,000 families and
10,000 candidate SNPs, GADGETS typically took 10–15 min to run.
Precise timings for jobs on single cores that did not use distributed

computing, considering 1,000 families, 25-500 candidate SNPs, and
d � 3, are reported in Table 1, and Supplementary Tables S4–S6.

3.4 Application

GADGETS network plots suggested possible maternal-fetal
interactions in both ancestry groups. In Asians (Figure 3), the

FIGURE 2
Network plot for simulation Scenario 13, replicate 10. Circles represent child SNPs and squares represent maternal SNPs. SNP label “1:” indicates
membership in the first risk-related SNP-set, and label “2:” indicates membership in the second risk-related SNP-set. Both SNP-sets represent maternal-
fetal interactions. A SNP with no colon in the label is not-risk related. The number following the colon is the simulated SNP’s identifier. Maternal and child
SNPs with the same identifier represent the same locus. The SNP-sets that contributed to this plot were selected using the method described by
Nodzenski et al. (2022). After applying that filter, a total of 67 SNP-pairs (comprising 24 SNPs) received graphical scores. We plotted all of those pairs.
Thicker, darker connections indicate higher SNP-pair graphical scores; larger, darker vertices indicate higher individual SNP graphical scores.
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TABLE 1 Comparison of GADGETS with competitors in finding a simulated maternal-fetal genetic interaction over a range of input SNP numbers. The
simulation scenario is a modified version of Scenario 2; it involves a single risk-related SNP-set with one maternal and two child SNPs. Due to limitations in
the number of input SNPs that competitors could analyzewith reasonable run times, the number of candidate SNPswas atmost 500. For each replicate, half
of the input SNPs are child SNPs, and the remainder are the corresponding maternal SNPs. Run times are hours:minutes:seconds.

Input
SNPs

GADGETS MDR-PDT TrioFS EPISFA-LD

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)ab

Run
time

Replicate 1

24 3(1) 00:01:25 2(1) 00:00:04 3(1) 00:41:51 3[3](1) 00:00:26

100 3(1) 00:01:27 2(1) 00:04:15 2(1) 00:44:13 3[2](Top 3) 00:01:25

500 3(1) 00:07:12 0 09:46:19 0 03:26:35 ** **

Replicate 2

24 3(1) 00:01:25 2(1) 00:00:04 3(1) 00:43:59 3[1](Top 2) 00:00:31

100 3(1) 00:01:29 2(6) 00:04:43 2(6) 00:43:49 3[0](Top 2) 00:01:47

500 3(1) 00:07:13 2(4) 08:59:16 2(4) 03:38:14 ** **

Replicate 3

24 3(1) 00:01:24 3(1) 00:00:03 3(1) 00:44:06 3[0](1) 00:00:34

100 3(1) 00:01:30 3(1) 00:05:08 2(1) 00:43:56 3[0](1) 00:02:05

500 3(1) 00:07:17 3(1) 08:58:14 0 03:39:13 ** **

Replicate 4

24 3(1) 00:01:30 1(1) 00:00:04 3(1) 00:42:11 3[1](1) 00:00:44

100 3(1) 00:01:30 2(3) 00:05:26 1(1) 00:44:14 3[0](Top 2) 00:02:42

500 3(1) 00:08:04 0 10:16:28 0 03:37:44 ** **

Replicate 5

24 3(1) 00:01:29 2(1) 00:00:04 3(1) 00:41:33 3[2](1) 00:01:10

100 3(1) 00:01:31 2(1) 00:04:48 3(3) 00:49:13 3[2](1) 00:02:50

500 3(1) 00:07:13 2(1) 09:51:38 2(1) 03:26:55 ** **

Replicate 6

24 3(1) 00:01:24 2(1) 00:00:04 3(1) 00:51:51 3[2](Top 2) 00:00:32

100 3(1) 00:01:36 2(1) 00:04:59 2(1) 00:43:36 3[1](Top 2) 00:03:46

500 3(1) 00:07:10 2(1) 09:51:53 1(1) 03:38:11 ** **

Replicate 7

24 3(1) 00:01:26 2(1) 00:00:04 3(1) 00:48:11 3[1](Top 2) 00:00:33

100 3(1) 00:01:32 2(1) 00:05:22 3(1) 00:50:16 3[1](Top 2) 00:02:06

500 3(1) 00:07:10 2(1) 09:52:40 2(1) 03:36:06 ** **

Replicate 8

24 3(1) 00:01:26 2(1) 00:00:05 3(1) 00:48:44 3[0](Top 2) 00:01:55

100 3(1) 00:01:33 2(1) 00:05:08 2(1) 00:50:48 3[0](Top 3) 00:03:52

500 3(1) 00:07:08 2(1) 09:51:46 2(9) 03:55:48 ** **

Replicate 9

24 3(1) 00:01:24 2(1) 00:00:05 3(1) 00:48:52 3[2](Top 2) 00:00:35

(Continued on following page)
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highest-fitness SNP-set of size d � 5 (child rs560426, child
rs2013162, child rs12506428, child rs13140903, and maternal
rs2763335) appeared prominently. The epistasis test indicated
evidence for genetic interaction among those SNPs (h = 0.0001),
and the maternal-fetal interaction test specifically suggested
maternal-fetal effects (h = 0.0001), with the joint risk genotype
carried by 48 mother/case pairs versus 4 father/complement-sibling
pairs. In Europeans (Figure 4), the second-ranked SNP-set of size
three (maternal rs11496038, child rs987525, and child rs8069536)
appeared prominently in the network. The h-value for epistasis was
small (h = 0.0011) and so was the maternal-fetal interaction h-value
(h = 0.009), with the joint risk genotype carried by 53 mother/case
pairs versus 7 father/complement-sibling pairs. Similarly, the third
ranked SNP-set of size four (maternal rs1402698, child rs11919532,
child rs987525, and child rs8069536) appeared near the center of the
plot, and both h-values were small (epistasis h = 0.0001, maternal-
fetal h = 0.0041, with the joint risk genotype carried by 45 mother/
case pairs versus 3 father/complement-sibling pairs).

4 Discussion

Across 24 diverse simulation scenarios, we showed that, by
treating mothers as cases and fathers as controls, GADGETS
could reliably search 10,000 candidate SNPs to detect epistatic
maternal effects and/or maternal-fetal interactions involving 2-
5 total SNPs, while also retaining its previously demonstrated
ability to detect epistasis among child SNPs. In scenarios with
two simulated risk-related SNP sets, regardless of whether the
effect was epistatic among inherited SNPs, epistatic maternally-
mediated, or maternal-fetal interaction, GADGETS frequently
identified both. GADGETS was somewhat less successful at
distinguishing simulated supermultiplicative epistatic effects from
multi-SNP independent multiplicative effects, and often nominated
single SNPs along with epistatic sets.

Our simulated data was based on epistatic risk scenarios in
which the epistasis was fairly strong, and the algorithm’s
performance will not always be as good. Our goal here was to

establish that the algorithm can work to nominate epistatic sets of
variants. For it to succeed, at least part of an epistatic SNP set must
have been included in the list of candidates employed. Careful
attention to nomination of SNPs for consideration would exploit
prior evidence of case/control differences either for mothers or for
offspring and/or evidence based on transmission distortion.
Typically such prior evidence would be marginal (per SNP) and
not based on epistasis. One good source of SNP candidates would be
SNPs that have been found to be predictive in a polygenic risk score.
The user might want to screen out SNPs that are found to be rare in
the case families, as such SNPs would likely not be involved in
epistasis that could explain a substantial fraction of the cases. The
user might also want to restrict pairwise LD for SNPs included in the
list. We do not recommend GADGETS for studying haplotypes.
Biological reasons for including variants with known relevant
functional effects could also be important.

We regard GADGETS as a promising tool for uncovering
epistatic SNP-sets, but we see it as a tool more for exploration
and data mining than for inference. Our simulations involved
1,000 case-parent triads, a larger number than many studies
would have available. We did not examine GADGETS’s
performance across a range of study sizes, but note that the
search space is huge and even strong epistasis involving low-
frequency variants will be difficult to find without a large
number of families. If one has later access to an independent set
of case-parent triads from the same population, then permutation
tests can provide valid p values for confirming epistasis.

When applied to triads affected by CL/P, GADGETS nominated
SNP-sets with plausible maternal-fetal interactions. Statistical
evidence for maternal-fetal genetic interaction was provided by
low h-values combined with indicators of large joint effects, i.e.,
many more mother/case pairs than father/complement-sibling pairs
carried nominated SNP-sets. From a biological standpoint, some
maternal SNPs in those SNP-sets were biologically plausible as
contributing to a suboptimal gestation. For example, in
Europeans, the third-ranked SNP-set of size d � 4 contained a
maternal SNP (rs1402698) in the GRB14 gene, a gene whose
expression is related to glucose homeostasis (Ding et al., 2020).

TABLE 1 (Continued) Comparison of GADGETS with competitors in finding a simulated maternal-fetal genetic interaction over a range of input SNP
numbers. The simulation scenario is amodified version of Scenario 2; it involves a single risk-related SNP-set with onematernal and two child SNPs. Due to
limitations in the number of input SNPs that competitors could analyzewith reasonable run times, the number of candidate SNPswas atmost 500. For each
replicate, half of the input SNPs are child SNPs, and the remainder are the corresponding maternal SNPs. Run times are hours:minutes:seconds.

Input
SNPs

GADGETS MDR-PDT TrioFS EPISFA-LD

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)a

Run
time

Max risk SNPs
found (Rank)ab

Run
time

100 3(1) 00:01:31 2(7) 00:05:37 2(1) 00:50:50 3[1](Top 3) 00:01:50

500 3(1) 00:07:03 2(1) 09:49:02 0 03:40:23 ** **

Replicate 10

24 3(1) 00:01:28 2(1) 00:00:05 3(2) 00:50:46 3[0](Top 2) 00:00:48

100 3(1) 00:01:34 1(10) 00:05:22 0 00:41:50 3[0](Top 2) 00:02:00

500 3(1) 00:08:07 0 08:59:23 0 03:53:49 ** **

aMaximum number of SNPs, contained in the risk-related SNP-set, in any single SNP-set/model among the 10 highest ranking SNP-sets/models, and corresponding SNP-set/model rank (1 =

highest). Zero is reported when models failed to identify any risk-related SNPs. ** is reported when the software was unable to output results.
bSquare brackets indicate the number of non-risk-related SNPs, returned by EPISFA-LD; it can return sets of any size, rather than a pre-specified size of interest.
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Supporting a role for glucose metabolism, epidemiological studies
have associated maternal diabetes with a higher risk of orofacial
clefts (Spilson et al., 2001; Correa et al., 2008; Tinker et al., 2020).
Taken together, these findings suggest that maternal SNP
rs1402698 could, through its relationship to glucose control in
mothers, influence the child’s risk of clefting.

In Asians, some of the maternal SNPs in SNP-sets with high
fitness scores also appeared to have plausible biological links to
palate defects. In particular, the top-ranked SNP-set of size d � 5
contained maternal SNP rs2763335, which is located in the

COL13A1 gene. Mutations in that gene can cause congenital
myasthenic syndromes, neurological conditions that are often
accompanied by a high-arched palate (Logan et al., 2015; Dusl
et al., 2019; Rodriguez Cruz et al., 2019).

Although the performance of GADGETS was our main focus, an
interesting secondary finding was that MDR-PDT, TrioFS, and
EPISFA-LD can be adapted to detect maternal-fetal or epistatic
maternally-mediated effects with the same data extension that we
used for GADGETS. Although, in these single core, nonparallel
runs, GADGETS typically ran faster and more completely identified

FIGURE 3
Network plot for Asian (cleft lip with or without cleft palate) case-parent triad data. Circles represent child SNPs and squares represent maternal
SNPs. The SNP-sets that contributed to this plot were selected using themethod described by Nodzenski et al. (2022). After applying that filter, we plotted
all 60 SNP-pairs (comprising 19 SNPs) that received graphical scores. Thicker, darker connections indicate higher SNP-pair graphical scores; larger,
darker vertices indicate higher individual SNP graphical scores.
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the sets of epistatic SNPs, efforts to scale up those competing
methods to accommodate more candidate SNPs and to optimize
for interactions that involve maternal variants may be
worthwhile.

We did not consider the possible role of imprinting, where
implications for risk depend on the parent of origin. Cordell, Barratt
and Clayton (2004) noted that power to distinguish between
imprinting and maternal-fetal effects may be limited in analyses
based on complement-sibling controls. We anticipate that that may
be true for GADGETS. For example, if a maternally-inherited copy

of an allele (but not a paternally-inherited copy) confers increased
risk for the child, then mothers of cases would carry that allele more
often than fathers, and cases would jointly carry the allele more often
than would the complement-siblings. To GADGETS, such a SNP-set
could spuriously appear to be a maternal-fetal interaction. In
practice, detailed follow-up analysis, based on inferring (based on
nearby SNPs) the parent-of-origin for that SNP for all families where
the case and both parents were all heterozygous, is therefore
required to carefully consider the inheritance patterns of SNP-
sets nominated by GADGETS.

FIGURE 4
Network plot for European (cleft lip with or without cleft palate) case-parent triad data. Circles represent child SNPs and squares represent maternal
SNPs. The SNP-sets that contributed to this plot were selected using themethod described by Nodzenski et al. (2022). After applying that filter, we plotted
all 65 SNP-pairs (comprising 20 SNPs) that received graphical scores. Thicker, darker connections indicate higher SNP-pair graphical scores; larger,
darker vertices indicate higher individual SNP graphical scores.
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We also did not consider the possibly interactive role of a
maternal exposure such as smoking, or a persistent maternal
phenotype like high BMI or diabetes. Such considerations are
important and are the subject of our ongoing work.

In addition to conditions like birth defects that only affect
offspring, GADGETS could be used to study the joint effects of
maternal and fetal genomes on conditions that affect the mother
only or the mother-child unit, such as pregnancy complications, by
regarding the mother or mother-child unit as the “case”. For
example, studies have used a triad design to investigate the role
of genetics in preeclampsia (Jääskeläinen et al., 2016; Luo et al.,
2018). GADGETS could be applied directly for such studies.

We did not address how to accommodate families where one of
the parents was not genotyped. While GADGETS can accommodate
sporadic missing genotypes (the family will be considered
uninformative for the corresponding SNP), a family in which the
genotypes from one parent are completely missing must be excluded
in the current implementation. In actual studies, fathers are often
unavailable, but one could potentially include such families by
genotyping unaffected siblings and using that sibling information
to do multiple imputation of the paternal genotypes. Studies might
also want to consider interactions involving environmental
exposures or heterogeneity across outcome sub-phenotypes. We
are currently investigating extensions applicable to those questions.

We noted an interesting phenomenon with our visualization
method. While network plots often displayed the simulated epistatic
sets prominently, we saw a tendency for maternal SNPs corresponding
to an offspring-based epistastic SNP-set or for offspring SNPs
corresponding to a maternally-mediated epistatic SNP-set to appear
in the network plot, albeit less prominently. This phenomenon
arises because, for any SNP-set, large family weights can induce a
high fitness score when a subset of the component SNPs have
epistatic effects. In GADGETS, SNP-sets that contain maternal and
offspring SNPs from the same locus tend to be assigned large
family weights, even when the epistasis involves only the maternal
SNPs or only the offspring SNPs.

In summary, GADGETS can detect autosomal epistatic maternal
and maternal-fetal effects in triad studies by treating mothers as cases
and fathers as their paired controls under an assumption of mating
symmetry in the source population. Though GADGETS does not yet
scale up to genome-wide, it can accommodate substantially more
candidate SNPs than competitors, and good candidates are often
available from previous GWAS. GADGETS should be a useful tool in
helping researchers characterize more fully the joint roles of maternal
and fetal genetic variants in the development of complex young-onset
diseases and pregnancy complications.
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