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Background: FAT atypical cadherin 1 (FAT1) is a well-known tumor regulator that
plays a crucial role in multiple cancer signaling pathways. Its mutations have been
linked to tumor progression and immune regulation in various cancers, including
lung adenocarcinoma (LUAD). In this study, we aim to identify a FAT1 mutation-
related transcriptomic risk signature to assess the survival risks and immune status
of LUAD patients.

Methods: A total of 2528 LUAD samples, which included both gene expression
profiles and clinicopathologic data, were collected from 12 datasets. Additionally,
two datasets treated with immunotherapies were also included to investigate the
therapeutic effects.

Results: We constructed a FAT1 mutation molecular signature based on
9 relevant genes. LUAD patients with low-risk scores demonstrated a more
favorable prognosis compared to those with high-risk scores, which is
corroborated by 6 additional independent datasets. Further immunological,
mutational, and intratumor microbial analyses reveal that increased infiltration
of immune effector cells, increased mutational burden, specific mutational
signatures (such as age and APOBEC associated), mutations in driver genes
(e.g., TP53, KEAP1, NAV3, and SMARCA4), and increased microbial α/β
diversities are present in the low-risk LUAD patients. Based on the
immunotherapeutic patients, an improved immune checkpoint blockade
treatment prognosis and an elevated response rate are also observed in the
low-risk signature group.

Conclusion: In summary, Our identified FAT1 mutation-related risk signature
shows potential for assessing LUAD clinical outcomes, tumor immunogenicity,
and immunotherapy effectiveness, providing valuable insights for LUAD clinical
practice.
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Introduction

Lung adenocarcinoma (LUAD) is a type of lung cancer that
originates from cells responsible for producing mucus. This
malignancy accounts for 40% of all lung cancer cases and is the
most prevalent subtype (Nicholson et al., 2022). Although LUAD
has a relatively favorable prognosis compared to other forms of non-
small cell lung cancer (NSCLC) (Nicholson et al., 2022), there is
currently a lack of effective molecular markers to accurately predict
patient outcomes and disease progression. Therefore, new and
effective biomarkers are urgently needed in clinical practice to
evaluate the prognosis of patients with LUAD.

Immune checkpoint blockade (ICB) therapies (e.g., anti-PD-1/
PD-L1 and anti-CTLA-4 treatments) use monoclonal antibodies to
block inhibitory checkpoints and reactivate the immune response
against cancer cells. Although ICB therapy has significantly
improved the survival of cancer patients, only a small proportion
of patients can benefit from it, mainly due to the lack of
immunogenicity in most patients (Wang Q. et al., 2023). For
example, a recent study has indicated that enhancing the activity
of CD5-positive dendritic cells can activate the response of effector
CD8-positive T cells to tumors, thereby improving tumor
immunogenicity and further enhancing the response rate to
immunotherapy (He et al., 2023).

Tumor mutation burden (TMB) reflects the enrichment of
somatic mutations within the tumor genome, with a higher TMB
leading to the generation of more neoantigens, subsequently
enhancing T-cell recognition and improving immunotherapy
response rates (Li et al., 2022). However, Goodman et al. have
noted that even with high TMB levels, poor presentation of driver
mutation neoantigens by MHC-I could still render tumors
unresponsive to ICB therapy (Goodman et al., 2020). Shin et al.
discovered that JAK1/2 loss-of-function mutations could lead to
acquired or primary resistance to anti-PD-1 treatment in patients
with high TMB levels (Shin et al., 2017). Furthermore, due to tumor
heterogeneity, there is currently no definitive TMB cut-off value for
patient stratification (Wang Y. et al., 2022; Wang Y. et al., 2023).
These evidences indicate the instability of TMB in predicting the
immunotherapy efficacy, suggesting that it is not a flawless clinical
biomarker. High expression of PD-L1 protein is one of the predictive
biomarkers for the benefit of immunotherapy in NSCLC (Wojas-
Krawczyk and Kubiatowski, 2020). However, the results of the
CheckMate 227 clinical trial indicated that PD-L1-negative
NSCLC patients could still show a benefit from ICB treatment;
additionally, a subset of patients with PD-L1-negative expression
exhibited significantly prolonged survival (Hellmann et al., 2019).
Furthermore, several issues remain unresolved in utilizing PD-L1 to
guide immunotherapy: (1) determination of the cut-off value for
PD-L1 positivity; (2) differences in results across various detection
platforms; (3) variations in expression levels among different tumor
types (Wojas-Krawczyk and Kubiatowski, 2020). These findings also
suggest that PD-L1 expression is not a reliable marker in assessing
the efficacy of tumor immunotherapy. Therefore, there is a need to
further explore robust indicators for evaluating and predicting the
efficacy of cancer immunotherapy.

The FAT1 gene encodes a large transmembrane protein with
extracellular cadherin repeats, EGF-like domains, and laminin
G-like domains that are typically expressed in epithelial tissues

(Wang Z. et al., 2022). The function of FAT1 in human cancers
varies depending on the type of cancer, as it can act as either an
oncogene or a tumor suppressor (Chen Y. H. et al., 2022). By
regulating the Hippo pathway, FAT1 influences various molecular
signaling pathways such asWNT/β-catenin, TGF-β, PI3K/AKT, and
others, thereby affecting tumor progression (Li et al., 2018). In breast
cancer, reduced FAT1 expression was associated with high
histological grade, poor lymph node status, progression,
aggressive behavior, and a worse prognosis (Wang et al., 2016).
Overexpression of FAT1 in NSCLC cells reduced stem cell markers
and inhibited spheroid formation, potentially reducing tumor
formation by promoting the nucleoplasmic translocation of
YAP1 (Li et al., 2021). FAT1 mutations are common in human
cancers, predominantly occurring as nonsense mutations
(Pastushenko et al., 2021). A recent study conducted in mouse
models of skin squamous cell carcinoma and lung cancer revealed
that loss of FAT1 could accelerate tumor occurrence and malignant
progression, promoting epithelial to mesenchymal transition (EMT)
(Pastushenko et al., 2021). This EMT state was also observed in
human squamous cell carcinomas with FAT1 mutations
(Pastushenko et al., 2021). Similarly, a study based on integrated
multi-omics immunotherapy cohorts demonstrated that
FAT1 mutations are associated with improved immune
checkpoint blockade (ICB) treatment outcomes in both non-
small cell lung cancer and melanoma (Zhang et al., 2022).

Regarding the crucial role of FAT1 and its mutations in
tumor progression and therapeutic prognosis, this study
amalgamated 2,528 samples from 12 independent LUAD
datasets to construct a molecular prognosis signature
associated with FAT1 mutations. By integrating diverse omics
data, including immunological characteristics, mutational
features, and intratumoral microbial traits, we explored the
possible molecular mechanisms underpinning the prognosis
signature. The findings from this investigation are anticipated
to furnish a theoretical basis for assessing prognosis and
predicting treatment efficacy for LUAD.

Materials and methods

Acquisition of LUAD samples and
corresponding multi-omics data

We collected 509 LUAD samples from the Cancer Genome Atlas
(TCGA) project, including transcriptome, somatic mutation,
intratumoral microbiome profiles, and clinicopathological
prognosis information. These samples were used as discovery
datasets to construct the FAT1 mutation-related survival risk
signature. All samples included in the study must have follow-up
information, both overall survival (OS) times and OS statuses.
Subsequently, we verified the risk signature by collecting
11 additional LUAD datasets from the Gene Expression
Omnibus (GEO) project, including GSE72094 (N = 398),
GSE68465 (N = 442), GSE50081 (N = 127), GSE42127 (N =
132), GSE41271 (N = 181), GSE31210 (N = 226), GSE30219
(N = 85), GSE13213 (N = 117), GSE26939 (N = 115), GSE11969
(N = 90), and GSE81089 (N = 106). In the data processing stage, we
merged samples from the same microarray platform to obtain a
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larger sample size and more stable results. The three datasets of
GSE50081, GSE31210, and GSE30219, which share the Affymetrix
Human Genome U133 Plus 2.0 Array, were combined as the pooled
dataset 1; the two datasets of GSE42127 and GSE41271, which share
the Illumina HumanWG-6 v3.0 expression beadchip, were
combined as the pooled dataset 2. To correct for batch effects

between merged datasets, we employed the ComBat function of
the R sva package (Leek et al., 2012). All LUAD samples underwent
chemotherapy at different stages, with a few patients undergoing
immunotherapy, but detailed treatment information is not available.
Supplementary Table S1 provided detailed information on all LUAD
datasets included in this study and the microarray platforms.

FIGURE 1
The overall design of this study is to construct a risk signature related to FAT1 mutation in LUAD patients.
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To investigate the significance of FAT1 mutation risk signature
in predicting therapeutic efficacy, we analyzed two cohorts
comprising transcriptomic expression data and immune
checkpoint blockade (ICB) treatment information. The first is
IMvigor210 cohort (Mariathasan et al., 2018), contained
348 patients with advanced urothelial carcinoma who were
treated with atezolizumab (anti-PD-L1 drug). Transcriptome data
and treatment prognostic response information for this cohort are
available at http://research-pub.gene.com/IMvigor210CoreBiologies
and are referred to as ICB cohort 1. The second cohort (ICB cohort
2) consisted of 121 patients with melanoma who had received anti-
PD-1/PD-L1 or combination treatments (Liu et al., 2019). Complete
clinicopathologic data and immunotherapeutic information for
urothelial carcinoma and melanoma patients are provided in
Supplementary Tables S2, S3, respectively. The detailed design
processes for this study are illustrated in Figure 1.

Construction and corroboration of the
FAT1 mutation-related risk signature

The TCGA discovery cohort was utilized to analyze transcriptome
gene expression differences between FAT1 mutation and wild-type
patients, all genes with P values less than 0.05 were determined to be
associated with FAT1 mutation and were considered as potential
differential markers. In the second step, univariate Cox regression
analysis was performed for all FAT1 mutation-related genes to
identify those that had a significant impact on prognoses. In the
third step, all prognostic genes were subjected to Lasso-Cox
regression analysis [implemented by R glmnet package (Friedman
et al., 2010)] to select the most significant gene subsets that
contributed the most to prognoses. The optimal λ was determined
via 10-fold cross-validation using the 1-SE rule, which minimizes
overfitting while retaining predictive power. Finally, a risk score was
calculated for each LUAD patient based on the specific genes identified
by Lasso regression and their corresponding regression coefficients. The
detailed risk score calculation method is provided as: risk score =
∑n

i Coefficient of gene (i)*Expression of gene (i). All patients were
divided into high-risk and low-risk groups based onmedian scores, and
the association with survival risks was analyzed. To ensure the
robustness of the constructed risk signature, multiple verification
datasets obtained from the GEO platform were used to validate the
results. We also utilized the surv_cutpoint function within the R
survminer package to stratify LUAD patients based on their
signature risk scores and analyzed the survival differences between
high- and low-risk subgroups across all datasets.

Tumor infiltration immunocytes and
immune checkpoints

To investigate the immune cell infiltration differences between
high-risk and low-risk LUAD patients, we employed Charoentong
et al. method (Charoentong et al., 2017) to provide a comprehensive
estimate of 28 types of tumor infiltrating immune cells. These 28 cell
subtypes were classified into three categories: anti-tumor cells, pro-
tumor cells, and neutral cells. The specific gene sets used to estimate
these immune cell abundances are presented in Supplementary

Table S4. We also utilized the current commonly used
CIBERSORT (Newman et al., 2015) and TIMER method (Li
et al., 2020) to assess immune cell infiltration in LUAD patients.
The CIBERSORT method evaluated a total of 22 immune cell types
based on 547 feature genes in the LM22 eigenmatrix, while the
TIMER method estimated the infiltration proportion of 6 major
immune cells through the deconvolution operation.

Based on a previous study in the field of tumor
immunogenomics (Ye et al., 2020), we collected a total of
32 immune checkpoint genes and explored the differences in
their expression across different risk groups of LUAD patients.

Tumor immunogenicity relevant signatures

Recent studies have identified a number of tumor
immunogenicity-related molecular signatures that are associated
with immune response and treatment sensitivity in cancer. In
our study, we collected 4 representative molecular signatures for
analysis: 1) T cell-inflamed signature (Ayers et al., 2017), which
contains 18 genes that are involved in activating T cells and are
associated with pembrolizumab therapeutic response; 2) interferon
γ (IFNγ) signature (Gocher et al., 2022), a classic anti-tumor
molecular signal that has been demonstrated to be related to
immunogenicity and efficacy of immunotherapy; 3) cytolytic
activity (Rooney et al., 2015), which indicates the ability of tumor
cells to survive and is inversely correlated with their viability; and 4)
WNT TGF-β signature (Batlle and Massague, 2019), which have
been shown to play a role in immune suppression and are associated
with poorer treatment responses. The specific genes associated with
each of these 4 signatures are displayed in Supplementary Table S5.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used to identify
significantly enriched molecular signaling pathways in high-risk
and low-risk LUAD patients. Based on the R limma package (Ritchie
et al., 2015), a genome-wide differential expression analysis was first
conducted between the high-risk and low-risk subgroups, with the
resulting t-values serving as input variables for pathway analysis
using the R clusterProfiler package (Wu D. et al., 2021). Signaling
pathways from the KEGG and GO BP databases were used for
background annotation. For gene sets from specific immune cells
and molecular signatures, we used the single sample GSEA
(ssGSEA) method (Hanzelmann et al., 2013) to enrich each
LUAD sample and obtain corresponding enrichment scores.

Detection of tumor mutational signatures

Mutational signatures refer to the changes in a genome that occurs
as it is continuously subjected to endogenous and exogenous DNA
damage during cellular growth, ultimately resulting in distinct genomic
markers (Koh et al., 2021). Using mutational profiles from the LUAD
discovery dataset, we employed Bayesian nonnegative matrix
factorization (NMF) method to extract potential mutational
signatures and their activity, and analyzed their enrichment
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differences across distinct risk subpopulations. The NMF approach
automates the identification of potential mutational signatures without
requiring manual inspection. In particular, the mutational feature
matrix A was decomposed into two nonnegative matrices W and H
(i.e., A ≈ W × H): the W matrix representing identified mutational
signatures, and the H matrix representing corresponding mutational
activity. Finally, all identified mutational signatures were aligned with
already annotated signatures in the COSMIC database (Alexandrov
et al., 2013) based on cosine similarity to determine the final
information. All relevant analyses were completed with R maftools
package (Mayakonda et al., 2018).

Determination of significantly
mutated genes

Significantly mutated genes (SMGs) refer to genes withmutation
frequencies significantly higher than the background mutation
frequency. These mutations are typically considered in
combination with somatic single nucleotide variants (SNVs) and
insertions/deletions (INDELs). The MutSigCV algorithm (Lawrence
et al., 2013) was used for identifying SMGs based on LUAD
mutational profiles. MutSigCV establishes a background mutation
process model that functions during tumor formation. By analyzing
the mutations of each gene, it determines which genes have a higher
mutation frequency than expected given the background model.
First, mutation data from multiple tumor samples are aggregated
together; then, the scores and P values for each gene are calculated. A
significance threshold is selected to control the false discovery rate,
where genes exceeding this threshold are considered to be SMGs.

Processing of LUAD intratumor
microbiome data

The study by Poore et al. (2020) provides normalized intratumor
microbial abundance data, which is derived from treatment-naive
whole genome and transcriptome sequencing of TCGA LUAD
samples for microbial reads and subsequent quantification of
microbial abundances. The investigation of intratumoral microbial
diversity encompasses two aspects: firstly, the alpha diversity that
reflects the abundance and diversity of microbial communities,
representing the ecological community structure. This aspect can be
assessed using various indexes such as the Shannon index (diversity
accounting for richness and evenness), Richness index (number of
unique OTUs), ACE index (estimating species richness with rare taxa),
and Chao1 index (species richness with unseen species). Secondly, beta
diversity involves comparative analysis of microbial community
composition across groups, evaluated using Bray-Curtis distances
and visualized via PCoA plots using GUniFrac and ggplot2.

Statistical analysis

The majority of the analyses in this study were completed using R
software (version 4.0.2), while some specific analyses such as the
identification of SMGs were implemented using Python. The
Kaplan-Meier method was employed to plot survival curves between

different LUAD subgroups, and the Log-rank test method was used to
detect significant differences in survival. Multivariate regression models
were used to adjust for confounding factors such as age, gender, stage,
and smoking history; among these factors, some had missing values,
and we removed samples with any missing data. P values less than
0.05 were considered statistically significant. Hypothesis tests were
conducted to assess the association of continuous and categorical
variables with two risk subgroups using the non-parametric tests
(i.e., Wilcoxon rank-sum test and Kruskal-Wallis H test) and Fisher
exact test, respectively. We utilized the Hosmer-Lemeshow (HL) test
function from the R rms package and the PredictABEL package to
calculate the calibration of all Cox regression models included in this
study. A non-significant HL test result (P ≥ 0.05) indicates good model
calibration.

Results

Construction of the FAT1 mutation-related
risk signature

After excluding samples without transcriptome expression
profiles or prognostic information, a total of 2,528 patients with
LUAD from 12 datasets were included in this study. TCGA LUAD
cohort was chosen due to its largest sample size and comprehensive
multi-omics information, which were used as the discovery dataset
for constructing a FAT1 mutation-related risk signature and
subsequent multi-dimensional molecular feature analyses. In
total, 11.6% of all LUAD patients carried FAT1 mutations
(Figure 2A). The detailed amino acid changes induced by
FAT1 mutations are shown in Figure 2B. A whole-genome
differential analysis of FAT1 mutation and wild-type LUAD
patients was performed to identify FAT1 mutation-related genes,
resulting in a total of 1,530 genes exhibiting differential expression
levels between the two groups (Supplementary Table S6).
Subsequently, univariate Cox regression was utilized to explore
the prognostic genes among the differentially expressed genes,
with a total of 558 genes showing significance (all P < 0.05;
Supplementary Table S7). Further, based on 10-fold cross-
validation Lasso-Cox regression, we identified the genes that
contributed most to prognoses. The Lasso coefficient plot for
different gene combinations versus log(λ) is presented in
Figure 2C. The smallest partial likelihood deviance was achieved
when there are 9 specific genes (Figure 2D). Therefore, we selected
these 9 FAT1 mutation-related genes for constructing a LUAD
molecular risk signature.

The identified 9 FAT1 mutation-related genes, including IRX5,
SLC47A1, MYLIP, ATP8A2, ENPP5, FAM117A, LINGO2, FLNC,
and ANLN, are shown in Supplementary Table S8 with their
contribution to the prognosis of LUAD. For each patient, we
calculated a risk score based on each gene and the corresponding
prognostic coefficients determined by the Lasso regression
(Figure 2E). Furthermore, the associations of high-risk and low-
risk patients with survival time and status are presented in Figure 2E.
Additionally, the expression levels of these 9 genes across the high-
risk and low-risk subgroups are also shown (Figure 2E).

To evaluate the prognostic capacity of our risk signature, we
divided all patients into high-risk (N = 255) and low-risk (N = 254)
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groups based on the median risk score. The Kaplan-Meier survival
analysis reveal that compared to high-risk patients, low-risk patients
showed significantly increased overall survival (Log-rank test, P <
0.001; Figure 2F), and this association remained significant after
adjusting for age, gender, stage, and smoking history in a
multivariable Cox regression model (HR: 0.46, 95% CI:
0.33–0.64, P < 0.001; HL test, χ2 = 2.109, P = 0.147; Figure 2G).
The above results indicate that the LUAD molecular signature
constructed based on 9 FAT1 mutation-related genes harbor
prognostic significance.

Verification of the risk signature

To validate the prognostic capacity of the determined risk
signature, we utilized 8 additional LUAD datasets. In 6 datasets

of GSE68465, GSE72094, pooled dataset 1, pooled dataset 2,
GSE13213, and GSE26939, we also observed that patients in the
low-risk subgroups had significantly better prognoses compared to
those in the high-risk subgroups (Log-rank test, P < 0.001 for
GSE68465, GSE72094, pooled dataset 1, and pooled dataset 2,
P = 0.004 for GSE13213, and P = 0.013 for GSE26939; Figures
3A,C,E,G,I,K). Multivariable Cox regression models incorporating
clinical confounders (e.g., age, gender, clinical stage, and smoking
history) further confirm the independent prognostic power of this
risk signature (GSE68465, HR, 0.63, 95% CI, 0.48–0.83, P = 0.002,
HL test χ2 = 0.779, P = 0.377; GSE72094, HR, 0.47, 95% CI,
0.32–0.70, P < 0.001, HL test χ2 = 0.156, P = 0.693; pooled
dataset 1, HR, 0.59, 95% CI, 0.41–0.85, P = 0.004, HL test χ2 =
0.228, P = 0.572; pooled dataset 2, HR, 0.55, 95% CI, 0.36–0.84, P =
0.006, HL test χ2 = 0.656, P = 0.433; GSE13213, HR, 0.43, 95% CI,
0.23–0.79, P = 0.006, HL test χ2 = 2.008, P = 0.159; Figures

FIGURE 2
Construction of a risk signature associated with FAT1 mutations in LUAD based on the discovery dataset. (A) Proportion of FAT1 mutation and wild-
type LUAD patients in the discovery dataset. (B) Changes in all amino acids resulting from FAT1 mutations. Green blocks represent amino acid changes
induced by FAT1missensemutations, blue blocks represent frame shift mutations, red blocks represent nonsensemutations, and yellow blocks represent
splice site mutations. (C) Lasso regression profiles of associations of lambda and coefficients. (D) Variation in partial likelihood deviance (PLD) with
respect to log lambda changes. The red dots indicate the detailed partial likelihood of deviance values, the gray lines indicate the standard error (SE), the
two vertical dotted lines on the left and right indicate the optimal gene combination with 1-SE criteria andminimum criteria, separately. (E)Distribution of
risk scores in LUAD samples and their association with survival. Differential expression of nine FAT1 mutation-related genes in high-risk and low-risk
subgroups. (F) Kaplan-Meier survival curves stratified by high- and low-risk populations. (G)Multivariate Cox regressionmodel incorporating age, gender,
clinical stage, and smoking status to obtain the real association between risk signature and LUAD prognosis.
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3B,D,F,H,J). However, due to the lack of available clinical pathology
information in GSE26939 dataset, the multifactorial correction
analysis was not performed. Further analysis reveals that elevated
risk scores were significantly enriched in LUAD patients with
advanced stages (TCGA, GSE13213, GSE72094, pooled cohort

1 and 2, Kruskal-Wallis H test all P < 0.05; Supplementary
Figures S1A–E) or worse grades (GSE68465, Kruskal-Wallis H
test P < 0.001; Supplementary Figure S1F). The above results
further validate the prognostic power of the LUAD
FAT1 mutation signature.

FIGURE 3
Validation of the constructed risk signature. Kaplan-Meier survival curves divided with low- and high-risk LUAD patients in (A) GSE68465, (C)
GSE72094, (E) pooled dataset 1, (G) pooled dataset 2, (I) GSE13213, and (K) GSE26939. Multivariate Cox regression models of the associations between
FAT1 mutation risk signature and LUAD prognosis were performed in (B) GSE68465, (D) GSE72094, (F) pooled dataset 1, (H) pooled dataset 2, and
(J) GSE13213.
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In the remaining two datasets of GSE81089 (N = 106) and
GSE11969 (N = 90), survival analysis reveals that patients in the low-
risk subgroups harbored favorable prognostic tendencies compared
to the high-risk subgroups. However, no statistically significant
differences are achieved due to the relatively small sample size
(Log-rank test, both P > 0.05; Supplementary Figure S2), which
may have been the primary cause.

FAT1 mutation risk signature associated with
immune infiltration and immunogenicity

Recent studies have reported the roles of FAT1 and its mutations
in immunoregulation and cancer treatment. In light of this, we
conducted an analysis of the relationship between the
FAT1 mutation-related signature and immunological molecular

FIGURE 4
Association of the FAT1 mutation risk signature with immunocyte infiltration and tumor immunogenicity. (A) Infiltration proportion of distinct
immunocytes in low-versus high-risk LUAD subgroups. Immunocytes highlighted with green represent its infiltration was enhanced in low-risk patients,
whereas the blue represent the infiltration was decreased in low-risk patients. GSEA analyses of low-risk patients were performed based on (B) KEGG and
(C) GO BP databases. Pathways highlighted with red are immune response-related. Distinct enrichment scores of (D) T cell-inflamed signature, (E)
IFNγ signature, (F) cytolytic activity signature, and (G) WNT TGF-β signature in low- and high-risk LUAD subgroups.
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signatures. Using the ssGSEA method and LUAD transcriptome
profiling, we estimated the abundance of 28 immune cell subtypes
infiltrating the tumor microenvironment in the discovery dataset
and analyzed their differences between high-risk and low-risk
patients with LUAD (Figure 4A). Our results demonstrate that
anti-tumor immune response cells (e.g., activated CD4 T cells,
central memory CD8 T cells, and type 1/17 helper cells)
exhibited higher levels of infiltration in low-risk patients,
consistent with lower levels of immune suppressive cells (e.g.,
immature dendritic cells, neutrophils, plasmacytoid dendritic
cells, and regulatory T cells) in these patients (Wilcoxon rank-
sum test, all P < 0.05). Additionally, intermediate immunocytes
displayed different infiltration patterns in the low-risk group,
including increased infiltration of gamma delta T cells and
memory B cells, and decreased infiltration of eosinophils and
monocytes (all P < 0.05). We also employed two methods
(i.e., CIBERSORT and TIMER) to assess immune cell infiltration
in LUAD, and similar to what was observed, higher levels of immune
response cells represented by CD8 T cells were noticed in the low-
risk group (Supplementary Figures S3A, B).

The analysis of gene expression profiles using the GSEA approach
was used to identify potential signaling pathways that may be related to
the risk signature, and further elucidate its roles in regulating prognosis.
By comparing the well-known databases, we found that pathways
related to immune regulation and activation in KEGG (e.g., antigen
processing and presentation, graft versus host disease, and T cell
receptor signaling pathway) and GO BP (e.g., immune effector
process, innate immune response, and lymphocyte activation
involved in immune response), were significantly enriched in the
low-risk group (all adjusted P < 0.01; Figures 4B,C). To validate the
pathway results, we also performed GSEA analysis based on
HALLMARK (Supplementary Figure S4A) and REACTOME
databases (Supplementary Figure S4B), the immune response
relevant pathways were also observed in low-risk LUAD patients.

Several molecular signatures proposed recently have been shown
to be related to the immunogenicity, immune regulation, and
therapeutic effects of tumors. Therefore, we also analyzed their
differential enrichment in subgroups of high and low risk. Our
results indicate that the low-risk group harbored significantly
enhanced enrichment scores for T cell-inflamed signature, IFNγ
signature, and cytolytic activity signature (Wilcoxon rank-sum test,
all P < 0.05; Figures 4D–F), whereas the WNT TGF-β signature with
immunosuppressive properties was absent in this group (Wilcoxon
rank-sum test, P = 0.008; Figure 4G).

The distinct distribution of immune checkpoint genes between two
risk subgroups was evaluated. Several immune checkpoints (e.g., CD27,
CD40LG, CEACAM1, and LAG3) showed markedly elevated
expression in the low-risk group, while several (e.g., CD274, ICOS,
TNFRSF4, and TNFRSF9) showed reduced levels (Wilcoxon rank-sum
test, all P < 0.05; Supplementary Figure S5). The above results indicate
that the LUAD low-risk subgroupmay have better immune infiltration.

Genomic mutational traits linked with the
FAT1 mutation risk signature

The genetic mutational burden plays a pivotal role in the
evaluation of tumor prognosis and predicting immunotherapy

efficacy. Therefore, we explored the relationship between
identified risk signature and tumor mutational burden (TMB)
and neoantigen burden (NB). Based on the somatic mutation
data from the discovery dataset, we calculated TMB for each
LUAD patient and found that TMB was significantly higher in
low-risk patients than in high-risk patients (Wilcoxon rank-sum
test, P < 0.001; Figure 5A). Similar results were also observed in NB
(Wilcoxon rank-sum test, P = 0.034; Figure 5B), indicating that the
mutation load in low-risk populations is higher.

Mutational signatures, which are the specific markers of
genomic damage caused by endogenous or exogenous insults,
play a crucial role in cancer prognosis and treatment efficacy
evaluation. We utilized the NMF method to decompose the
LUAD mutation feature matrix and extracted possible
mutation signatures operative in the genome. From the
cophenetic metric map, it was observed that the line dropped
fastest when the number of signatures was 6, suggesting that there
may be 6 mutational signatures in the LUAD mutational data
(Figure 5C). By comparing these possible signatures with those
annotated in the COSMIC database using cosine similarity
(Figure 5D), we noticed that two signatures were repeating
and ultimately identified COSMIC 1 (associated with age at
diagnosis), COSMIC 4 (associated with tobacco smoking),
COSMIC 5 (unknown aetiology), COSMIC 13 (attributed to
the activity of the AID/APOBEC family), and COSMIC 17
(unknown aetiology). Their detailed mutation patterns are
presented in Figure 5E. The specific mutation activities of
these signatures across all LUAD patients were calculated and
displayed in Supplementary Figure S6 and Supplementary Table
S9. Further analysis reveals that low-risk patients exhibited
significantly lower COSMIC 1 mutation activity and higher
COSMIC 13 mutation activity (Wilcoxon rank-sum test, both
P < 0.001; Figure 5F).

To investigate whether the high TMB observed in low-risk
patients was influenced by other confounding factors, we
included common clinical variables (i.e., age, sex, stage, and
smoking history), identified mutational signatures
(i.e., COSMIC 1, 4, 5, 13, and 17), and classical DNA damage
repair gene (e.g., POLE, BRCA1/2, and TP53) mutations in a
multivariate logistic regression model. The results show that
there remained a statistically significant correlation between
low-risk scores and elevated TMB levels (OR: 2.22, 95% CI:
1.22–4.10, P = 0.012; Figure 5G).

Based on the mutational landscape and theMutSigCV algorithm
applied to the discovery dataset, a total of 23 significantly mutated
genes (SMGs) were identified. The waterfall plot of SMGs between
low-risk and high-risk groups (Figure 6A) show significant
differences in mutation frequency at TP53 [68 of 228 (29.8%) vs.
152 of 229 (66.4%); P < 0.001], KRAS [72 of 228 (31.6%) vs. 53 of 229
(23.1%); P = 0.047], COL11A1 [32 of 228 (14.0%) vs. 59 of 229
(25.8%); P = 0.002], NAV3 [37 of 228 (16.2%) vs. 62 of 229 (27.1%);
P = 0.006], KEAP1 [33 of 228 (14.5%) vs. 50 of 229 (21.8%); P =
0.048], VCAN [26 of 228 (11.4%) vs. 43 of 229 (18.8%); P = 0.036],
STK11 [45 of 228 (19.7%) vs. 28 of 229 (12.2%); P = 0.031],
LPPR4 [15 of 228 (6.6%) vs. 35 of 229 (15.3%); P = 0.004], and
SMARCA4 [5 of 228 (2.2%) vs. 39 of 229 (17.0%); P < 0.001].
Among the aforementioned SMGs, seven genes (TP53, COL11A1,
NAV3, KEAP1, VCAN, LPPR4, and SMARCA4) exhibited
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decreased mutation frequencies in the low-risk group, while KRAS
and STK11 two genes showed increased mutation frequencies. In
addition, the correlation between low-risk scores and lower
TP53 mutation frequencies was validated in three independent
LUAD datasets (GSE72094: 15.2% vs. 33.2%, P < 0.001;

GSE13213: 24.6% vs. 41.4%, P = 0.077; GSE11969: 20.0% vs.
44.4%, P = 0.023; Figures 6B–D). Other SMG mutation
information was not available in the validation dataset.

The mutation frequencies displayed in Figure 6A represent
the proportion of samples carrying a mutation in each SMG

FIGURE 5
Mutational features associated with the constructed risk signature. Associations of the determined FAT1mutation risk signature with (A) TMB and (B)
NB. (C) Associations of the copheneticmetric with extracted LUADmutational signature numbers. (D) The detected sixmutational signatures versuswell-
known COSMIC signatures using the cosine similarity. (E) Detailed mutational features of the detected six mutational signatures. (F) Distinct mutational
activities of five signatures between low- and high-risk patients. (G) Multivariate Logistic regression was conducted with age, sex, stage, smoking
status, detected mutational signatures, and DNA repair gene mutations taken into account to acquire the connection between FAT1 mutation risk
signature and TMB.
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across the entire TCGA LUAD cohort with available mutation
data. However, the subsequent analysis comparing mutation
frequencies between the high-risk and low-risk subgroups
utilized a subset of these samples. This subset included only
samples with both transcriptomic expression data (required to

calculate the FAT1 mutation risk signature score and assign risk
groups) and somatic mutation data. Consequently, the total
sample size for the subgroup comparison (N = 457) is smaller
than that used to establish the overall mutation frequencies in
Figure 6A (N = 509). This difference in underlying sample

FIGURE 6
Identification of LUAD SMGs and their distinct mutation frequencies in two risk subgroups. (A)Waterfall plot representation of 23 SMGs determined
from LUAD somatic mutational data in low-versus high-risk patients. SMGs highlighted with green exhibit the significantly decreased mutation
frequencies in the low-risk group, whereas SMGs highlighted with red exhibit the increased mutation frequencies in the low-risk group. Validation of the
association of TP53 mutation frequencies with two risk groups in (B) GSE72094, (C) GSE13213, and (D) GSE11969 datasets. *P < 0.05, **P < 0.01,
***P < 0.001.
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cohorts (full mutation cohort vs. mutation + expression
intersection cohort) accounts for the observed numerical
discrepancies in mutation rates.

Association of LUAD risk signature with
intratumor microbial diversities

There is a growing body of evidence that suggests the role of
intratumor microbes in regulating the tumor microenvironment
homeostasis and predicting disease survival risks. Therefore, we
analyzed the correlation between identified LUAD risk signatures
and intratumor microbial diversities. In terms of α diversity, the
low-risk group exhibited significantly higher Richness (Wilcoxon
rank-sum test, P = 0.023; Figure 7A) and ACE indices (Wilcoxon
rank-sum test, P = 0.037; Figure 7B) compared with high-risk
group, while Chao1, Shannon, and Simpson indexes were not
detected significant differences between the two risk
subpopulations (Wilcoxon rank-sum test, all P > 0.05; Figures
7C–E). Similarly, we also observed a significant increase in β
diversities in the low-risk populations (ANOSIM test, R = 0.031,
P = 0.019; Figure 7F). The evidence above suggests that

individuals with low-risk LUAD exhibited elevated levels of
diversity in the intratumoral microbiome.

The role of the FAT1 mutation risk signature
in predicting immune response in
cancer treatment

Our previous findings indicated that the FAT1 mutation risk
signature harbored strong correlations with tumor immunogenicity
and related features, thus we hypothesize that this risk signature
might play a role in evaluating the efficacy of immune therapy. Based
on two ICB treatment cohorts collected, we validated this
hypothesis. In the ICB cohort 1, Kaplan-Meier survival analysis
reveal that low-risk patients exhibited significantly prolonged
survival following immunotherapy (Log-rank test, P = 0.034;
Figure 8A). This association remained statistically significant after
adjusting for gender, ECOG score, smoking status, and platinum
treatment status in a multivariable Cox regression model (HR: 0.71,
95% CI: 0.38–1.02, P = 0.046; Figure 8B). Consistently, we also
observed increased ICB treatment response (complete response and
partial response) rates among the low-risk subpopulation (29.3% vs.

FIGURE 7
Association of FAT1 mutation risk signature with intratumor microbial diversities. Distinct intratumor microbial α diversity indexes including (A)
Richness, (B) ACE, (C) Chao1, (D) Shannon, and (E) Simpson index in low- and high-risk LUAD patients. (F)Distinct β diversity between two risk subgroups
evaluated with the ANOSIM test.
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17.6%, Fisher exact test, P = 0.027; Figure 8C). Subsequent mutation
load analysis demonstrates that low-risk scores were significantly
associated with elevated TMB (Wilcoxon rank-sum test, P = 0.004;
Figure 8D) and NB (Wilcoxon rank-sum test, P < 0.001; Figure 8E),
consistent with our previous findings. In the ICB cohort 2, we
observed that low-risk individuals still exhibited improved immune
therapy prognosis, although this result did not reach statistical
significance (Log-rank test, P = 0.093; Figure 8F). A multivariate
Cox regression model including gender, clinical stage, and treatment
type further confirmed this trend (HR: 0.63, 95% CI: 0.43–1.03, P =
0.08; Figure 8G). Similarly, a higher treatment response was
observed in the low-risk subpopulation compared to the high-

risk group (25.7% vs. 21.2%, Fisher exact test, P = 0.128;
Figure 8H). Among this cohort, high TMB was also shown to be
correlated with low-risk scores (Wilcoxon rank-sum test, P = 0.006;
Figure 8I). The above results indicate that the LUAD low-risk
subgroup may achieve a higher response rate and better survival
when treated with ICB therapy.

Discussion

By integrating multi-omics data and clinical information of
LUAD patients, this study constructed a FAT1 mutation-related

FIGURE 8
The constructed FAT1mutation risk signature for assessing immunotherapeutic response. (A) Immunotherapeutic survival curves for low- and high-
risk patients in the ICB cohort 1. (B) Multivariable Cox regression analysis showing the association between the FAT1 mutation risk signature and
immunotherapeutic survival, adjusted for clinical covariates. (C) Distinct immunotherapeutic response rates in two risk subpopulations. (D) TMB and (E)
NB levels in low- and high-risk subgroups in the ICB cohort 1. (F) Immunotherapeutic survival curves for low- and high-risk patients in the ICB cohort
2. (G)Multivariable Cox regression analysis showing the association between the FAT1 mutation risk signature and immunotherapeutic survival, adjusted
for clinical covariates in the ICB cohort 2. (H) Distinct immunotherapeutic response rates in two risk subpopulations in the ICB cohort 2. (I) TMB levels in
low- and high-risk subgroups in the ICB cohort 2.
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signature for evaluating survival risk, immunogenicity and
immunotherapy effect. The reliability and stability of the
signature were confirmed by validating it across multiple
independent datasets. Prospective studies are needed, but these
findings offer a basis for future clinical trials and therapeutic
strategies in LUAD.

Recent studies have reported on the roles of FAT1 in immune
regulation and immunotherapy. A notable study by Feng et al.
indicated a high mutation frequency of FAT1 in NSCLC (Feng et al.,
2022), and they simultaneously discovered that patients harboring
FAT1 mutations exhibited significantly increased infiltration of
activated dendritic cells and extended progression-free survival
from ICB treatment. Another study on NSCLC further validated
these findings and pointed out that FAT1 mutations correlated with
higher TMB and better response to ICB treatment (Fang et al., 2019).
Zhang et al., by integrating somatic mutation data and clinical
information from 631 melanoma samples, discovered that
FAT1 mutations in this tumor type could also predict better
immunotherapy responses, simultaneously associating with an
activated immune microenvironment and immune signaling
pathways (Zhang et al., 2022). Furthermore, FAT1 has been
shown to regulate various canonical signaling pathways,
including Hippo, WNT/β-catenin, TGF-β, and PI3K/AKT, all of
which have been proven to be relevant to immune regulation (Chen
Z. G. et al., 2022), indirectly substantiating FAT1’s regulatory role in
the tumor immune system. Several non-oncological studies have
also highlighted the significance of FAT1 in the immune system.
Studies on FAT1 transgenic mice revealed downregulation of TNF-
α, IL-6, NF-kB, and CCL2 gene expression compared to non-
transgenic wild-type mice, suggesting that FAT1 overexpression
may downregulate these inflammatory cytokines/chemokines
(Fang et al., 2018). Conversely, mutated FAT1 may upregulate
growth factors and pro-inflammatory factors such as TGFB1, IL-
6, and FGF2 (Chen Y. H. et al., 2022). This mechanism might be
mediated by YAP1, which is activated by FAT1 inactivation (Martin
et al., 2018). Activated YAP1 has been found to upregulate CCL2 in
endothelial cells (Xu et al., 2016). The above findings underscore the
vital roles played by FAT1 and its mutations in immune regulation
and tumor immunotherapy.

Considering the important roles of FAT1 in tumor progression
and treatment, this study developed a mutation-associated risk
signature for LUAD patients. We further explored the impact of
FAT1 mutations on signature risk scores and found that patients
with this gene mutations had markedly higher risk scores (Wilcoxon
rank-sum test, P < 0.001; Supplementary Figure S7A), suggesting
that FAT1 mutations may be associated with poor prognosis of
LUAD, although its prognostic effect was not observed in the
discovery dataset (Log-rank test, P = 0.763; Supplementary
Figure S7B). In subsequent adjusted analysis, in addition to
clinical factors, we also included the FAT1 mutation status in the
multivariate Cox regression model, and the results showed that
patients with low-risk scores still exhibited significantly prolonged
survival (HR: 0.46, 95% CI: 0.33–0.65, P < 0.001; Supplementary
Figure S7C), indicating that this risk signature can be employed as
an independent prognostic predictor.

The FAT1 mutation risk signature constructed in this study
encompassed nine relevant genes. LINGO2, a stem cell-related
marker, has been demonstrated to correlate with worse prognosis

in gastric cancer (GC) patients (Jo et al., 2019). Recently, a study
reported that FLNC effectively suppressed GC progression by
promoting the overexpression of TRIM54 (Cao et al., 2022). In
this study, high expression of FLNC was associated with poor
prognosis in LUAD. Through literature review, we found that in
prostate cancer (Amaro et al., 2014) and non-small cell lung cancer
(Ding et al., 2022), patients with high FLNC expression also showed
poor prognosis. These evidences indicate that due to tumor
heterogeneity, FLNC exhibits different roles through distinct
regulatory mechanisms in various tumor types. The oncogene
ANLN could be targeted and enhanced by USP10, leading to
inferior prognosis for patients with esophageal squamous cell
carcinoma (Cao et al., 2023). MYLIP, identified as a tumor
suppressor gene, its high expression effectively inhibited the
proliferative, migratory, and invasive capabilities of lung cancer
(Wang et al., 2021). FAM117A served as a known prognostic marker
for LUAD and is capable of predicting the therapeutic efficacy of cell
cycle inhibitors (Wu et al., 2022). A risk model incorporating
ATP8A2 has been developed to predict the survival of patients
with luminal A breast cancer (Chen Z. G. et al., 2022).
IRX5 promoted the metastasis of colorectal cancer by regulating
the RHOA pathway (Zhu et al., 2019). Notably, this study revealed
that in LUAD, patients with high IRX5 expression showed a better
prognosis. Additionally, the study by Yu et al. further validated the
association between IRX5 and favorable prognosis in LUAD (Yu
et al., 2021), suggesting that IRX5 may also exert different biological
functions depending on tumor types. Collectively, these findings
further reinforce the reliability of our risk signature in assessing the
prognosis of LUAD.

Existing evidence also supported the roles of FAT1-related genes
in cancer biology and immunogenicity. ENPP5 regulates nucleotide
metabolism and has been implicated in purinergic signaling, which
modulates immune cell activity (e.g., T-cell exhaustion via adenosine
production). Recent studies link ENPP family members to
immunosuppressive microenvironments in NSCLC (Borza et al.,
2022). LINGO2 is a stem cell marker associated with poor prognosis
in gastric cancer (Jo et al., 2019). While its direct role in LUAD is
underexplored, LINGO2 overexpression correlates with EMT and
immune evasion in pan-cancer analyses. IRX5 promotes metastasis
via RHOA signaling in colorectal cancer (Zhu et al., 2019) and
regulates WNT/β-catenin pathways, which intersect with FAT1-
mediated Hippo signaling (Holmquist Mengelbier et al., 2019).
FLNC suppresses gastric cancer progression by stabilizing
TRIM54 (Cao et al., 2022) and is linked to cytoskeletal
remodeling, a process modulated by FAT1 in EMT (Guyon
et al., 2003).

Through multi-dimensional immunological analysis, this study
highlighted that the low-risk subgroup of LUAD displayed a more
favorable immune microenvironment and enhanced immunological
features. The enhanced immunogenicity observed in low-risk
patients was attributed to the interplay among multiple immune
factors. For instance, we found that low-risk patients had a higher
TMB, lower enrichment of COSMIC 1 signature, and higher
enrichment of COSMIC 13 signature. Previous studies have
shown that patients harboring COSMIC 1 and COSMIC
13 signatures exhibited low TMB (Chong et al., 2021) and high
TMB (Gupta et al., 2023), respectively, aligning with the findings of
this study. Furthermore, patients with a high mutation burden were
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more prone to activated immune cell infiltration and immune
signaling pathways (Hu et al., 2021), leading to a more favorable
immune microenvironment. It should acknowledge that TMB is not
a standalone predictor. Factors such as antigen presentation deficits,
HLA loss, and immune evasion mechanisms can limit the
effectiveness of immunotherapy despite elevated TMB. The
multiple immune factors carried by low-risk LUAD patients
synergistically contribute to their better immunogenicity and
therapeutic outcomes.

Extensive knowledge has demonstrated the role of SMGs in
prognosis, immune regulation, and evaluation of treatment
effectiveness. LUAD patients with TP53 (Jiao et al., 2018),
KEAP1 (Scalera et al., 2021), and SMARCA4 mutations
(Schoenfeld et al., 2020) have been observed to have poor
clinical prognoses, while in our study, these gene mutations
significantly decreased in low-risk populations, which is
consistent with the elevated survival rates observed in this
subgroup. In addition, Dong et al. study demonstrated that
patients with KRAS-mutated LUAD respond better to ICB
treatment (Dong et al., 2017), and the low-risk subgroup
exhibited a higher KRAS mutation frequency, which may be
one of the reasons for the improved immunotherapy response.
On the other hand, STK11 mutations, which have been reported
to associate with poorer immunotherapeutic responses (Skoulidis
et al., 2018), were also found to have a higher mutation frequency
in the low-risk subgroup. We speculate that the multiple
immune-stimulating factors in the low-risk group may have
outweighed the inhibitory effects of STK11 mutations, leading
to better immunotherapy responses in low-risk LUAD patients.

In our analysis of 32 immune checkpoints (including both co-
inhibitory and co-stimulatory molecules), we observed that low-risk
LUAD patients exhibited upregulated expression of immune
activation markers (e.g., CD27, CD40LG, and LAG3) alongside
downregulated immunosuppressive checkpoints (e.g., CD274/PD-
L1 and TNFRSF9). These patterns reflect a complex immune
regulatory landscape where enhanced T-cell priming [via
CD40LG/CD40 interaction in antigen-presenting cells (Lu et al.,
2000)] and memory T-cell activation [mediated by CD27/
CD70 signaling (Borst et al., 2005)] may coexist with partial
T-cell exhaustion mechanisms [suggested by elevated LAG3
(Andrews et al., 2024)]. Importantly, while PD-L1
downregulation in low-risk patients appears contradictory to
conventional ICB response predictors, this aligns with recent
findings that PD-L1-independent mechanisms [e.g., enhanced
immunogenicity via APOBEC mutational signatures (Ma et al.,
2023)] can drive ICB sensitivity. The observed patterns suggest a
balanced yet active immune microenvironment in low-risk patients,
where compensatory co-inhibitory signals may prevent
overactivation while maintaining anti-tumor responses.

In addition to using the median to stratify the LUAD
signature risk scores, we also utilized the surv_cutpoint
function within the R survminer package to stratify LUAD
patients and analyzed the survival differences between high-
and low-risk subgroups across all datasets. The results
indicated that there were still statistically significant
differences in survival between high-risk and low-risk LUAD
patients stratified using this method, with better prognosis
observed in low-risk patients and poorer prognosis in high-

risk patients (Supplementary Figure S8). Wang et al. study
proposed the TMBcat method (Wang Y. et al., 2022), which is
a minimal joint p-value criterion aimed at differentiating
comprehensive therapeutic advantages and optimizing TMB
categorization across distinct cancer cohorts, surpassing
known benchmarks. However, TMB represents the total count
of somatic mutations within a tumor patient’s tissue, which is a
discrete numerical variable. In contrast, the signature risk score
in our study is derived from gene expression and corresponding
regression weights, making it a continuous numerical variable.
Therefore, we believe that this cut-off determination method is
not suitable for the context of our study.

In this study, we employed Lasso-Cox regression for feature
gene selection and constructed a prognostic signature. We also
applied five additional prognostic modeling approaches for gene
selection and signature construction, including random survival
forest (RSF) regression, elastic network (Enet) regression, ridge
regression, partial least squares regression for Cox (plsRcox), and
supervised principal components (SuperPC) regression. And we
compared the performance among various methods using the
C-index. We found that the use of different prognostic models
had little impact on the final results (Supplementary Figure S9).

The purpose of the multivariate Cox regression model is to
adjust for confounding factors in order to obtain more accurate
results. In this study, we included age, gender, clinical stage, and
smoking history in the multivariate Cox model for adjustment,
aiming to reveal the true association between the FAT1 mutation
signature and the prognosis of LUAD. For age and clinical stage,
there is a clinical consensus that older age and advanced stage are
associated with poorer prognosis in patients, making these two
factors significant predictors of tumor prognosis. Therefore, we
included them in the Cox regression model for adjustment.
Regarding gender, several recently published studies have
demonstrated significant differences in prognosis and prognostic
indicators between male and female lung cancer patients (Guerreiro
et al., 2023; Huh et al., 2024; Sachs et al., 2021), which is why we also
included gender in the regression model. Smoking history plays a
crucial role in the occurrence, progression, and prognosis of lung
cancer, thus necessitating its adjustment in our analysis. Although
these factors did not exhibit statistical significance in some of the
Cox regression models in this study due to sample size limitations,
we believe that adjusting for them is still necessary to obtain more
accurate results. Recent published studies also aligned with our
approach (Chen et al., 2019; Shen et al., 2020; Wu T. et al., 2021).

There are several limitations in this study. Firstly, the lack of
LUAD immunotherapy cohorts with transcriptome gene expression
data, somatic mutation data, and protein expression data prevents us
from confirming the stability of FAT1 mutation-related signature in
evaluating immunotherapy responses and comparing the
differences with TMB and PD-L1 protein expression. Secondly,
all the included LUAD datasets do not originate from the same
platform, which may introduce a small amount of bias during data
analysis. Thirdly, the potential biological mechanisms behind the
various associations have not been explored and validated using
functional experiments. It should also be noted that dataset-specific
thresholds generated by the application of surv_cutpoint might
impose limitations on the generalizability of the risk score across
different cohorts.
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Conclusion

In summary, based on a large cohort of patients with LUAD, we
have developed a molecular risk signature using transcriptome
profiles associated with FAT1 mutations to assess patient
prognosis and treatment response. Additionally, this study
provides a potential molecular biomarker for clinical
practice in LUAD.
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