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Diabetes significantly affects millions of people worldwide, leading to substantial
morbidity, disability, and mortality rates. Predicting diabetes-related
complications from health records is crucial for early prevention and for the
development of effective treatment plans. In order to predict four different
complications of diabetes mellitus, i.e., retinopathy, chronic kidney disease,
ischemic heart disease, and amputations, this study introduces a novel feature
engineering approach. While developing the classification models, we utilize
XGBoost feature selection method and various supervised machine learning
algorithms, including Random Forest, XGBoost, LogitBoost, AdaBoost, and
Decision Tree. These models were trained on synthetic electronic health
records (EHR) generated by dual-adversarial autoencoders. These EHRs
represent nearly 1 million synthetic patients derived from an authentic cohort
of 979,308 individuals with diabetes. The variables considered in themodels were
the age range accompanied by chronic diseases that occur during patient visits
starting from the onset of diabetes. Throughout the experiments, XGBoost and
Random Forest demonstrated the best overall prediction performance. The final
models, which are tailored to each complication and trained using our feature
engineering approach, achieved an accuracy between 69% and 77% and an AUC
between 77% and 84% using cross-validation, while the partitioned validation
approach yielded an accuracy between 59% and 78% and an AUC between 66%
and 85%. These findings imply that the performance of our method surpass the
performance of the traditional Bag-of-Features approach, highlighting the
effectiveness of our approach in enhancing model accuracy and robustness.
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Introduction

Diabetes mellitus, commonly known as diabetes, is a chronic metabolic disease
characterized by insufficient insulin production by the pancreas (Type 1 diabetes) or
ineffective utilization of the produced insulin by the body (Type 2 diabetes). Diabetes poses
a critical global health concern, significantly affecting millions of people worldwide
(Diabetes, 2024). It leads to substantial morbidity, disability, and mortality rates,
especially in low- and middle-income countries (Diabetes, 2024). The global prevalence
of diabetes surged from 108 million in 1980 to a staggering 537 million in 2021, and it is
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expected to increase to 783 million by the end of 2045 (Sun et al.,
2022). According to the World Health Organization (WHO),
diabetes and related kidney disease caused approximately
2 million deaths worldwide in 2019 (Diabetes, 2024).

Over time, increased glucose levels beyond the average level in
the bloodstream affect various major human organs including the
heart, eyes, blood vessels, nerves, and kidneys. It can result in
serious, long-term, life-threatening health complications (Harding
et al., 2019). The most prevalent types of complications in diabetes
are classified into microvascular and macrovascular disorders.
Microvascular disorders impact small blood vessels, including
conditions such as nephropathy, neuropathy, and retinopathy.
On the other hand, macrovascular disorders damage large blood
vessels and encompass peripheral vascular disease, cerebrovascular
disease, and ischemic heart disease (Cade, 2008). According to
(Litwak et al., 2013), more than 50% of individuals with Type
2 diabetes are affected by microvascular complications, while
more than 25% suffer from macrovascular complications.
Diabetes complications account for over 68% of diabetes-related
deaths (Sisodia and Sisodia, 2018).

Unfortunately, the early detection of diabetes-related
complications poses a significant challenge, as symptoms often
manifest in later stages (Deshpande et al., 2008). Therefore, for
patients with diabetes, regular medical check-ups and routine
screening such as dilated eye exams to detect eye disease, urine
tests to check albumin levels for kidney functionality, and other
tests are crucial. Alternatively, via analyzing routinely available
patient-specific data (e.g., patient visit records tracing the
diagnosis trajectories), scientists can assist clinicians in
predicting patients at high risk of developing diabetes-related
adverse outcomes. The development of such prediction models
can alleviate the healthcare burden of diabetes, improve care
pathways, enhance targeted and specialized preventive measures,
consequently prevent or slow down the onset and progress of
such diabetes-related complications (Girach et al., 2006; Mosa
et al., 2022). Moreover, such systems can assist healthcare
practitioners and doctors in terms of disease management and
can help policymakers to save healthcare resources. Such efforts
are essential for improving the overall quality of diabetes care
(Alghamdi, 2023).

Nowadays, hospitals and healthcare providers widely adopt and
deploy electronic health record (EHR) systems. In 2015, 84% of the
hospitals in United States embraced EHR systems (Henry et al.,
2016). Similar to paper records, EHRs store various forms of
information about a patient during a hospital visit, including
hospitalization details and patient-specific medical data, such as
medical history, laboratory tests, vital signs, diagnoses, prescribed
medications, administered interventions, and clinical outputs
(Birkhead et al., 2015). Analyzing patient-specific data recorded
in EHRs using data mining and machine learning algorithms can
contribute to biomedical and clinical research enormously. It allows
the analysis of the complex interplay between various extracted
features from massive health record datasets. Moreover, it enables
researchers to delve deeper into diseases, understand their progress,
and uncover hidden patterns (e.g., risk factors), correlations, and
decision rules from data. This transformative potential underscores
the importance of EHR in advancing medical informatics and
healthcare applications.

However, the wealth of EHRs are not always freely and easily
accessible to the research community. The main reason is that EHRs
often contain sensitive or regulated patient medical data, which
impedes their optimal utilization (Keshta and Odeh, 2021). To
prevent direct access to the real EHR data, healthcare
organizations usually generate anonymized data using de-
identification methods. These methods apply generalization and
suppression operations to modify the patients’ attributes (e.g.,
k-anonymity, l-diversity, and t-closeness). However, these
techniques are not robust against re-identification attacks and
thus cannot entirely avoid private information disclosure (El
Emam et al., 2015). Due to the complex legal, privacy, and
security concerns surrounding medical data, the healthcare sector
faces significant challenges in adopting information technology, data
exchange, and interoperability. This urgency underscores the need
for alternative methods.

A promising solution to the challenges of accessing real EHRs
is the use of realistic synthetic data generated by deep generative
models (Chen et al., 2021), notably Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAE) (Kingma and Welling, 2013). Synthetic
data, being artificially created, do not have a direct correlation
with real data (i.e., no synthetic record has a one-to-one
relationship to the original patient’s records), making them
resistant to re-identification (Lee et al., 2020). If synthetic data
can accurately replicate the attributes of actual EHR data, it could
significantly aid healthcare companies and researchers,
eliminating the need for real data. The ability to predict
relevant clinical endpoints from synthetic clinical health records
opens the doors to enhanced decision-making, early introduction
of personalized medical interventions, and improved patient
outcomes, specifically in the context of diabetes care.

Along this line, here we propose a novel feature engineering
approach to predict key diabetes-related outcomes such as
retinopathy, chronic kidney disease, ischemic heart disease, and
amputations. The models were trained using a large-scale dataset
which includes nearly one million synthetic clinical health records.
These records were generated using dual-adversarial autoencoders
and they simulate realistic patient data by tracking the
chronological sequence of diabetic patient visits starting from
the onset of diabetes (Lee et al., 2020). The datasets include
variables like age range and chronic conditions observed during
patient visits and our generated models leverage diagnostic
trajectories from these synthetic records to train and refine
their predictive performance.

The contributions of this research effort can be summarized
as follows:

- This study proposes a novel feature engineering approach for
selecting representative features from raw synthetic EHR data.

- Using a synthetic EHR dataset, we evaluate the performance of
various supervised machine learning models (i.e., Random
Forest, XGBoost, LogitBoost, AdaBoost, and Decision Trees)
to identify individuals (already diagnosed with diabetes) who
are at increased risk of developing a complication. The
generated models used a binary class variable to indicate
whether a patient may develop one of four complications
based on past diagnosis trajectories.
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- We identify the dominant characteristics (features
representing diagnosed chronic disease along with the
age-range label) that may lead to diabetic complications

through the application of feature selection methods such as
XGB feature selection.

Related work

Although several studies have been proposed in literature for
predicting the onset of diabetes, predicting diabetes complications
has received less attention. In this section, we review various studies
that employed machine learning techniques to predict
complications in diabetes patients using electronic health records
(EHRs). Here the related studies are compared based on the datasets,
machine learning models, studied complications, utilized features,
preprocessing and imbalance handling techniques, performance
metrics, and outcomes.

While we appreciate the value of identifying the “best” dataset,
model, or approach, it is essential to note that such a comparison is
inherently challenging and may not be entirely fair. Each study
referenced in this section utilized different datasets with varying
sizes, patient demographics, data collection periods, and feature sets,
significantly impacting the model’s performance. Additionally, these
studies’ objectives and clinical contexts differ, making a direct
comparison less meaningful. Instead, our goal is to provide a

FIGURE 1
Workflow of the proposed methodology. DT (Decision Tree), RF (Random Forest), XGB (XGBoost), AB (AdaBoost), LD (LogitBoost), ACC (Accuracy),
SEN (Sensitivity), SPE (Specificity), PRE (Precision), and AUC (Area Under the Curve).

FIGURE 2
Unbalanced class distribution for each diabetes endpoint dataset.
The four endpoints (diabetes complications) are encoded as
following: 703: Retinopathy, 1401: Chronic kidney disease, 910:
Ischemic heart disease, and 1999: Amputations.
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comprehensive overview of how different studies have approached
the prediction of diabetes complications. Given the diversity in
methodologies and data, each study offers unique insights into
different aspects of this complex problem.

Datasets

Various studies have utilized diverse datasets to investigate
complications associated with Type 2 Diabetes Mellitus (T2DM).
For instance (Dagliati et al., 2018), utilized electronic health
records of 943 T2DM patients collected over 10 years by
Istituto Clinico Scientifico Maugeri (ICSM) in Italy. In contrast
(Jian et al., 2021), relied on 884 records from the Rashid Center for
Diabetes and Research (RCDR) in Ajman, UAE. Nicolucci et al.
(2022) examined a much larger dataset of 147,664 patients,
collected over 15 years from 23 Italian diabetes centers, while
(Abaker and Saeed, 2021) focused on 644 EHRs from Alsukari
Hospital. Mora et al. (2023) used a comprehensive administrative
dataset from the Agency for Health Quality and Assessment of
Catalonia (AQuAS), comprising 610,019 observations, and Mosa
et al. (2022) leveraged Cerner’s “Health Facts EMR Data” with

148,109 unique patients from over 90 US healthcare systems. The
largest dataset in this field was used in Ljubic et al. (2020),
involving 1,910,674 patients from the Healthcare Cost and
Utilization Project (HCUP) over 9 years.

Machine learning models

Research studies have implemented a variety of machine-
learning models to predict diabetes-related complications.
Logistic regression (LR) was used in studies (Dagliati et al., 2018;
Jian et al., 2021; Abaker and Saeed, 2021; Mora et al., 2023; Mosa
et al., 2022). Support vector machines (SVMs) were employed in
Dagliati et al. (2018), Jian et al. (2021), and Mosa et al. (2022).
Random forest (RF) appeared in all studies except for Nicolucci et al.
(2022). Decision tree (DT) models were utilized in Jian et al. (2021),
Mora et al. (2023), and Mosa et al. (2022). Additionally, ensemble
methods such as AdaBoost and XGBoost were applied in Jian et al.
(2021), Nicolucci et al. (2022), Mora et al. (2023), and Mosa et al.
(2022). Abaker and Saeed (2021) used k-nearest neighbor (k-NN),
and Dagliati et al. (2018) included Naïve Bayes. Furthermore, Mosa
et al. (2022) employed a multilayer perceptron. In contrast to these

FIGURE 3
An example of the vectorization process for 910 endpoint dataset, where the features are extracted and the endpoints will serve as the class labels. X
refers to an age-range label, while y represents a chronic disease code.

Frontiers in Genetics frontiersin.org04

Voskergian et al. 10.3389/fgene.2025.1451290

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1451290


traditional machine learning models, the study presented in Ljubic
et al. (2020) uniquely utilized deep learning models, specifically
recurrent neural networks (RNN) with long short-term memory
(LSTM) and gated recurrent units (GRU).

Studied diabetes complications

The types of predicted diabetes complications varied across the
research papers. Dagliati et al. (2018) investigated microvascular
complications (nephropathy, neuropathy, and retinopathy) at
different time intervals. In addition to these (Jian et al., 2021),

included metabolic syndrome, dyslipidemia, diabetic foot,
hypertension, and obesity. Nicolucci et al. (2022) examined eye
complications, cardiovascular, cerebrovascular, peripheral vascular
disease, nephropathy, and neuropathy. Mora et al. (2023) predicted
nine diabetes-related complications, including hypertension, renal
failure, myocardial infarction, cardiovascular, retinopathy,
congestive heart failure, cerebrovascular, peripheral vascular, and
stroke. Mosa et al. (2022) concentrated on eye diseases, kidney
diseases, and neuropathy, while (Ljubic et al., 2020) explored ten
complications, such as angina pectoris, atherosclerosis, ischemic
chronic heart disease, depressive disorder, hearing loss, myocardial
infarction, peripheral vascular disease, and the ones in (Dagliati
et al., 2018).

Utilized features

The numbers and types of features used in the above-mentioned
studies varied significantly. Dagliati et al. (2018) included
demographic data (age, gender, time to diagnosis), clinical
data from EHRs (body mass index (BMI), glycated
hemoglobin (HbA1c), hypertension, lipid profile, and smoking
habit), and administrative data. Jian et al. (2021) analyzed
79 features, including medical tests, demographic attributes,
and other-related variables (BMI, HbA1c, vitamin D, blood
pressure, and diabetes types). Nicolucci et al. (2022)
considered 46 features, focusing on demographic attributes,
disease codes, laboratory tests, and prescription dates. Abaker
and Saeed (2021) identified the best model using six out of
29 attributes (infection years, Blood sugar, swelling, diabetic
ketoacidosis, speed of the heartbeat, and diabetic septic foot).
Mora et al. (2023) included demographic information with
diagnoses and procedures. Mosa et al. (2022) grouped
28,476 unique ICD9 and ICD10 diagnosis codes into clinically
similar entities (broad categories), called CCS codes (285 unique
groups) to train the machine learning models, while (Ljubic et al.,
2020) used only ICD-9 codes (1023 codes were used after
removing rarely or too frequently ones) and visit dates.

Preprocessing and handling imbalance
in datasets

Handling missing data and class imbalance were common
preprocessing steps. Dagliati et al. (2018) used the missForest
imputation algorithm and oversampling for minority classes. Jian
et al. (2021) employed multiple imputation methods (MissForest,
k-NN, and mean substitution) and handled imbalance using
undersampling with k-means clustering and oversampling using
the SMOTE algorithm. Nicolucci et al. (2022) used extra-values
imputation and oversampling via SMOTE. Mosa et al. (2022)
explored various balancing techniques, including oversampling,
undersampling, and SMOTE. Papers Abaker and Saeed (2021)
and Ljubic et al. (2020) focused on dimensionality reduction
techniques. Abaker and Saeed (2021) employed sequential feature
selection (SFS) to select significant features, while (Ljubic et al.,
2020) applied singular value decomposition (SVD) to reduce the
dimensionality of visits.

TABLE 1 Distribution of Diabetes Endpoints in sEHR Dataset, showing
occurrence of a) single, b) two or more, c) three or more, and d) four
endpoints for a record. The four endpoints (diabetes complications) are
encoded as following: 703: Retinopathy, 1401: Chronic kidney disease, 910:
Ischemic heart disease, and 1999: Amputations.

a) Single endpoint # of records

910 45,590

1401 46,475

703 15,701

1999 370

b) Two or More Endpoints #of Records

910 1401 19,501

703 4,871

1999 187

1401 703 6,199

1999 254

1999 703 91

c) Three or More Endpoints # of Records

910 1401 703 1,676

703 1999 29

1401 1999 83

1401 703 1999 31

d) Four Endpoints # of Records

910 1401 703 1999 11

TABLE 2 Class distribution of each diabetes endpoint in the binary class
dataset after applying downsampling. The four endpoints (diabetes
complications) are encoded as following: 703: Retinopathy, 1401: Chronic
kidney disease, 910: Ischemic heart disease, and 1999: Amputations.

Endpoint # of pos = # of neg Total Records

910 29,960 59,920

1401 56,792 113,584

703 10,645 21,290

1999 655 1,310
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Model performance evaluation

Comparing models is challenging since each study utilized
different datasets with varying sizes and used different types and
numbers of features. For the trained diabetic complications
predictive models (Dagliati et al., 2018), reported an accuracy of
up to 83.8%. Jian et al. (2021) achieved accuracy and F1-scores
between 73.4% and 97.8%. Nicolucci et al. (2022) showed accuracy
greater than 70% and AUC exceeding 80%. Abaker and Saeed (2021)
reported logistic regression classifier to be the best performing
model, with an accuracy of 81% and an F1 score of 75%. Mora
et al. (2023) noted AUC values from 60% to 69% and accuracy rates
between 60% and 75%. Mosa et al. (2022) indicated that SVM with
oversampling was the most consistent, while (Ljubic et al., 2020)
highlighted that the RNN GRU model achieved accuracy between
73% and 83%.

Although several models have been developed for predicting
diabetes complications, the majority of these studies typically rely
on a limited number of patient characteristics and are based on
populations of limited size. This limitation is understandable due
to the complex legal, privacy, and security concerns surrounding
medical data usage, which restricts access. To address this problem,
the presented study uses nearly one million synthetic electronic
health records (EHRs) for diabetes patients generated using a Dual
Adversarial AutoEncoder (DAAE). These synthetic EHRs allowed
us to simulate a large-scale dataset that closely mirrors real-world
diagnostic trajectories of diabetic patients, enabling the prediction
of pertinent diabetes endpoints. In simpler terms, this synthetic
approach offers a distinct advantage in terms of both data
availability and variability, enabling us to overcome the
limitations commonly faced by real-world datasets, such as

restricted access or insufficient size. By leveraging this large and
diverse dataset, our models are better positioned to generalize and
provide valuable insights into diabetes complication prediction.
Since the dataset used in this research had not been previously
employed, and no prior performance metrics existed in the
literature, this study establishes a baseline for future
comparisons. Furthermore, while studies such as (Nicolucci
et al., 2022; Mora et al., 2023; Mosa et al., 2022; Ljubic et al.,
2020) used diagnostic codes as features, our study introduces a
novel feature representation method that utilizes both diagnostic
codes and age-range labels to train machine learning algorithms.
The proposed approach enhances the predictive power and
relevance of the models.

Materials and methods

Dataset

The dataset utilized in this study was sourced from the CAMDA
2023 Challenge (http://www.camda.info/). It includes an ordered
sequence of pathologies for 999,936 synthetic patients. These
synthetic records are based on an original cohort of
979,308 diabetes patients from the Health Population Database
(Base Poblacional de Salud, BPS) in the Andalusian Health
System, Spain. Generated using the Dual Adversarial
AutoEncoder (DAAE) method (Lee et al., 2020), this synthetic
dataset comprises highly realistic Electronic Health Records
(EHRs). These EHRs precisely trace the diagnostic paths of
diabetic patients, facilitating the prediction of critical diabetes-
related outcomes based on past diagnosis trajectories.

TABLE 3 Statistics for each of the four diabetes complication records from the generated binary class datasets, including complication-free patient records.
The four endpoints (diabetes complications) are encoded as following: 703: Retinopathy, 1401: Chronic kidney disease, 910: Ischemic heart disease, and
1999: Amputations.

Label 910 Label 1401 Label 703 Label 1999 None

Number of Patients 29,960 56,792 10,645 655 188,941

Percentage (out of 324,575, the total number of preprocessed records) 9.2% 17.5% 3.3% 0.2% 58.2%

Number of visits per patient

Max 10 10 10 9 11

Mean 2.87 3.20 2.72 3.92 2.74

Median 3 3 2 4 2

Std. deviation 1.10 1.29 1.03 1.70 1.01

Variance 1.22 1.65 1.06 2.91 1.02

Skewness 1.53 1.20 1.94 0.80 1.63

Kurtosis 2.75 1.50 5.38 0.18 3.14

ICD-9 codes

Unique ICD-9 codes in the dataset 81 77 82 69 84

Unique features [age range, ICD-9 code] in the dataset 573 707 643 375 726

Max. Unique features [age range, ICD-9 code] per patient 20 17 22 17 26

Max. ICD-9 codes per patient

Frontiers in Genetics frontiersin.org06

Voskergian et al. 10.3389/fgene.2025.1451290

http://www.camda.info/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1451290


The cohort of real patients was filtered by the CAMDA
organizers and preprocessed according to the following criteria:

• Only patients diagnosed with diabetes from 2003 onwards
were included.

• Patients lacking recorded dates of birth or age were excluded.
• Cases where diabetes and amputation were diagnosed in the
same visit or in visits close to each other were removed.

• Sex was coded during the first visit, using “1111” for men and
“2222” for women.

• Each visit includes an age-range label. The ranges are <10,
10–20, 20–30, 30–40, . . ., >90, with corresponding labels
“1000,” “1010,” “1020,” “1030,” . . ., “1090.”

• Amputation, a low-frequency endpoint, was added and coded
with the label “1999.”

The dataset for the 999,936 synthetic patients features an
ordered list of visits per patient, with each visit including a list of
co-occurring chronic diagnoses. Diagnoses were coded using the
International Classification of Diseases (ICD-9) manual. The dataset
comprises 83 distinct diagnostic codes and 10 age-range labels. The
goal of this dataset is to identify strong relationships in diabetes-
associated pathologies to enable the prediction of any pathology

TABLE 4 Top ten frequently observed features (chronic diseases by age
range) among the records associated with the complication under
investigation. Features are color-coded based on chronic disease codes to
highlight features belonging to the same disease category. The codes are
defined as follows: 402: hyperlipidemia, 503: tobacco dependence, 507:
Anxiety disorder, 604: Motor disorders without cerebrovascular accident
(CVA), 906: extremity arteriopathy diseases, 910: Ischemic heart disease,
913: Hypertension, 914: Heart failure, 1,302: arthrosis/spondylosis. DF
stands for document frequency for each feature. The four endpoints
(diabetes complications) are encoded as following: 703: Retinopathy, 1401:
Chronic kidney disease, 910: Ischemic heart disease, and 1999:
Amputations.

910 Endpoint

Feature DF%

1060, 913 13.43

1070, 913 13.37

1060, 402 11.01

1060, 1302 10.09

1070, 1302 9.85

1070, 402 9.28

1050, 913 9.08

1070, 914 9.01

1050, 402 7.6

1060, 914 5.68

1401 Endpoint

Feature DF%

1070, 913 13.86

1060, 913 12.53

1070, 914 12.09

1070, 402 11.55

1070, 1302 11.45

1060, 402 11.16

1060, 1302 9.64

1080, 914 7.15

1070, 910 6.76

1060, 914 6.44

703 Endpoint

Feature DF%

1060, 913 12.91

1050, 913 12.01

1050, 402 10.1

1060, 402 9.98

1060, 1302 9.44

1070, 913 9.25

1050, 1302 7.4

(Continued in next column)

TABLE 4 (Continued) Top ten frequently observed features (chronic
diseases by age range) among the records associated with the
complication under investigation. Features are color-coded based on
chronic disease codes to highlight features belonging to the same disease
category. The codes are defined as follows: 402: hyperlipidemia, 503:
tobacco dependence, 507: Anxiety disorder, 604: Motor disorders without
cerebrovascular accident (CVA), 906: extremity arteriopathy diseases, 910:
Ischemic heart disease, 913: Hypertension, 914: Heart failure, 1,302:
arthrosis/spondylosis. DF stands for document frequency for each feature.
The four endpoints (diabetes complications) are encoded as following:
703: Retinopathy, 1401: Chronic kidney disease, 910: Ischemic heart
disease, and 1999: Amputations.

703 Endpoint

Feature DF%

1070, 1302 6.88

1070, 402 6.59

1050, 507 6.32

1999 Endpoint

Feature DF%

1060, 913 13.76

1050, 913 11.9

1060, 402 11.64

1050, 402 9.79

1060, 604 9.52

1060, 1302 8.73

1070, 913 8.73

1060, 906 8.2

1050, 503 7.94

1070, 1302 7.41
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before it is diagnosed. Relevant endpoints for prediction include
well-known pathological diabetes consequences such as: a)
Retinopathy (encoded as “703”), b) Chronic kidney disease
(encoded as “1401”), c) Ischemic heart disease (encoded as
“910”), and d) Amputations (encoded as “1999”). In this study,
we will refer to this dataset as sEHR Dataset.

The proposed methodology

Figure 1 illustrates the workflow of our proposed methodology,
which can be divided into the following six key phases:

Dataset preprocessing
The original Synthetic Electronic Health Records (sEHR) dataset

is structured in JSON format, where each record includes an
organized list of visits for each patient. An exception is made for
the first visit, which contains the gender label. Subsequent visits are
accompanied by an age-range label, along with a corresponding list
of chronic diseases (one or more pathology codes) that co-occur
during that visit. The structure of a visit is represented as: Visit = [x,
y] = [age-range label, pathologies codes]. This hierarchical
arrangement provides a comprehensive overview of a patient’s
medical history and facilitates the analysis of relationships
between age groups, chronic diseases, and patient visits within

TABLE 5 Partitioning the dataset for training and validation across endpoints.

Endpoint # of Records in
training Data (75%)

# of Records in validation
data for each run (5%)

Total # of records in
validation data (25%)

Overall dataset size
(# of records)

910 44,940 2,996 14,980 59,920

703 15,967 1,064 5,320 21,287

1401 85,188 5,679 28,395 113,583

1999 982 65 325 1,307

TABLE 6 MCCV performance metrics of various machine learning models trained and tested using all features from the diabetes-related endpoint datasets.
The four endpoints (diabetes complications) are encoded as following: 703: Retinopathy, 1401: Chronic kidney disease, 910: Ischemic heart disease, and
1999: Amputations.

# of Features ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

574 Adaboost 910 71% 80% 61% 73% 67% 80%

DT 72% 71% 73% 72% 72% 72%

LogitBoost 72% 78% 66% 73% 69% 81%

RF 75% 69% 81% 73% 78% 83%

XGBoost 74% 77% 70% 75% 72% 84%

644 Adaboost 703 72% 80% 65% 74% 69% 81%

DT 72% 72% 71% 72% 72% 72%

LogitBoost 74% 78% 70% 75% 72% 82%

RF 76% 70% 83% 75% 80% 83%

XGBoost 75% 78% 71% 75% 73% 84%

708 Adaboost 1401 67% 70% 64% 68% 66% 74%

DT 66% 64% 69% 65% 67% 66%

LogitBoost 67% 69% 66% 68% 67% 74%

RF 69% 63% 76% 67% 73% 77%

XGBoost 69% 71% 68% 70% 69% 77%

376 Adaboost 1999 68% 70% 67% 69% 68% 72%

DT 63% 62% 65% 63% 64% 63%

LogitBoost 69% 71% 67% 70% 69% 74%

RF 67% 63% 70% 66% 68% 74%

XGBoost 70% 69% 71% 70% 71% 75%

The highest performance metric values are highlighted in bold.
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the dataset. A snapshot of the raw data in the sEHR dataset,
illustrating the data structure and accompanying descriptions, is
provided in the Supplementary Material.

The sEHR dataset requires several preprocessing steps which are
crucial for training the machine learning algorithms. These steps
which are visualized in Figure 1A transform the dataset into a two-
class format.

We start with converting the dataset from JSON format to a
tabular format for easier manipulation and analysis. Next, as shown
in Figures 1A–1, we performed a cleaning process which involved
removing empty records, records with both or no gender value,
records with gender value only (no registered visits), and records
without diabetes code (401). All the patients included within this
study are diagnosed with diabetes.

Via iterating through each column, where each column
represents one visit, we apply the following preprocessing tasks
(as shown in Figures 1A–2). We replaced empty visits or visits that
contained an age range label only with no pathology codes with null
values. In some visits, the age range appears between or after the
ICD-9 codes. We reordered them to ensure consistency among visits
by placing the age-range label first. Afterwards, we split the original
data structure, which included the age range label and multiple
diagnostic codes, into individual pairs. Each pair consists of the age
range label paired with one of the diagnostic codes. For example,

[age range label, diagnostic code#1, diagnostic code#2] converted
into [age range label, diagnostic code#1], [age range label, diagnostic
code#2] pairs. Finally, we ordered the pairs within one visit in an
ascending order according to the diagnostic codes.

Subsequently, we iterated through each record, performing the
following additional tasks (as shown in Figures 1A–3). Firstly, we
eliminated null visits from the sequence and reassigned the
subsequent visits to their correct order. For example, the
sequence [visit#1, visit#2, null, visit#4, visit#5] was transformed
into [visit#1, visit#2, visit#3, visit#4]. Secondly, only the first
appearance of each diagnosis was kept (as they are chronic
diseases). Thirdly, if a record contains a null age-range label in
one of its visits, we handled missing values by selecting the next
available age-range value to fill the gap. If the missing age range
appeared at the last visit, we used the previous age range label. The
entire record was deleted if all visits were missing the age label.
Fourthly, we removed individual records from the analysis who
were diagnosed with the required endpoints (developed a
complication) before being diagnosed with diabetes. Fifthly, the
visits that occurred before the diagnosis of diabetes were excluded.
The fourth and fifth steps ensure that our analysis focuses on
predicting the development of complications, specifically in
patients with ongoing diabetes. By excluding data that precedes
the diabetes diagnosis, we aim to train our models on information

TABLE 7 MCCV performance metrics of various machine learningmodels trained using 25 features extracted by XGB FS from the diabetes-related endpoint
datasets.

ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

Adaboost 910 67% 86% 47% 72% 62% 68%

DT 66% 86% 46% 72% 62% 68%

LogitBoost 67% 86% 47% 72% 62% 69%

RF 66% 86% 46% 72% 62% 68%

XGBoost 67% 86% 47% 72% 62% 69%

Adaboost 703 69% 84% 55% 73% 65% 71%

DT 68% 83% 53% 72% 64% 69%

LogitBoost 69% 83% 56% 73% 65% 72%

RF 69% 83% 54% 73% 65% 71%

XGBoost 69% 84% 54% 73% 65% 72%

Adaboost 1401 64% 64% 63% 64% 64% 68%

DT 63% 63% 64% 63% 64% 67%

LogitBoost 64% 63% 64% 64% 64% 68%

RF 64% 64% 63% 64% 64% 68%

XGBoost 64% 63% 65% 64% 64% 68%

Adaboost 1999 65% 70% 60% 67% 65% 71%

DT 63% 58% 67% 60% 65% 66%

LogitBoost 65% 65% 66% 65% 67% 71%

RF 63% 60% 66% 62% 65% 68%

XGBoost 65% 72% 59% 67% 65% 71%

The highest performance metric values are highlighted in bold.
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that is more relevant to the progression and management of
diabetes-related complications, thereby improving the accuracy
and effectiveness of our predictions.

After completing the sEHR dataset preprocessing, it was reduced
from 17,745,138 to 324,575 records, with 896 entries representing
patients’ hospital visits in the format of [age-range label, ICD-9
disease code]. At the end of these preprocessing steps (shown in
Figure 1A) we ensure that the data is appropriately structured for the
classification algorithms.

Generation of diabetes endpoint datasets
The sEHR dataset represents a multi-label classification task,

where each EHR may be associated with multiple endpoints of
interest (e.g., a patient may have multiple complications
developed over time). Instead of treating this problem as a
single multi-label problem, we decide to break it down into a
set of binary classification tasks. A binary classification approach
allows us to assess each complication individually, making it
easier to explain the results and understand how specific features
relate to the presence or absence of a single complication. This
granular insight is more difficult to achieve via following a multi-
label approach, where the interactions between labels could
obscure the understanding of individual endpoint predictions.
By employing binary classification approach, we can effectively

address the complexity of multi-label classification and derive
meaningful insights from the predictions obtained for each
endpoint. Table 1 represents the distribution of diabetes
endpoints in the sEHR Dataset. The numbers of records
having single endpoints, two or more endpoints, three or more
endpoints, and four endpoints are shown in Tables 1a–d,
respectively.

To create a binary-class dataset for each endpoint, we extracted
the required endpoint (diabetes-related complication) from each
electronic health record to serve as the positive class label for the
classification task. In order to avoid data leakage, if the patients were
diagnosed with the complication under investigation during their
first hospital visit, these records were excluded. Records that do not
have the required endpoint are labeled as negative instances, with
the last visit excluded to maintain a consistent prediction of a
complication-free, no-endpoint scenario. Moreover, we retained
records that included at least one hospital visit (temporal
threshold) after the diagnosis of diabetes and before the
occurrence of a diabetes-related complication, or the last visit for
a patient without the specified complication.

To this end, the generated datasets in the current form result in a
classification problem characterized by an unbalanced class
distribution, with fewer positive class records than negative ones
(refer to Figure 2). Specifically, the 910 endpoint cases accounted for

TABLE 8MCCV performancemetrics of variousmachine learningmodels trained using 50 features extracted by XGB FS from the diabetes-related endpoint
datasets.

ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

Adaboost 910 70% 80% 61% 73% 67% 77%

DT 70% 73% 67% 71% 69% 73%

LogitBoost 71% 78% 65% 73% 69% 77%

RF 71% 74% 68% 72% 70% 76%

XGBoost 72% 73% 71% 72% 71% 77%

Adaboost 703 72% 79% 65% 74% 69% 76%

DT 70% 76% 63% 72% 68% 71%

LogitBoost 73% 76% 70% 74% 71% 77%

RF 71% 76% 66% 73% 69% 75%

XGBoost 73% 77% 69% 74% 71% 77%

Adaboost 1401 66% 70% 62% 67% 65% 72%

DT 65% 64% 66% 65% 65% 67%

LogitBoost 67% 69% 64% 67% 66% 72%

RF 66% 65% 67% 66% 66% 70%

XGBoost 67% 67% 68% 67% 67% 73%

Adaboost 1999 66% 64% 69% 66% 68% 70%

DT 62% 59% 65% 61% 63% 63%

LogitBoost 67% 62% 72% 65% 69% 72%

RF 64% 66% 63% 65% 64% 68%

XGBoost 67% 66% 68% 67% 67% 73%

The highest performance metric values are highlighted in bold.
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10.5%, the 1401 endpoint for 18.3%, the 703 endpoint for 3.4%, and
the 1999 endpoint accounted for 0.2% of the patients in their
respective datasets.

Leaving the datasets unaltered often results in poor predictive
accuracy for the minority class, as the algorithm tends to predict the
majority class more frequently (Japkowicz and Stephen, 2002). In
order to address the issue of class imbalance, this study used a
downsampling approach where the classes were balanced by
randomly selecting the same number of negative class records as
positive ones. Figure 1B summarizes the main tasks followed in this
phase. At the end of this stage, we had four balanced datasets, one for
each of the four complications. Table 2 provides the class
distribution in each dataset after downsampling is applied.

Table 3 presents some statistics for each of the four diabetes
complication records that exist in the generated binary class
datasets. The last column contains the same measures for
diabetes patients who do not have any of the studied complications.

Table 4 presents the top ten frequently observed features (the
chronic diseases) categorized by age range. These features appeared
most frequently among the records associated with the complication
under investigation. These features were identified using the
document frequency measure. The diabetes disease code (401)
was excluded from the analysis because it is present in all
records, given that the dataset is comprised of diabetes patients.

The analysis of top ten frequently appearing chronic diseases
categorized by age range reveals significant patterns for each
complication. Most chronic diseases appear when the individuals
reach the age of fifty or older. Hypertension (913), hyperlipidemia
(402), and arthrosis/spondylosis (1302) appeared among the top ten
features for all four complications, indicating their prevalent and
critical role in diabetes-related complications. Heart failure (914)
was the most frequently observed feature for both Chronic kidney
disease (1401) and Ischemic heart disease (910) complications.
Ischemic heart disease (910) feature also appeared as one of the
top 10 frequent features in Chronic kidney disease (1401)
complication. Anxiety disorder (507) feature was significant for
Retinopathy (703) complication. Motor disorders without
cerebrovascular accident (CVA) (604), extremity arteriopathy
diseases (906), and tobacco dependence (503) appeared in the
top 10 frequent features list for Amputations complication
(1999). These findings underscore the importance of these
chronic conditions in the context of diabetes-related complications.

Feature extraction for each dataset
At this stage, we generated unique features (k) by identifying

distinct combinations of age-range labels and pathology codes
within the dataset. Gender (male, female) was also added to this
list. Afterward, we converted each EHR into a (k + 2)-dimensional

TABLE 9 MCCV performance metrics of various machine learning models trained using 100 features extracted by XGB FS from the diabetes-related
endpoint datasets.

ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

Adaboost 910 71% 81% 61% 73% 67% 81%

DT 71% 71% 71% 71% 71% 72%

LogitBoost 72% 78% 65% 73% 69% 81%

RF 73% 71% 76% 73% 75% 80%

XGBoost 74% 77% 70% 74% 72% 82%

Adaboost 703 72% 80% 64% 74% 69% 81%

DT 71% 74% 69% 72% 70% 71%

LogitBoost 74% 78% 69% 75% 72% 81%

RF 75% 73% 76% 74% 76% 81%

XGBoost 75% 78% 72% 76% 74% 82%

Adaboost 1401 67% 69% 64% 67% 66% 73%

DT 65% 63% 68% 65% 66% 64%

LogitBoost 67% 68% 66% 67% 66% 73%

RF 67% 63% 71% 66% 69% 73%

XGBoost 69% 69% 68% 69% 69% 76%

Adaboost 1999 70% 70% 70% 70% 70% 74%

DT 63% 62% 65% 63% 64% 63%

LogitBoost 69% 68% 70% 68% 69% 75%

RF 67% 65% 70% 67% 69% 73%

XGBoost 68% 70% 67% 69% 68% 75%

The highest performance metric values are highlighted in bold.
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representation vector, capturing the comprehensive information
pertaining to an individual patient. Within this representation,
every dimension corresponds to a distinct [age range label,
diagnostic code] recorded in the dataset.

Since the sequence in which these medical events occur is vital
for understanding disease progression we carefully assigned each
feature in the patient record a value that corresponds to the order of
the hospital visits in which they occurred (refer to Figure 3). In our
methodology, the order of the visits are utilized as weights. In other
words, each feature in the patient’s record is not treated equally.
Conversely, features from earlier visits were assigned lower weights,
while those from later visits received higher weights, reflecting their
temporal importance. This approach is critical for understanding
how earlier and later visits contribute differently to predicting
diabetes endpoints and enhances the model’s ability to learn
patterns specific to diagnosis timing, which ultimately improves
the accuracy and robustness of the predictions.

This transformation into a vectorized representation empowers
efficient analysis and modeling of the EHR data, facilitating the
discovery of meaningful patterns, relationships, and insights in the
healthcare domain. Finally, we applied normalization to the final
features to have a minimum value of 0 and a maximum of 1, using
the max-min formula. This strategy helps to prevent higher values
from disproportionately affecting the model’s learning process.

Feature selection
Following the feature extraction step, feature selection process is

carried out using the XGBoost algorithm. In this context, selecting
highly relevant features can minimize the computational power
required to train an ML model and decrease computation time for
the prediction process. Moreover, it can significantly enhance the
model’s performance by removing irrelevant and noisy features. The
top 25, 50, 100, 150, and 200 features were used to train various
classificationmodels.We decide to evaluate the generatedmodels using
reduced feature sets because our primary focus was on assessing the
performance of the models with compact and highly discriminative
feature subsets. Training on smaller feature sets provides insights into
how efficiently our methodology selects and ranks the most relevant
features for classification. Although we could extend the feature range,
we opted to stop at 200 features for the following reasons:

• Performance Saturation: Preliminary experiments indicated
that increasing the feature count beyond 200 did not
significantly improve performance for most endpoints.

• Efficiency Considerations: Reducing the number of features
aligns with our goal to develop a computationally efficient
model that balances performance and resource usage.

• Focus on General Applicability: Most real-world applications
benefit from models that perform well with fewer features,

TABLE 10 MCCV performance metrics of various machine learning models trained using 150 features extracted by XGB FS from the diabetes-related
endpoint datasets.

ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

Adaboost 910 71% 80% 61% 73% 67% 81%

DT 72% 71% 73% 71% 72% 71%

LogitBoost 72% 78% 65% 73% 69% 81%

RF 75% 70% 79% 73% 77% 82%

XGBoost 74% 77% 70% 75% 72% 83%

Adaboost 703 72% 80% 65% 74% 69% 82%

DT 72% 73% 70% 72% 71% 71%

LogitBoost 74% 78% 70% 75% 72% 82%

RF 76% 71% 81% 75% 79% 83%

XGBoost 75% 78% 72% 76% 74% 84%

Adaboost 1,401 67% 69% 64% 68% 66% 73%

DT 66% 63% 69% 65% 67% 64%

LogitBoost 67% 68% 65% 67% 66% 74%

RF 68% 63% 74% 66% 71% 75%

XGBoost 69% 70% 68% 69% 69% 76%

Adaboost 1999 69% 69% 70% 69% 70% 75%

DT 63% 63% 63% 63% 63% 63%

LogitBoost 70% 71% 69% 70% 70% 77%

RF 69% 68% 71% 69% 71% 76%

XGBoost 70% 72% 68% 71% 70% 77%

The highest performance metric values are highlighted in bold.
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making this rangemore practical and interpretable for broader
use cases.

Training phase
We start with decision trees (DT) classifier since they are

interpretable and easy to understand. We incorporated more
complex tree-based algorithms like Random Forest (RF), XGBoost
(XGB), AdaBoost (AB), and LogitBoost (LB) to address potential
overfitting problems. Although there is growing interest in deep
learning models like RNNs and LSTMs as proposed in (Japkowicz
and Stephen, 2002), in this study traditional machine learning
algorithms are preferred due to the following reasons. Firstly,
traditional models like RF and DT are highly interpretable. They
provide insights into feature importance and decision paths, making
predictions easily explainable to medical professionals and other
stakeholders—a critical requirement in healthcare applications.
Secondly, given the structured nature of our synthetic EHR dataset,
tree-based and boosting algorithms are well-suited for tabular data,
whereas deep learning models generally excel with unstructured data.
Thirdly, traditional algorithms are computationally efficient, requiring
fewer resources and less parameter tuning than deep learning models,
while still delivering robust predictive performance. Lastly, tree-based
models and boosting methods have consistently demonstrated high

performance across various machine-learning tasks in the literature,
further justifying their selection for this study.

Evaluation measures
To evaluate the performance of the constructed machine

learning model, we employed two complementary evaluation
approaches: Monte Carlo Cross-Validation (MCCV) and
Partitioned Validation. In the MCCV approach, the dataset was
randomly divided into 90% for training and 10% for testing. This
splitting process was repeated K times, with performance being
assessed by averaging all recorded metrics from the K tests.

In the Partitioned Validation approach, we utilized stratified
random sampling to create five independent validation subsets, each
representing 5% of the original dataset, totaling 25% that are
reserved for validation. This method ensures consistent class
distributions across subsets. The remaining 75% of the dataset
was exclusively allocated for training purposes. For simplicity, we
refer to this as “Partitioned Validation.” Table 5 provides details
about the partitioning of different endpoint datasets for training and
validation purposes.

The performance of the constructed models was evaluated using
standard performance measures, including sensitivity, specificity,
accuracy, precision, and area under the ROC curve (AUC).

TABLE 11 MCCV performance metrics of various machine learning models trained using 200 features extracted by XGB FS from the diabetes-related
endpoint datasets.

ML Model Endpoint Accuracy Sensitivity Specificity F-measure Precision AUC

Adaboost 910 70% 80% 61% 73% 67% 80%

DT 72% 70% 73% 71% 72% 71%

LogitBoost 72% 78% 65% 73% 69% 81%

RF 75% 69% 81% 73% 78% 83%

XGBoost 74% 77% 70% 75% 72% 84%

Adaboost 703 72% 80% 65% 74% 69% 81%

DT 72% 73% 72% 73% 72% 72%

LogitBoost 74% 77% 70% 75% 72% 82%

RF 77% 70% 83% 75% 80% 83%

XGBoost 75% 78% 72% 76% 73% 84%

Adaboost 1,401 67% 70% 64% 68% 66% 74%

DT 66% 63% 69% 65% 67% 65%

LogitBoost 67% 69% 66% 68% 67% 74%

RF 69% 63% 75% 67% 72% 76%

XGBoost 69% 71% 68% 70% 69% 77%

Adaboost 1999 68% 67% 70% 68% 69% 73%

DT 62% 63% 61% 63% 62% 62%

LogitBoost 69% 70% 69% 69% 70% 75%

RF 69% 65% 74% 68% 72% 75%

XGBoost 69% 70% 68% 69% 69% 77%

The highest performance metric values are highlighted in bold.
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FIGURE 4
AUC performance metric of various machine learning models for predicting four diabetes endpoints using different feature subsets (extracted
through XGB FS). The four endpoints (diabetes complications) are encoded as following: 703: Retinopathy, 1401: Chronic kidney disease, 910: Ischemic
heart disease, and 1999: Amputations.

FIGURE 5
Accuracy performance metric of various machine learning models for predicting four diabetes endpoints using different feature subsets (extracted
through XGB FS). The four endpoints (diabetes complications) are encoded as following: 703: Retinopathy, 1401: Chronic kidney disease, 910: Ischemic
heart disease, and 1999: Amputations.
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Experimental results

Performance evaluation using cross
-validation approach

For each diabetes-related complications, six primary
experiments were conducted using the specified machine learning
algorithms [DT, RF, XGB, AB, LB]. The initial experiment assessed
the models using all available attributes in the dataset, while
subsequent experiments utilized only the top 25, 50, 100, 150,
and 200 attributes, respectively.

We employed repeated k-Monte Carlo cross-validation for
model training (with k = 10) and conducted six repetitions for
each feature subset, resulting in 60 experiments per MLmodel. With
four complications and five machine learning algorithms, we
realized 1,200 experiments (60 * 4 * 5) in total.

Table 6 summarizes the performancemetrics of various machine
learning models, trained to predict the four diabetes endpoints from
patients’ visits using all features generated by our feature engineering
approach on the diabetes-related endpoint datasets. The results
presented in Table 6 were obtained using the Monte Carlo
Cross-Validation (MCCV) approach.

Among others, XGBoost and Random Forest emerged as the
top-performing models, highlighting the effectiveness of tree-based
ensemble algorithms for this type of problem. The final models,
tailored to each complication, achieved an accuracy between 69 and
77 and AUC between 75 and 84. As noted in (Tan et al., 2023), an
AUC of >0.75 signifies clearly useful discrimination performance.

TABLE 12 Top 25 high-impact predictors for Ischemic heart disease (ICD9 =
910) complication of diabetes, identified by XGBoost feature selection and
ranked by feature importance values from Random Forest and XGBoost.

RF

Age Range Diagnosed Disease

1080 Other organic mental disorder

1070 Other organic mental disorder

1060 Other organic mental disorder

1070 Arthrosis/spondylosis

1080 Acute cerebrovascular disease

1060 Anxiety disorder

1070 Acute cerebrovascular disease

1080 Chronic kidney disease

1070 Chronic kidney disease

1050 Arthrosis/spondylosis

1050 Anxiety disorder

1050 Other organic mental disorder

1080 Dementia

1070 Atrial fibrillation

1070 Anxiety disorder

1060 Chronic kidney disease

1070 COPD

1060 Acute cerebrovascular disease

1070 Dementia

1030 Diabetes

1060 Atrial fibrillation

1060 Motor disorders with no CVA

1080 Anxiety disorder

1060 Hypothyroidism

1020 Diabetes

XGBoost

1030 Diabetes

1080 Other organic mental disorder

1020 Diabetes

1060 Other organic mental disorder

1070 Other organic mental disorder

1090 Other organic mental disorder

1050 Other organic mental disorder

1000 Diabetes

1060 Acute cerebrovascular disease

1050 Dementia

(Continued in next column)

TABLE 12 (Continued) Top 25 high-impact predictors for Ischemic heart
disease (ICD9 = 910) complication of diabetes, identified by XGBoost
feature selection and ranked by feature importance values from Random
Forest and XGBoost.

RF

Age Range Diagnosed Disease

1050 Arthrosis/spondylosis

1010 Diabetes

1090 Dementia

1090 Chronic kidney disease

1050 Acute cerebrovascular disease

1050 Anxiety disorder

1080 Dementia

1060 Hypothyroidism

1090 Heart failure

1070 Acute cerebrovascular disease

1030 Anxiety disorder

1050 Hypothyroidism

1080 Chronic kidney disease

1080 Acute cerebrovascular disease

1060 Chronic kidney disease
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Our experimental findings underscore the value of leveraging
ensemble approaches, combining multiple models to address
individual model shortcomings. Both XGBoost and Random
Forest aggregate the strengths of “weak” classifiers to construct
robust final models. This approach significantly enhances overall
performance by reducing variance and improving
prediction accuracy.

Performance evaluation using various
feature subset sizes

In our study, we employed XGB feature selection to examine
the impact of reducing the number of features used during the
training process (refer to Tables 7–11). We observed that most
performance measures showed improvement as we increased the
feature subset sizes in all models. As illustrated in Figures 4, 5, the
models demonstrated a steady improvement in AUC and
accuracy when utilizing feature subset sizes from 25 to
200 features. Beyond this point, both performance metrics
remained relatively stable. However, for the Amputations
(1999) endpoint, it peaked at 150 features and began to
decrease after that. This phenomenon indicates that
comparable or similar results can still be achieved by utilizing
only a subset of attributes from the entire pool. This finding
highlights the effectiveness of the FS in reducing the dataset
dimensionality, simplifying the model, and reducing
computational complexity.

TABLE 13 Top 25 high-impact predictors for Retinopathy (ICD9 = 703)
complication of diabetes, identified by XGBoost feature selection and
ranked by feature importance values from Random Forest and XGBoost.

RF

Age Range Diagnosed Disease

1070 Chronic kidney disease

1070 Atrial fibrillation

1060 Arthrosis/spondylosis

1080 Heart failure

1070 Other organic mental disorder

1070 Hyperlipidaemia

1080 Other organic mental disorder

1080 Chronic kidney disease

1070 Anxiety disorder

1080 Atrial fibrillation

1060 Anxiety disorder

1070 COPD

1060 Other organic mental disorder

1080 Hyperlipidaemia

1060 Chronic kidney disease

1060 Atrial fibrillation

1080 Ischemic heart disease

1070 Motor disorders with no CVA

1070 Extremity arteriopathy diseases

1070 Hypothyroidism

1080 Dementia

1070 Dementia

1060 Hypothyroidism

1080 Diabetes

1080 COPD

XGBoost

1060 Other organic mental disorder

1080 Other organic mental disorder

1080 Diabetes

1070 Chronic kidney disease

1080 Dementia

1070 Atrial fibrillation

1070 Other organic mental disorder

1070 COPD

1070 Anxiety disorder

1090 Other organic mental disorder

(Continued in next column)

TABLE 13 (Continued) Top 25 high-impact predictors for Retinopathy
(ICD9 = 703) complication of diabetes, identified by XGBoost feature
selection and ranked by feature importance values from Random Forest
and XGBoost.

RF

Age Range Diagnosed Disease

1080 Chronic kidney disease

1080 Atrial fibrillation

1060 Anxiety disorder

1060 Hypothyroidism

1070 Dementia

1060 Chronic kidney disease

1080 COPD

1090 Heart failure

1080 Heart failure

1090 Chronic kidney disease

1050 Hypothyroidism

1090 Arthrosis/spondylosis

1060 Atrial fibrillation

1070 Hypothyroidism

1050 Other organic mental disorder
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The XGBOOST model consistently outperformed other models,
achieving the highest AUC across all endpoints, even when using
different feature subset sizes. This indicates that XGBOOST is
particularly effective in distinguishing between positive and
negative cases of diabetes complications. Conversely, the Decision
Tree model consistently yielded the lowest AUC values across all
endpoints and across different feature subset sizes, suggesting that it
may not be the best choice for this prediction task.

On the other hand, the Random Forest model demonstrated
high specificity and precision across the three endpoints (910, 1401,
and 703) when employing feature subset sizes of 100 or more. In
contrast, XGBOOST and LogitBoost achieved the highest values for
these metrics with feature subset sizes less than 100, indicating that
these models perform better with fewer selected features.

AdaBoost consistently achieved the highest sensitivity for the
910 and 703 endpoints across all feature subset sizes, indicating its
effectiveness in correctly identifying positive cases of diabetes
complications. For the 1401 endpoint, Adaboost achieved the
highest sensitivity for smaller feature subset sizes (<=100), while
XGBoost achieved the highest sensitivity for feature subset sizes
greater than 100. For the 1999 endpoint, XGBOOST achieved the
highest sensitivity for all feature subset sizes, demonstrating its
robust performance across different endpoints.

Moreover, XGBOOST consistently attained the highest F1-score
for the three endpoints (910, 1401, and 703) when the feature subset
size was 100 or more, indicating its balanced performance in terms
of precision and recall.

When comparing models constructed using 200 features for all
endpoints, both XGBoost and Random Forest demonstrate superior

TABLE 14 Top 25 high-impact predictors for Amputation (ICD9 = 1999)
complication of diabetes, identified by XGBoost feature selection and
ranked by feature importance values from Random Forest and XGBoost.

RF

Age Range Diagnosed Disease

1060 Motor disorders with no CVA

1060 Arthrosis/spondylosis

1080 Diabetes

1070 Diabetes

1070 Atrial fibrillation

1060 Anxiety disorder

1060 Heart failure

1060 Atrial fibrillation

1070 Other organic mental disorder

1080 Heart failure

1070 Extremity arteriopathy diseases

1050 Motor disorders with no CVA

1080 Hyperlipidaemia

1060 Extremity arteriopathy diseases

1070 Tobacco dependence

1080 Acute cerebrovascular disease

1080 Arthrosis/spondylosis

1070 Alcohol dependence

1050 Extremity arteriopathy diseases

1050 Obesity

1050 Acute cerebrovascular disease

1040 Diabetes

1080 Dementia

1070 Mood disorder

1070 Hypothyroidism

XGBoost

1080 Diabetes

1070 Diabetes

1080 Heart failure

1060 Atrial fibrillation

1050 Sequelae of cerebrovascular diseases

1080 Arthrosis/spondylosis

1060 Sequelae of cerebrovascular diseases

1050 Glaucoma

1050 Motor disorders with no CVA

1070 Prostate cancer

(Continued in next column)

TABLE 14 (Continued) Top 25 high-impact predictors for Amputation
(ICD9 = 1999) complication of diabetes, identified by XGBoost feature
selection and ranked by feature importance values from Random Forest
and XGBoost.

RF

Age Range Diagnosed Disease

1040 Schizophrenia

1060 Arthrosis/spondylosis

1070 Other functional disorder

1070 Hypothyroidism

1060 Schizophrenia

1060 Other functional disorder

1070 Epilepsy

1050 Other functional disorder

1040 Diabetes

1060 Extrapyramidal disorder

1050 Extremity arteriopathy diseases

1060 Prostate cancer

1050 Extrapyramidal disorder

1040 Extremity arteriopathy diseases

1070 Atrial fibrillation

Frontiers in Genetics frontiersin.org17

Voskergian et al. 10.3389/fgene.2025.1451290

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1451290


performance. For 910, 1401, and 703 endpoints, XGBoost achieved
the highest AUC and F1 score. On the other hand, Random Forest
achieved the highest accuracy, specificity, and precision.

Top predictors identified through XGBoost
feature selection

Tables 12–15 present a summary of the top 25 high-impact
predictors from each diabetes-related-complication dataset identified
through XGBoost feature selection, ranked by their feature importance
values as determined by each classification algorithm (Random Forest
and XGBoost). These predictors are pairwise features, each comprising
an age range label and a diagnostic code derived from patient visits
within electronic health record (EHR) systems. These predictors can aid
in identifying diagnosis codes and the corresponding age at occurrence,
serving as risk factors for future diabetes-related diseases.

For comprehensive analysis, the top 50, 100, 150, and 200 high-
impact predictors for each diabetes-related complication identified
by the feature selection process are provided in the Supplementary
Material, allowing further exploration of key factors influencing
each endpoint.

Comparative evaluation of feature
engineering approaches

Finally, when comparing our feature engineering approach with
the traditional Bag of Features (BOF), where each ICD-9 code,

TABLE 15 Top 25 high-impact predictors for Chronic kidney disease (ICD9 =
1,401) complication of diabetes, identified by XGBoost feature selection
and ranked by feature importance values from Random Forest and
XGBoost.

RF

Age Range Diagnosed Disease

1040 Diabetes

1070 Anxiety disorder

1070 Hypertension

1060 Hypertension

1070 Other organic mental disorder

1080 Other organic mental disorder

1060 Arthrosis/spondylosis

1050 Arthrosis/spondylosis

1060 Anxiety disorder

1050 Anxiety disorder

1080 Atrial fibrillation

1070 Motor disorders with no CVA

1080 Acute cerebrovascular disease

1080 Anxiety disorder

1030 Diabetes

1070 COPD

1070 Dementia

1080 Dementia

1050 Diabetes

1070 Acute cerebrovascular disease

1060 Other organic mental disorder

1070 Diabetes

1060 Diabetes

1080 COPD

1060 Acute cerebrovascular disease

XGBoost

1040 Diabetes

1030 Diabetes

1050 Diabetes

1080 Diabetes

1070 Diabetes

1060 Diabetes

1070 Other organic mental disorder

1090 Other organic mental disorder

1070 Anxiety disorder

1020 Diabetes

(Continued in next column)

TABLE 15 (Continued) Top 25 high-impact predictors for Chronic kidney
disease (ICD9 = 1,401) complication of diabetes, identified by XGBoost
feature selection and ranked by feature importance values from Random
Forest and XGBoost.

RF

Age Range Diagnosed Disease

1080 Other organic mental disorder

1060 Anxiety disorder

1010 Diabetes

1060 Other organic mental disorder

1090 Arthrosis/spondylosis

1080 Dementia

1080 Atrial fibrillation

1000 Diabetes

1080 Anxiety disorder

1050 Anxiety disorder

1070 Hypertension

1050 Arthrosis/spondylosis

1060 Arthrosis/spondylosis

1090 Anxiety disorder

1090 Dementia
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TABLE 16MCCVperformancemetrics obtained using XGBoostmachine learningmodels combinedwith a) all features from the conventional approach (Bag
of Features, BoF), b) all features as proposed in our approach, c) 100 features selected by XGB on our proposed diabetes-related endpoint datasets.

Endpoint FS Model # of Features Accuracy Sensitivity Specificity F-measure Precision AUC

910 BoF (all features) 94 70% 75% 64% 71% 68% 77%

Proposed (all features) 574 74% 77% 70% 75% 72% 84%

Proposed + XGB FS 100 74% 77% 70% 74% 72% 82%

1,401 BoF (all features) 94 66% 69% 64% 67% 66% 73%

Proposed (all features) 708 69% 63% 76% 67% 73% 77%

Proposed + XGB FS 100 69% 69% 68% 69% 69% 76%

703 BoF (all features) 94 73% 74% 71% 73% 72% 80%

Proposed (all features) 644 75% 78% 71% 75% 73% 84%

Proposed + XGB FS 100 75% 78% 72% 76% 74% 82%

1999 BoF (all features) 94 67% 66% 68% 67% 67% 73%

Proposed (all features) 376 70% 69% 71% 70% 71% 75%

Proposed + XGB FS 100 68% 70% 67% 69% 68% 75%

The highest performance metric values are highlighted in bold.

TABLE 17 Performance metrics for endpoint 910 (ischemic heart disease) using random forest algorithm across partitioned validation subsets.

Validation Subset Accuracy Sensitivity Specificity F-measure Precision AUC

v1 76% 70% 82% 74% 79% 84%

v2 74% 70% 79% 73% 77% 83%

v3 74% 68% 79% 72% 76% 82%

v4 74% 68% 79% 72% 77% 82%

v5 74% 68% 81% 72% 78% 83%

TABLE 18 Performance metrics for endpoint 703 (retinopathy) using random forest algorithm across partitioned validation subsets.

Validation Subset Accuracy Sensitivity Specificity F-measure Precision AUC

v1 75% 69% 81% 74% 79% 83%

v2 77% 71% 82% 75% 80% 84%

v3 77% 72% 83% 76% 81% 85%

v4 78% 71% 85% 76% 83% 85%

v5 77% 70% 84% 75% 81% 84%

TABLE 19 Performance metrics for endpoint 1,401 (chronic kidney disease) using random forest algorithm across partitioned validation subsets.

Validation Subset Accuracy Sensitivity Specificity F-measure Precision AUC

v1 69% 62% 76% 67% 72% 76%

v2 68% 60% 76% 66% 72% 75%

v3 68% 60% 76% 65% 71% 74%

v4 69% 61% 77% 66% 72% 76%

v5 69% 61% 76% 66% 72% 75%
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gender, and age-range label is considered as a separate feature,
and their occurrences are used to build the record-feature
matrix, significant differences emerge. Although the
conventional BOF approach yields fewer distinct
features—less than one hundred—, the comparative
performance evaluation (summarized in Tables 16)
demonstrate the superiority of our approach. Our method
not only performs better when training the model on all
features but also excels when training on a subset size similar
to the conventional approach. This improvement underscores
the robustness of our feature engineering strategy in capturing
more relevant and comprehensive information, leading to
enhanced model performance.

Performance evaluation metrics across
partitioned validation subsets

To provide a comprehensive assessment of the diabetes-related
endpoint prediction models, we used the partitioned validation
approach to calculate key performance metrics, including
precision, specificity, sensitivity, accuracy, F1 score, and area
under the curve (AUC), for each of the five independent
validation subsets. Tables 17–20 showcase the performance
metrics of Random Forest models trained using all features from
the diabetes-related endpoint datasets and evaluated using the
Partitioned Validation subsets.

One can observe that across several performance metrics,
there is a strong alignment between Cross-Validation results (as
shown in Table 6) and Partitioned Validation results (as shown in
Tables 17–20) particularly for endpoints having larger datasets
(e.g., 910, 703, and 1401). The performance metrics obtained for
endpoint 910 can be comparatively evaluated between two
methods as follows:

• AUC: 83% (cross-validation) vs. 82%–84% (partitioned
validation)

• F-measure: 73% vs. 72%–74%
• Precision: 78% vs. 76%–79%
• Specificity: 81% vs. 79%–82%
• Accuracy: 75% vs. 74%–76%

Here it worths to note that endpoint 910 has a large
dataset. Similarly, for endpoint 703 the performance
metrics remained consistent across the two
evaluation methods:

• AUC: 83% (cross-validation) vs. 83%–85% (partitioned
validation)

• F-measure: 75% vs. 74%–76%
• Precision: 80% vs. 79%–83%
• Specificity: 83% vs. 81%–85%
• Accuracy: 76% vs. 75%–78%

For endpoint 1401, we also observed a high degree of alignment:

• AUC: 77% (cross-validation) vs. 74%–76% (partitioned
validation)

• F-measure: 67% vs. 65%–67%
• Precision: 73% vs. 71%–72%
• Specificity: 76% vs. 76%–77%
• Accuracy: 69% vs. 68%–69%

However, for endpoint 1999, which has a smaller dataset
(including only 982 records), we observed greater variability in
the stratified validation results. This variability is expected given
the reduced sample size, which can introduce more fluctuations in
model performance:

• F1 score ranged from 63% to 72%.
• AUC varied between 66% and 76%.

Despite this, the overall performance metrics for Endpoint
1999 were still in reasonable agreement with the cross-validation
results (AUC: 74%). This suggests that, although the limited dataset
introduces some variability, the model still demonstrates solid
adaptability and consistent performance.

This comparative analysis highlights the robustness of our
approach. The close alignment between Cross-Validation and
Partitioned Validation results demonstrates the reliability of our
models across evaluation strategies, indicating practical and
generalizable performance.

Conclusion

This study focused on developing prediction models for diabetes
complications using a novel feature engineering approach, feature
selection and various machine learning algorithms. Among others,
XGBoost and Random Forest emerged as the top-performing
models, showcasing the effectiveness of tree-based ensemble
algorithms for this type of problem. The Random Forest and
XGBoost models, customized for each complication,

TABLE 20 Performance metrics for endpoint 1999 (amputations) using random forest algorithm across partitioned validation subsets.

Validation Subset Accuracy Sensitivity Specificity F-measure Precision AUC

v1 69% 72% 67% 70% 68% 76%

v2 72% 70% 75% 72% 74% 68%

v3 68% 63% 73% 66% 69% 76%

v4 59% 70% 51% 63% 59% 66%

v5 65% 70% 59% 67% 64% 69%
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demonstrated an accuracy and F1-score ranging from 0.69 to 0.77,
and an AUC between 0.75 and 0.85 using cross-validation, while the
partitioned validation approach yielded an accuracy between
0.59 and 0.78 and an AUC between 0.66 and 0.85, indicating a
clearly useful discrimination performance. This consistency between
two evaluation methods not only underscores the reliability of our
models but also instills confidence in the generalizability of our
findings to real-world applications. Furthermore, it highlights that
the performance of our models remains robust and is not overly
reliant on the cross-validation approach alone.

Although we have achieved good results, external validation
studies are necessary before considering their clinical
implementation. This crucial step ensures that the models’
performance and generalizability are assessed in diverse
populations or settings, confirming their reliability and
effectiveness beyond the initial study cohort.

Since the dataset used in this research had not been previously
employed, and no prior performance metrics existed in the
literature, this study establishes a baseline for future
comparisons. By conducting a comprehensive analysis of the
dataset, this study aims to provide insights into its
characteristics and potential challenges. Furthermore, this
research sets a foundation for future studies to build upon and
refine the models developed here.

For future work we aim to investigate the optimal number
of hospitalizations occurring between the diagnosis of diabetes
and the onset of each of the four complications for machine
learning models to produce the best prediction accuracy.
Additionally, we intend to employ longitudinal deep-learning
models such as Long Short-Term Memory (LSTM) networks or
multi-instance learning methods to model patient history.
These approaches utilize time information that is mostly
included in EHRs, which could lead to a more detailed and
nuanced model.
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