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Background: Coronary heart disease (CHD) represents a substantial global
burden in terms of morbidity and mortality. Understanding the causal
relationships between serum metabolites and CHD can provide a crucial
understanding of disease mechanisms and potential therapeutic targets.

Methods: We conducted a Mendelian randomization (MR) approach to explore
the potential causal associations between serum metabolites and CHD risk. The
primary analysis employed the inverse variance weighted (IVW) method,
supplemented by additional analyses, including MR-Egger, weighted median,
weightedmode, and samplemode. To bolster the robustness and reliability of our
findings, we performed sensitivity analyses, which included evaluating, horizontal
pleiotropy and leave-one-out analysis. Additionally, pathway enrichment analysis
was conducted.

Results: We identified 15 known and 11 unknown metabolites with potential
associations to CHD. Among the known, six displayed protective effects, while
nine were identified as risk factors. Notably, many of thesemetabolites are closely
related to mitochondrial function, which was further supported by pathways and
enrichment analysis. Usingmultiple statistical models to ensure robust results, we
unveiled a significant association between hexadecanedioate, a palmitoyl lipid
metabolized in mitochondria, and a ~18% reduced risk of CHD (OR = 0.82, 95%
CI: 0.72–0.93).

Conclusion: MR analysis revealed 6 protective molecules, 9 hazardous
metabolites associated with CHD. Many of these known metabolites are
closely link to mitochondrial function, suggesting a critical role of
mitochondria in CHD development. In particular, hexadecanedioate, an
essential component for mitochondrial energy production, was inversely
associated with CHD risk. This suggests that mitochondrial function, and
specifically the role of hexadecanedioate, may be pivotal in the development
and progression of CHD.
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Introduction

Coronary heart disease (CHD) stands as a prevalent
cardiovascular disease characterized by the narrowing of
coronary arteries, resulting in reduced blood flow to the heart
muscle (Henderson, 1996). It continues to be a leading cause of
illness and death worldwide, imposing a substantial burden on
healthcare systems and individuals (Goff et al., 2021). While
traditional risk factors such as age, hypertension, dyslipidemia,
and tobacco use have been extensively studied, there exists a
growing interest in understanding the role of novel biomarkers
and metabolic pathways in the pathogenesis of CHD (Zhu and
Li, 2023).

Serum metabolites link genetic variations to disease outcomes
through metabolic pathways (Li et al., 2020; Vasishta et al., 2022).
Quantifying and profiling these metabolites using metabolomics
techniques hold great promise in identifying biomarkers and
uncovering disrupted metabolic pathways in individuals with
CHD (Talmor-Barkan et al., 2022). However, establishing causal
relationships in this context is challenging (Talmor-Barkan et al.,
2022). Nonetheless, exploring the causal associations between serum
metabolites and CHD can provide valuable insights into identify
potential therapeutic targets.

Mendelian randomization (MR), a method utilizing genetic
variants as instrumental variables (Emdin et al., 2017), provides a
valuable approach to establishing causal relationships in
observational studies (Sekula et al., 2016). By capitalizing on the
random assortment of genetic variants during gamete formation,
MR provides unbiased estimates of the causal effects between
exposures and outcomes (Zuber et al., 2022). In this study, serum
metabolites are the exposure factors, and CHD is the outcome, MR
serves as a tool to determine whether alterations in metabolite levels
directly contribute to CHD development or act as mere bystanders
(Borges et al., 2022).

In this study, we aim to employ the Mendelian randomization
framework to investigate potential causal associations between
serum metabolites and CHD risk. To achieve this, we will
leverage extensive genome-wide association studies (GWAS) and
genetic instruments—single nucleotide polymorphisms (SNPs)
strongly associated with specific metabolite levels (Tsepilov et al.,
2015; Mirkov et al., 2012). We seek to unravel the causal role of
specific metabolites in CHD development. Through the application
of MR, we will assess whether genetically determined differences in
metabolite levels are associated with changes in CHD risk (Sekula
et al., 2016). Attaining a comprehensive understanding of the causal
connections between serum metabolites and CHD holds immense
potential for advancing our knowledge of disease mechanisms,
identifying novel therapeutic targets, and developing personalized
prevention strategies.

Materials and methods

Study Design

To explore the potential causal relationship between serum
metabolites and CHD, a two-sample MR study was undertaken.
This investigation relies on three fundamental assumptions (Emdin

et al., 2017). Firstly, the instrumental variables (IVs) must
demonstrate a direct and highly significant association with the
exposure, which in this case is serum metabolites. Secondly, there
should be no connections between the IVs and the confounding
factors, thereby ensuring unbiased estimates. Lastly, the IVs solely
influence the outcome through the exposure, without any
involvement of alternative pathways.

Data resources

The data utilized in this study all came from the publicly
available datasets, accessible on the database website, and have
previously obtained ethics approval in the respective studies. The
study’s progression is depicted in Figure 1.

The serum metabolite data employed in the GWAS analysis
were sourced from Metabolomics GWAS server (https://
metabolomics.helmholtz-muenchen.de/gwas/). The metabolomic
database used was acquired from a seminal and comprehensive
investigation conducted by Shin et al. (2014). The GWAS cohort
encompassed 7,824 adult individuals of European descent, from
whom genetic samples were obtained (Shin et al., 2014). The
subsequent analysis involved an extensive examination of over 2.
1 million SNPs within this population. Following meticulous quality
control procedures, a total of 486 metabolites were deemed suitable
for inclusion in the GWAS analysis. These metabolites were further
categorized into 309 known metabolites and 177 metabolites with
yet undetermined identification. The 309 known metabolites were
subsequently classified into eight distinct biochemical groups,
including amino acids, peptides, lipids, cofactors and vitamins,
carbohydrates, energy-related compounds, nucleotides, and exotic
substances.

The CHD data was obtained from the GWAS platform of the IEU
OpenGWAS project (https://gwas.mrcieu.ac.uk/), with the dataset
identifier assigned as ieu-a-7. We utilized the summary statistics
from the existing meta-analysis of GWAS on CHD, combining data
from 48 different studies. The analysis encompassed a total of
60,801 cases and 123,504 controls. Among the participants, the
majority, approximately 77% had European ancestry, 13% had
South Asian ancestry (from India and Pakistan), 6% had East Asian
ancestry (from China and Korea), and there were smaller samples
represented Hispanic and African Americans.

Select instrumental variable

The criteria for selecting instrumental variables in Mendelian
randomization need to satisfy the following assumptions.

(1) Relevance: The IVs must be strongly correlated with the
exposure (coronary heart disease).

(2) Independence: The IVs should not be associated with any
confounders.

(3) Exclusion Restriction: The IVs should only affect the outcome
through the exposure.

To satisfy assumption (1), a rigorous screening process was
conducted to identify IVs associated with blood metabolites.
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Considering the limited number of metabolite-associated SNPs, a
slightly relaxed significance threshold of p < 1 × 10−5 was adopted to
select relevant SNPs (Sanna et al., 2019). Subsequently, SNPs were
grouped by removing linkage disequilibrium (LD) using a threshold
of R2 > 0.1 and within a distance of 500 kb. Tomitigate potential bias
from weak instruments, each SNP underwent R2 (Formula 1) and F
(Formula 2) statistic calculations based on various parameters such
as effect size (β), standard error (SE), effect allele frequency (EAF),
instrumental variable (R2), and sample size (N) (Burgess et al., 2011).
SNPs with an F statistic < 10 were considered inadequate
instruments and excluded from further analysis.

Formula 1:

R2 � 2 × β2 × EAF × 1 − EAF( )
2 × β2 × EAF × 1 − EAF( ) + 2 × SE2 × N × EAF × 1 − EAF( )[ ]

(1)
Formula 2:

F � R2 × N-2( )
1-R2( )

(2)

Subsequently, metabolite-associated SNPs were extracted from
the outcome. Harmonization was applied to ensure consistency
between exposure and outcome variables by aligning the effect
alleles across the datasets. This was done by checking the
direction of effect for each SNP, ensuring that the exposure and
outcome variables were coded consistently, and resolving any
discrepancies in allele orientation. To meet assumption (3),
outcome-related SNPs (p < 1 × 10−5) within the IVs were also

removed. Finally, a robust MR analysis was performed exclusively
on metabolites that possessed more than two SNPs, guaranteeing a
thorough investigation of causal relationships (Figure 1).

MR analysis

In this study, we employed the IVW model as the primary
two-sample MR analysis approach (Dudbridge, 2021). This
model relies on key assumptions, including the relevance,
independence, and exclusivity of IVs, as well as the notion
that genetic variations impact outcomes solely through the
exposure. Metabolites with IVW p-values below
0.05 underwent a Confounding analysis to identify any SNPs
that violated the MR Hypothesis. To assess the association of IVs
with known risk factors such as hypertension, hyperlipidemia,
coronary artery disease, smoking, obesity, and diabetes, we
examined the IVs for metabolites on the
PhenoscannerV2 website (http://www.phenoscanner.medschl.
cam.ac.uk/), a tool for exploring associations between genetic
variants and phenotype. If any SNPs were found to be linked to
these confounding factors (p < 1 × 10−5) (Supplementary Table
S1), the MR analysis was repeated after excluding these SNPs to
ensure the reliability of the results. To further investigate the
nature of causal influence, we incorporated four additional MR
models: MR-Egger regression, the weighted median method, the
simple mode-based estimator, and the weighted mode-based
estimator (Bowden et al., 2015).

FIGURE 1
Study Design: Schematic overview of Two-Sample Mendelian Randomization Analyses in this study.
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Sensitivity analysis

The diversity in experimental conditions, analytical platforms,
and study subjects introduces potential heterogeneity in two-sample
MR analyses, which can lead to biased estimations of causal effects.
To address this, we employed the Cochran Q test was used to
evaluate heterogeneity (Cohen et al., 2015), with a p-value below
0.05 indicating the presence of heterogeneity among the IVs.
Conversely, a p-value greater than 0.05 suggests no evidence of
heterogeneity, allowing us to disregard its impact on causal effect
estimation.

When utilizing the IVW method to investigate causal
relationships, unknown confounding factors can affect genetic
multiplicity and introduce bias in causal effect estimation. To
examine this, a horizontal pleiotropy test was conducted by
analyzing the intercept of the MR-Egger regression and
evaluating the corresponding p-value (Verbanck et al., 2018).
If the intercept is close to 0 (<0.1) with a p-value greater than
0.05 indicates no proof of horizontal pleiotropy. Furthermore,
the MR-PRESSO, a method for testing horizontal pleiotropy in
Mendelian randomization studies, was employed to further
evaluate horizontal pleiotropy and identify potential outliers.

Following the heterogeneity and horizontal pleiotropy tests, a
sensitivity analysis was conducted on the qualified metabolites using
the leave-one-out method (Nolte, 2020). This approach
systematically removes each related SNP, calculates the overall
effect by aggregating the remaining SNPs, and assesses the
impact of each SNP on the metabolites. If the overall error line
remains relatively stable after excluding each SNP (all error lines do
not pass through 0), it indicates reliable results.

Metabolic pathway and enrichment analysis

The analysis was performed through an online metabolomics
data analysis website (https://www.metaboanalyst.ca/
MetaboAnalyst/faces/home.xhtml), specifically utilizing the
Enrichment Analysis and Pathway Analysis modules in the
Annotated Features mode. We retrieved the corresponding IDs of
these metabolites from the Human Metabolome Database (https://
hmdb.ca/). Subsequently, we utilized these IDs to investigate
pathways and enrichment using data from SMPDB (https://
smpdb.ca/) and the KEGG database (https://www.kegg.jp/). This
comprehensive approach enabled us to gather metabolite sets and
pathways associated with CHD.

Statistical analysis

LD analyses were conducted using PLINK software (version
1.9). We performed the LD analysis by selecting SNPs with p < 0.05,
then filtering out those with a Minor Allele Frequency < 5% and
missing genotypes > 5%. and ultimately, we selected SNPs with r2 <
0.1 within a 500 kb distance.

Two-sample MR analyses, along with sensitivity analyses,
were performed using the TwoSampleMR package (version 0.5.6)
and the Gwasglue MR package (version 0.0.0.9000) in R
(version 4.2.3).

Results

IV information

Among the SNPs exhibiting robust associations (p < 1 × 10−5; LD
r2 < 0.1 within 500 kb distance; F > 10) with 486 serum metabolites,
10,420 of these demonstrated an intriguing overlap with CHD.
Notably, this overlap emerged after meticulously excluding the
SNPs that displayed strong associations (p < 1 × 10−5) with
CHD. SNPs associated with confounding factors (p < 1 × 10−5)
were eliminated in subsequent analyses (Supplementary Table S1).

MR analysis results

In this study, the IVWmodel served as the primary approach for
estimating the causal relationships between blood metabolites and
the risk of CHD (Supplementary Table S2). A total of 26 metabolites
comprising 15 known metabolites and 11 unknown metabolites
displayed a nominally significant relationship (p < 0.05, IVW
method) with CHD risk (Table 1). The 15 known metabolites
can be categorized into nine lipids (arachidonate (20:4n6),
deoxycholate, carnitine, glycerophosphorylcholine, scyllo-inositol,
10-nonadecenoate (19:1n9), laurylcarnitine, tetradecanedioate,
hexadecanedioate); three peptides (ADSGEGDFXAEGGGVR,
pro-hydroxy-pro, X-14205--alpha-glutamyltyrosine); two energy
substances (citrate, acetylphosphate) and one nucleotide (inosine).

These known metabolites can be categorized into 9 risk molecules
and 6 protectivemetabolites, as determined by their associationwith the
risk of CHD using the IVWmethod (Table 2). Of these, inosine (OR =
0.93, 95% CI: 0.87–1.00), glycerophosphorylcholine (OR = 0.78, 95%
CI: 0.65–0.94), ADSGEGDFXAEGGGVR* (OR = 0.80, 95% CI:
0.68–0.94), 10-nonadecenoate (19:1n9) (OR = 0.64, 95% CI:
0.45–0.92), tetradecanedioate (OR = 0.86, 95% CI: 0.76–0.97), and
hexadecanedioate (OR = 0.82, 95% CI: 0.72–0.93) exhibited potentially
reduced CHD risk (Table 2). Conversely, arachidonate (20:4n6) (OR =
1.56, 95% CI: 1.09–2.24), deoxycholate (OR = 1.20, 95% CI: 1.06–1.35),
citrate (OR = 1.33, 95% CI: 1.00–1.78), acetylphosphate (OR = 2.18,
95% CI: 1.16–4.09), carnitine (OR = 1.33, 95%CI: 1.04–1.71), scyllo-
inositol (OR= 1.24, 95%CI: 1.03–1.50), laurylcarnitine (OR= 1.34, 95%
CI: 1.08–1.66), pro-hydroxy-pro (OR = 1.36, 95% CI: 1.02–1.80), and
X-14205--alpha-glutamyltyrosine (OR = 1.20, 95% CI: 1.02–1.42)
displayed potential increased CHD risk (Table 2).

Subsequently, we employed four additional models (Bowden
et al., 2015) to evaluate the causal effects between these metabolites
and CHD risk (Table 2). Two exhibited significances in at least
three MR models and consistently demonstrated causal effects
across all models (Table 2; Supplementary Figure S1). The two
metabolites are hexadecanedioate (P IVW = 2.17 × 10−3, P MR Egger =
5.60 × 10−2, P Weighted median = 5.00 × 10−3, P Simple mode = 3.28 × 10−1,
P Weighted mode = 2.22 × 10−2) (Table 2) and
glycerophosphorylcholine (P IVW = 1.00 × 10−2, P MR Egger =
2.37 × 10−2, P Weighted median = 1.89 × 10−2, P Simple mode = 3.12 ×
10−1, P Weighted mode = 1.98 × 10−2) (Table 2). The results for
hexadecanedioate and glycerophosphorylcholine were consistent
across all five models (Supplementary Figures S1A, B). For
hexadecanedioate, the estimated effect obtained from MR-Egger
regression closely resembled that of IVW, with relatively wide
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confidence intervals (Supplementary Figure S1A). We observed the
presence of a potential outlier in this case, whereas the funnel plot
(Supplementary Figure S2) indicated an almost symmetrical
distribution of data points when employing individual SNPs as
instrumental variables (13 points versus 14 points).

Assessment of the reliability and stability of
the results

To ensure the validity of our findings, we undertook rigorous
tests to evaluate the reliability and stability of the results concerning
the known metabolites. The test results, employing MR-Egger and

MR-PRESSO methods, demonstrated p-values above 0.05.
Moreover, the intercept of MR-Egger regression was nearly 0
(<0.1), indicating the absence of heterogeneity and horizontal
pleiotropy among these metabolites (Table 2 and
Supplementary Table S3).

Regarding the two metabolites, hexadecanedioate and
glycerophosphorylcholine, which demonstrated notable
robustness by displaying significant in at least three MR models,
we conducted sensitivity analyses employing a leave-one-out
approach to evaluate their stability. The results were not sensitive
to the exclusion of individual SNPs associated with
hexadecanedioate, suggesting a consistent and significant effect in
reducing the risk of CHD by 18% (Table 2; Figure 2). However, it

TABLE 1 Metabolites significantly associated with CHD risk based on IVW results (p < 0.05).

ID Metabolite nSNP Beta SE P OR (95%CI)

Known Metabolites:

M01110 arachidonate (20:4n6) 24 0.45 0.18 1.50E-02 1.56 (1.09-2.24)

M01114 deoxycholate 15 0.18 0.06 3.16E-03 1.20 (1.06-1.35)

M01123 inosine 13 -0.07 0.03 3.51E-02 0.93 (0.87-1.00)

M01564 citrate 48 0.29 0.15 4.74E-02 1.33 (1.00-1.78)

M15488 acetylphosphate 17 0.78 0.32 1.50E-02 2.18 (1.16-4.09)

M15500 carnitine 221 0.29 0.13 2.43E-02 1.33 (1.04-1.71)

M15990 glycerophosphorylcholine 18 -0.25 0.10 1.00E-02 0.78 (0.65-0.94)

M32379 scyllo-inositol 13 0.22 0.10 2.50E-02 1.24 (1.03-1.50)

M33084 ADSGEGDFXAEGGGVR* 8 -0.23 0.08 5.86E-03 0.80 (0.68-0.94)

M33972 10-nonadecenoate (19:1n9) 7 -0.44 0.18 1.50E-02 0.64 (0.45-0.92)

M34534 laurylcarnitine 13 0.29 0.11 7.43E-03 1.34 (1.08-1.66)

M35127 pro-hydroxy-pro 20 0.31 0.14 3.33E-02 1.36 (1.02-1.80)

M35669 tetradecanedioate 25 -0.15 0.06 1.82E-02 0.86 (0.76-0.97)

M35678 hexadecanedioate 27 -0.20 0.07 2.17E-03 0.82 (0.72-0.93)

M36131 X-14205--alpha-glutamyltyrosine 16 0.19 0.08 2.45E-02 1.20 (1.02-1.42)

Unkwon Metabolites:

M12626 X-03003 9 0.58 0.28 4.07E-02 1.79 (1.02-3.13)

M32761 X-11444 17 0.38 0.11 3.79E-04 1.47 (1.19-1.82)

M32808 X-11491 17 -0.23 0.07 1.28E-03 0.79 (0.69-0.91)

M32846 X-11529 25 -0.13 0.03 1.37E-05 0.88 (0.83-0.93)

M32855 X-11538 24 -0.28 0.06 7.15E-06 0.76 (0.67-0.86)

M33359 X-12013 9 0.09 0.04 1.64E-02 1.10 (1.02-1.18)

M34221 X-12627 13 0.42 0.11 1.73E-04 1.53 (1.22-1.90)

M34327 X-12717 9 0.11 0.05 3.94E-02 1.12 (1.01-1.24)

M34453 X-12776 3 -1.52 0.56 6.41E-03 0.22 (0.07-0.65)

M35187 X-13429 12 -0.18 0.06 3.43E-03 0.83 (0.73-0.94)

M36552 X-14625 20 0.45 0.21 3.33E-02 1.57 (1.04-2.38)

Footnotes: nSNP, number of the SNP; SE, standard error; OR, odds ratio; 95% CI, 95% confidence interval; X, unknown metabolite.
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TABLE 2 Five MRmodels investigating causal associations between 15 knownmetabolites and CHD risk, including heterogeneity and horizontal pleiotropy
analyses.

Metabolite (nSNP) Method P OR (95%CI) PHeter PHoriz

Arachidonate (20:4n6) (24) MR Egger 7.77E-02 2.18 (0.95-4.97) 0.20 0.39

Weighted median 1.62E-02 1.80 (1.11-2.90)

Inverse variance weighted 1.50E-02 1.56 (1.09-2.24) 0.21

Simple mode 9.61E-02 2.30 (0.90-5.89)

Weighted mode 7.08E-02 2.27 (0.97-5.30)

Deoxycholate (15) MR Egger 4.10E-01 1.12 (0.86-1.45) 0.93 0.58

Weighted median 7.34E-02 1.15 (0.99-1.33)

Inverse variance weighted 3.16E-03 1.20 (1.06-1.35) 0.94

Simple mode 2.80E-01 1.16 (0.90-1.50)

Weighted mode 2.19E-01 1.16 (0.92-1.47)

Inosine (13) MR Egger 4.17E-01 0.95 (0.86-1.06) 0.43 0.58

Weighted median 1.04E-01 0.92 (0.84-1.02)

Inverse variance weighted 3.51E-02 0.93 (0.87-1.00) 0.49

Simple mode 3.26E-01 0.92 (0.79-1.08)

Weighted mode 1.45E-01 0.92 (0.84-1.02)

Citrate (48) MR Egger 8.19E-02 1.97 (0.93-4.17) 0.88 0.27

Weighted median 2.36E-01 1.27 (0.85-1.90)

Inverse variance weighted 4.74E-02 1.33 (1.00-1.78) 0.87

Simple mode 4.82E-01 1.36 (0.58-3.18)

Weighted mode 3.81E-01 1.36 (0.69-2.68)

Acetylphosphate (17) MR Egger 3.38E-01 2.98 (0.34-26.07) 0.34 0.77

Weighted median 3.87E-01 1.47 (0.61-3.50)

Inverse variance weighted 1.50E-02 2.18 (1.16-4.09) 0.40

Simple mode 9.78E-01 0.98 (0.20-4.80)

Weighted mode 8.07E-01 1.19 (0.30-4.78)

Carnitine (221) MR Egger 5.68E-01 1.19 (0.65-2.17) 0.45 0.69

Weighted median 1.47E-01 1.38 (0.89-2.12)

Inverse variance weighted 2.43E-02 1.33 (1.04-1.71) 0.47

Simple mode 3.98E-02 3.55 (1.07-11.82)

Weighted mode 9.45E-02 1.81 (0.91-3.63)

Glycerophosphorylcholine (18) MR Egger 2.37E-02 0.72 (0.55-0.93) 0.19 0.37

Weighted median 1.89E-02 0.73 (0.57-0.95)

Inverse variance weighted 1.00E-02 0.78 (0.65-0.94) 0.19

Simple mode 3.12E-01 0.76 (0.45-1.28)

Weighted mode 1.98E-02 0.74 (0.58-0.93)

scyllo-inositol (13) MR Egger 2.24E-01 1.22 (0.90-1.65) 0.88 0.88

Weighted median 3.09E-02 1.37 (1.03-1.82)

Inverse variance weighted 2.50E-02 1.24 (1.03-1.50) 0.92

(Continued on following page)
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TABLE 2 (Continued) Five MR models investigating causal associations between 15 known metabolites and CHD risk, including heterogeneity and
horizontal pleiotropy analyses.

Metabolite (nSNP) Method P OR (95%CI) PHeter PHoriz

Simple mode 1.32E-01 1.44 (0.93-2.23)

Weighted mode 8.51E-02 1.37 (0.99-1.90)

ADSGEGDFXAEGGGVR* (8) MR Egger 3.32E-01 0.81 (0.54-1.20) 0.75 0.95

Weighted median 1.31E-02 0.76 (0.62-0.94)

Inverse variance weighted 5.86E-03 0.80 (0.68-0.94) 0.84

Simple mode 1.55E-01 0.77 (0.56-1.06)

Weighted mode 5.33E-02 0.78 (0.63-0.96)

10-nonadecenoate (19:1n9) (7) MR Egger 9.37E-01 1.04 (0.40–2.74) 0.43 0.34

Weighted median 1.23E-01 0.69 (0.43–1.11)

Inverse variance weighted 1.50E-02 0.64 (0.45–0.92) 0.43

Simple mode 2.90E-01 0.64 (0.30–1.36)

Weighted mode 3.36E-01 0.69 (0.35–1.38)

Laurylcarnitine (13) MR Egger 6.54E-01 1.15 (0.64–2.04) 0.44 0.58

Weighted median 1.46E-01 1.23 (0.93–1.64)

Inverse variance weighted 7.43E-03 1.34 (1.08–1.66) 0.50

Simple mode 6.56E-01 1.11 (0.71–1.72)

Weighted mode 5.05E-01 1.16 (0.76–1.79)

Pro-hydroxy-pro (20) MR Egger 8.09E-01 1.09 (0.56–2.11) 0.61 0.47

Weighted median 9.06E-02 1.43 (0.95–2.16)

Inverse variance weighted 3.33E-02 1.36 (1.02–1.80) 0.64

Simple mode 2.04E-01 1.66 (0.78–3.54)

Weighted mode 1.83E-01 1.54 (0.83–2.86)

Tetradecanedioate (25) MR Egger 5.54E-02 0.79 (0.62–0.99) 0.12 0.39

Weighted median 2.85E-01 0.91 (0.77–1.08)

Inverse variance weighted 1.82E-02 0.86 (0.76–0.97) 0.12

Simple mode 8.25E-01 1.04 (0.73–1.49)

Weighted mode 6.91E-01 0.95 (0.75–1.21)

Hexadecanedioate (27) MR Egger 5.60E-02 0.77 (0.60–0.99) 0.30 0.63

Weighted median 5.00E-03 0.74 (0.60–0.91)

Inverse variance weighted 2.17E-03 0.82 (0.72–0.93) 0.34

Simple mode 3.28E-01 0.80 (0.51–1.24)

Weighted mode 2.22E-02 0.70 (0.53–0.93)

X-14205--alpha
-glutamyltyrosine (16)

MR Egger 3.74E-01 1.28 (0.75–2.19) 0.62 0.81

Weighted median 4.24E-02 1.25 (1.01–1.54)

Inverse variance weighted 2.45E-02 1.20 (1.02–1.42) 0.69

Simple mode 7.18E-01 0.93 (0.62–1.39)

Weighted mode 7.57E-01 0.94 (0.63–1.39)

Footnotes: nSNP, number of the SNP; OR, odds ratio; 95% CI, 95% confidence interval; PHeter, PHeterogeneity; PHoriz, PHorizontal pleiotropy.
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was observed that one instrumental variable (rs1978450) associated
with glycerophosphorylcholine exerted a significant influence on the
result (Supplementary Figures S1C, D). Consequently, after
removing the rs1978450, we re-conducted MR analyses using the
five models, only to find that the results were no longer significant
(Supplementary Figure S1E).

Metabolic pathway and enrichment analysis

In the pathway and enrichment analysis of the 15 known
metabolites, we uncovered five metabolic pathways that
exhibited relative significance (p < 0.1). The identified
metabolic pathways encompassed “Ether lipid metabolism”

(p = 0.0630), “Citrate cycle (TCA cycle)” (p = 0.0630), and
“Pyruvate metabolism” (p = 0.0691), “Alanine, aspartate and
glutamate metabolism” (p = 0.0872) and “Glyoxylate and
dicarboxylate metabolism” (p = 0.9917) (Table 3;
Supplementary Figure S3, and Supplementary Tables S4, S5).
Additionally, the enrichment analysis identified significant
metabolite sets, including “Citrate cycle (TCA cycle)” (p =
0.0757), “Ether lipid metabolism” (p = 0.0757), “Pyruvate
metabolism” (p = 0.083), and “Lysine degradation (p =
0.0939) (Table 3; Supplementary Figures S4, S5, and

Supplementary Table S6). Notably, all these metabolic
pathways are closely associated with, or take place within,
mitochondrial function.

Discussion

In this study, we conducted an unbiased two-sample MR
analysis to investigate the causal relationship between 486 blood
metabolites and the risk of CHD. To ensure the utmost
reliability, we collected the largest GWAS and expansive CHD
GWAS summary data from public databases carefully. Utilizing
genetic variants as IVs, we identified 15 known and 11 unknown
metabolites that exhibited potential as predictors of CHD risk, as
confirmed by our primary IVW analysis. These known
metabolites can be classified into six protective factors
(inosine, glycerophosphorylcholine, ADSGEGDFXAEGGGVR,
10-nonadecenoate, tetradecanedioate, hexadecanedioate) and
nine risk factors (arachidonate (20:4n6), deoxycholate,
citrate, acetylphosphate, carnitine, scyllo-inositol,
laurylcarnitine, pro-hydroxy-pro, X-14205--alpha-
glutamyltyrosine). Notably, a substantial number of these
known metabolites are associated with the energy-producing
function of mitochondria.

FIGURE 2
Graphical summary of the Mendelian Randomization Study.
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To delve deeper into the underlying biological mechanisms
by which these metabolites impact the CHD development,
we conducted comprehensive metabolic pathways and
enrichment analyses of the 15 identified metabolites. The
results unveiled significant enrichment in certain signaling
pathways closely linked to mitochondrial energy
metabolism, such as “Ether lipid metabolism”, “Citrate
cycle”, and others. These findings strongly suggest that
aberrant mitochondrial function may play a pivotal role in
the occurrence and progression of CHD.

To further enhance the reliability and stability of our
findings, we conducted additional MR models. The results
consistently affirmed the association of hexadecanedioate and
glycerophosphorylcholine with a decreased risk of CHD in at
least three MR models. Glycerophosphorylcholine, a crucial
component of phospholipids contributing to the structural
integrity of cell membranes (Sonkar et al., 2019), exerts an
impact on the efficiency of mitochondrial respiration and
oxidative phosphorylation - the processes responsible for
ATP synthesis within mitochondria (Modica-Napolitano and
Renshaw, 2004). Regrettably, it is essential our study’s
analysis of glycerophosphorylcholine did not withstand the
final leave-one-out analysis, necessitating caution in
interpreting its causal relationship with CHD. Regarding
hexadecanedioate, also known as palmitate, it possesses a
distinctive structural composition, characterized by a sixteen-
carbon alkyl chain and two carboxyl groups (Menni et al., 2015).
It plays a crucial role in the mitochondrial fatty acid oxidation
pathway, where long-chain fatty acids are broken down to
produce energy for the cell (Matsunaga et al., 2000).
Emerging studies have indicated that hexadecanedioate
may impact mitochondrial function and contribute to
mitochondrial dysfunction, which is associated with oxidative
stress through ROS/GSH/GPX4 pathway, inflammatory
responses, and endothelial dysfunction (Menni et al., 2017),
(Peoples et al., 2019). Our groundbreaking findings illuminated
a compelling revelation: hexadecanedioate exhibited a

significant association with an 18% reduction in the
incidence of CHD.

Innovations and limitations

Our study presents several innovative aspects that contribute
significantly to the field. Firstly, we adopt a molecular mechanism
approach by considering blood metabolites as exposure factors,
providing a robust theoretical foundation and significant clinical
research value in exploring the causal relationships between
metabolites and the risk of CHD. Secondly, we uphold the
highest standards of quality control, implementing rigorous
measures, and employing diverse analysis methods, including
multiple models, to thoroughly evaluate the causal effects. As a
result, the findings of our study can be considered reliable and stable.
Thirdly, unlike previous MR analyses that focus on individual
exposure factors, the comprehensive analysis of a large number
of blood metabolites presents extensive workloads and analytical
challenges. The analysis strategy we propose offers valuable insights
for similar studies in the field.

However, we acknowledge certain limitations in the study. To
begin with, half of the CHD risk predictors identified in our
preliminary analysis (solely employing the IVW method) are
unidentified metabolites with uncertain functional structures,
which may require professional chemists to verify the formula
based on mass spectrometry results in the future. Therefore, our
study’s findings are limited by these uncertainties. Moreover, the
population exposed to our study comprises individuals of
European descent; with approximately 77% of the outcome
population being European and a small representation of non-
European individuals, this demographic imbalance may impact
the generalizability of our findings to other ethnic groups, we
utilized the ancestry-specific principal components and
adjustments from the original dataset to control for
population stratification. This approach helps ensure that our
results are not biased by genetic structure differences across the

TABLE 3 Pathway and enrichment analysis results for CHD-Related metabolites.

Metabolic pathway Involved metabolites Pvalue Database Associated organelles

Pathway Analysis

Ether lipid metabolism Glycerophosphorylcholine 0.062952 KEGG Mitochondrial

Citrate cycle (TCA cycle) Citrate 0.062952 KEGG SMPDB Mitochondrial

Pyruvate metabolism Acetyl phosphate 0.069068 KEGG SMPDB Mitochondrial

Alanine, aspartate and glutamate metabolism Citrate 0.087226 KEGG SMPDB Mitochondrial

Glyoxylate and dicarboxylate metabolism Citrate 0.099173 KEGG Mitochondrial

Enrichment Analysis

Citrate cycle (TCA cycle) Citric acid 0.0757 KEGG Mitochondrial

Ether lipid metabolism Glycerophosphorylcholine 0.0757 KEGG Mitochondrial

Pyruvate metabolism Acetyl phosphate 0.083 KEGG Mitochondrial

Lysine degradation L-Carnitine 0.0939 KEGG Mitochondrial
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different ancestry groups. Additionally, although we observed a
nominal causal association between hexadecanedioate and CHD
using an unbiased two-sample MR approach, it is essential to
recognize that this relationship remains theoretical, pending
further mechanistic validation. Therefore, further investigation
is still needed to clarify the role of hexadecanedioate in CHD
pathogenesis and establish a definitive confirmation of this causal
relationship. While we have taken steps to minimize
confounding—such as adjusting for known confounders and
applying MR methods that are less susceptible to confounding
than traditional observational studies—residual confounding
may still arise due to unmeasured or unknown factors. As we
embrace these limitations as opportunities for growth, our study
provides a foundation for future research endeavors,
contributing to the advancement of knowledge and
understanding in the realm of CHD and its molecular
underpinnings.

Conclusion

In summary, our study employed a rigorous two-sample MR
approach to unravel the causal relationships between 486 blood
metabolites and CHD risk in an extensive cohort of over 0.12million
individuals of European descent. Through meticulous analysis, we
unveiled a total of 26 serum metabolites linked to CHD,
encompassing 6 protective metabolites, nine risk factors and
11 previously unidentified metabolites, many of which are known
to be associated with mitochondrial function. Our pathway and
enrichment analysis further revealed significant pathways related to
mitochondrial function, such as the ‘Citrate cycle’, among others.
Remarkably, our findings indicated that hexadecanedioate, a
palmitoyl lipid located in and metabolized in mitochondria,
could nominally reduce the risk of CHD by 18%. These
groundbreaking discoveries substantially enhance our
understanding of the intricate interplay between blood
metabolites and CHD, suggesting that these serum metabolites
may exert their influence on the development of CHD by
modulating mitochondrial function. This revelation opens up
broad prospects for developing personalized explanations or
markers that can shed light on the underlying biological changes
in disease states. By unraveling these vital connections, our study
lays the foundation for future research to advance the prevention,
diagnosis, and management of CHD.
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