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Introduction: Radiation therapy is crucial in the treatment of endometrial cancer
(UCEC). Patients exhibit significant variability in radiosensitivity, affecting
therapeutic effect. Scarcity of studies exploring the gene-radiosensitivity
relationship based on clinical data. Underlying molecular mechanisms of
radiosensitivity and radioresistance require further investigation.

Methods: Study aimed to reveal molecular mechanisms underlying
radiosensitivity and radioresistance in UCEC patients. Included 12
radiosensitive and 20 radioresistant UCEC samples. Conducted differential
expression analysis to screen for significantly different genes between groups.
Applied Lasso regression and randomized survival forest model to identify key
genes. Performed functional annotation, correlation analysis, and survival analysis
on key genes.

Results: Key genes positively correlated with UCEC tumorigenesis-related genes
in the radioresistant group. Reduction in the proportion of Macrophages.M0
observed in the radioresistant group, associated with poor prognosis. GO and
GSVA analyses revealed biological processes and signaling pathways involved in
key genes. High expression of MARCKS, MACC1, and GRB10 correlated with
poorer survival rates. High expression of NINJ2 correlated with higher survival
rates and higher sensitivity to radiation therapy.

Discussion: Study contributes to a deeper understanding of UCEC
radiosensitivity. Provides theoretical support for the development of
personalized radiotherapy regimens in clinical practice. Potential to improve
prognosis and quality of life of patients.
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1 Introduction

Uterine Corpus Endometrial Carcinoma (UCEC) is a malignant
epithelial tumor originating from the endometrium, which is one of
the common gynecological tumors. It is estimated that
approximately 76,000 women worldwide die from UCEC each
year (Urick and Bell, 2019). Based on the surgical staging,
postoperative adjuvant treatment options typically include vaginal
brachytherapy or adjuvant systemic therapy (Abu-Rustum et al.,
2023). The efficacy of radiotherapy in local control of UCEC is well-
established (Blake et al., 2009). However, regional and distal
metastases remain significant factors affecting 5-year survival
(National Cancer Institute, 2023). To address this issue, it is
crucial to identify biomarkers that can accurately, sensitively, and
specifically predict the sensitivity of UCEC to radiotherapy. These
biomarkers can help to improve the effectiveness of radiotherapy
and, consequently, enhance the 5-year survival rate of patients.

Radiotherapy primarily operates by disrupting DNA double-strand
breaks (DSBs) or free radicals and reactive oxygen species indirectly
induced by ionizing radiation in cancer cells, resulting in cancer cell
death or severe damage (Zhao et al., 2023). When developing a
radiotherapy regimen, it is crucial to select a radiotherapy dose that
is effective in destroying tumor cells whileminimizing damage to normal
cells (Pavlopoulou et al., 2017). However, individual differences can lead
to some tumor cells being less sensitive to the effective dose of
radiotherapy, resulting in cancer recurrence and metastasis, and
consequently reducing the survival rate post-radiotherapy (Kim et al.,
2015). Numerous factors influence radiosensitivity, with tumor
proliferation dynamics, clonal cell number, degree of hypoxia, and
intrinsic radiosensitivity typically considered the main contributors
(Hennequin et al., 2008). Among these factors, specific genes or gene
products are closely associated with radiosensitivity. For example, cell
division cycle genes involved in cell cycle regulation modulate the
response of triple-negative breast cancer cells to radiotherapy (Han
and Fu, 2015). Additionally, genes encoding apoptotic proteins, such as
BCL2 and BCL2L1, which regulate apoptosis, can also impact
radiosensitivity (Pavlopoulou et al., 2017). In a clinical study on
rectal cancer, upregulation of the PLAGL2, ZNF337 and
ALG10 genes was associated with radiosensitivity (Zhao et al., 2023).
Similarly, in clinical data from breast cancer patients, the expression of
TPD52 and NFKB1 genes correlated with radiosensitivity (Sims et al.,
2009). Furthermore, carriers of BRCA1, BRCA2, and PALB2 genes
exhibit heightened sensitivity to radiation, necessitating particular
caution when administering radiotherapy to these individuals
(Chadwick, 2023). However, research on the genetic determinants of
sensitivity and specificity in UCEC radiotherapy remains inadequate.

During radiation therapy for UCEC, the ability to identify these
key molecular genetic features in advance would significantly
facilitate the development of more precise radiotherapy strategies.
This method enhances the precision of radiotherapy targeting
endometrial tumor cells, reduces harm to healthy cell. To achieve
this, the present study was dedicated to an in-depth analysis of a
database of UCEC patients who exhibited significant differences in
survival outcomes after radiotherapy, specifically focusing on
comparing and extracting information about differentially
expressed genes. High expression of radiosensitive genes suggests
radiotherapy as the primary treatment, while high expression of
radioresistant genes indicates the need for adjuvant therapies. Our

objective is to screen for specific biomarkers that are closely related
to radiotherapy sensitivity, which will serve as a crucial foundation
for optimizing individualized radiotherapy regimens. Through this
endeavor, we anticipate providing UCEC patients with more
personalized and targeted radiotherapy strategies, effectively
reducing mortality and enhancing treatment outcomes.

2 Materials and methods

2.1 Data collection and screening

We obtained the clinical data on UCEC patients post-
radiotherapy from The Cancer Genome Atlas Program (TCGA)
database, totaling 557 cases. The data were updated to January 10,
2024. After rigorous screening, we excluded samples lost to follow-
up, those with mismatched clinical samples and sequencing data,
and duplicates, ultimately identifying 32 valid samples. These
samples were divided into two groups based on patient survival
post-radiotherapy: the radiotherapy-resistant group (survival within
5 years), containing 20 samples; and the radiotherapy-sensitive
group (survival over 5 years), containing 12 samples.

2.2 Analysis of differentially expressed
genes (DEGs)

Using the DEseq2 package in R, we calculated gene counts and
screened for different genes with log2Foldchange greater than 1 or
less than −1 and P-value less than 0.01. These genes were visualized
using volcano plots and heatmaps to illustrate differences in gene
expression levels.

2.3 Screening and validation of core genes

We employed the glmnet package in R for Lasso analysis,
combined with Cox analysis, to screen for genes with prognostic
value. Subsequently, these prognostic genes were ranked by
importance using randomized survival forest analysis. Genes with
p-cutoff less than 0.02 for downscaling and importance score greater
than 0.3 were defined as core genes.

2.4 Study of the relationship between core
genes and disease-associated genes

We sourced 24 disease genes associated with UCEC
tumorigenesis from the GeneCards database (https://www.
genecards.org/). We determined the expression of these disease-
related genes in both groups and assessed their significance and
correlation with core genes using the Pearson coefficient.

2.5 Immune infiltration analysis

We conducted a deep analysis of RNA-seq data from the
radiation response and non-response groups using the
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CIBERSORT algorithm. We identified 22 immune cell types
associated with radiotherapy prognosis. Next, we performed a
comparative analysis of immune cells in these two groups and
calculated the Pearson correlation between immune cells within
each patient.

2.6 Functional enrichment of differentially
expressed genes (DEGs)

We performed Gene Ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling
pathway enrichment analysis on the screened DEGs using the
DAVID database. This step allowed us to understand the roles of
these genes in biological processes and the signaling pathways
involved. We screened for signaling pathways with P-value
less than 0.05.

Additionally, we conducted Gene Set Variation Analysis
(GSVA) was performed using the GSVA R package (v1.34.0 and
Gene Set Enrichment Analysis (GSEA) using the ClusterProfiler R
package (v3.14.3) with the database reference
c2.all.v2023.2.Hs.entrez.gmt under version msigdb_
v2023.2.Hs_GMTs.

2.7 Survival rate comparison among
two groups

We used the R package survival (v3.2-13) and survminer (v0.4.9)
to plot Kaplan-Meier survival curves. Cox proportional hazard
models were constructed utilizing the “coxph” function from the
survival package and visualized using the “ggforest” function
from survminer.

2.8 Risk factor linkage maps

Risk factor linkagemaps consist of risk score scatterplots, patient
life and death scatterplot, and gene expression heatmap. These maps
visualize the relationship between risk scores, expression levels, and
patient survival rates of risk factors.

We analyzed survival time and gene expression levels (FPKM) of
five risk genes in patients using ggrisk package (v1.3).

2.9 Prognostic alignment diagram

The estimation and prediction methods of Regression
Modeling Strategies (rms, v6.2-0) are based on Bayesian
Partial Proportional Odds Ratio Models for statistical
modeling and prediction. The survival method of the object
created by the cph function returns an S-function that is used
to calculate an estimate of the survival function. We utilized the
cph survival analysis model to generate a nomogram illustrating
various survival nodes. For plotting the prognostic columns, we
selected age, figo_stage, primary_diagnosis (preliminary
diagnosis), and the expression levels of the genes GRB10,
NINJ2, MACC1, and MARCKS as key indicators.

2.10 Validation of key genes using the
CPTAC database

To validate the reliability of the TCGA dataset, we chose the
CPTAC dataset for further verification. After applying PCA
dimensionality reduction analysis to eliminate data with
significant dispersion, we observed that selecting survival times
greater than 5 years resulted in only 2 radiosensitive cases.
Therefore, we adjusted our criterion and selected a survival time
greater than 1800 days (approximately 4.92 years) as indicative of
radiosensitivity, yielding a total of 6 materials and 8 sequences.
Conversely, we defined survival times of 1800 days or less as
radioresistant, resulting in 7 materials and 10 sequences. We
then validated gene expression and survival data for the four
genes selected by TCGA as having a significant effect on
survival analysis.

3 Results

3.1 DEGs analysis and functional enrichment
of radiosensitive and radioresistant samples

In the TCGA database, we screened 32 UCEC samples, of which
12 were radiosensitive samples (responders) and 20 were
radioresistant samples (non-responders). These samples were
then analyzed using the DEseq2 software package to detect
DEGs. Based on the screening criteria of a p-value less than
0.01 and log2Foldchange greater than 1, we identified a total of
765 genes with significant differences in expression between
radiotherapy responders and non-responders. Among them,
604 genes were upregulated, while 161 genes were downregulated.

To visualize the expression patterns of these up- and
downregulated genes, we generated a volcano diagram
(Figure 1A), which clearly depicts the expression changes of each
gene. Additionally, we presented the expression patterns of these
DEGs across the 32 samples using heatmaps (Figure 1B). In the
heatmap, the first 12 samples belonged to the radiosensitive group
(responders), while the last 20 samples belonged to the
radioresistant group (non-responders). By comparing the
heatmaps of the two groups, we observed a clear difference in
the expression of DEGs between them.

3.2 Analysis of lasso regression model and
random survival forest model of DEGs and
identification of key genes

Our study focused on clinical sample data from patients with
UCEC after radiotherapy. The difficulty in obtaining these samples
resulted in a relatively limited number of eligible samples, was
relatively limited, posing a challenge to the stability and
reliability of our results. Furthermore, breast cancer (BRCA),
ovarian cancer (OV), and UCEC share complex biological links
and several common features (Pane et al., 2020). The development of
these tumors is often closely related to similar genetic,
environmental, or lifestyle factors (Freuer et al., 2021; Cao et al.,
2024). Therefore, we compared the DEGs of BRCA and OV with
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those of UCEC to gain insights into common genetic alterations
driving the progression of these tumors. By comparing their DEGs
with those of UCEC, we screened the genes that exhibited similar
expression trends to the 765 key genes in UCEC. After rigorous
screening, we targeted 162 shared DEGs. Next, we performed an in-
depth analysis of these 162 DEGs using the Lasso Cox regression
model (Figure 2A). The Lasso regression model achieves variable
selection by introducing a penalty term that compresses the
coefficients of insignificant variables to zero. By this method, we
screened out six genes with non-zero coefficients and significant
predictive significance.

Simultaneously, we constructed the random Forest SRC model
(Figures 2B, C), an integrated learning method based on decision
trees for predicting survival time. With this model, we screened
28 genes associated with UCEC prognosis, which are shown as
vertical coordinates in Figure 2C.

To identify the genes jointly identified by both analysis methods,
we plotted aWayne diagram (Figure 2D) showing the intersection of
the genes screened by the Lasso regression model and the random
survival forest model. The results showed that five genes-MARCKS,
MACC1, GRB10, NINJ2, and GPX8-were identified as key genes in
both methods.

To further validate the expression differences of these five key
genes in UCEC analyzed by the Lasso Cox regression model, we
plotted box-and-line plots (Figure 2E) showing their expression
in the radiosensitive and radioresistant groups. Specifically,
MARCKS, MACC1, GRB10 and GPX8 were identified as
radioresistant genes, exhibiting high expression in the
radioresistant group. In contrast, NINJ2, as a radiosensitive
gene, showed higher expression in the radiosensitive
group. This suggests that high expression levels of MARCKS,
MACC1, GRB10 and GPX8, may indicate ineffectiveness of
radiation treatment for UCEC. Conversely, high expression of
the NINJ2 gene may predict a better radiotherapy
outcome for UCEC.

3.3 Study of the relationship between key
genes and disease-related genes

To gain insight into the association between the above five genes
related to the prognosis of UCEC and disease occurrence, we first
obtained genes linked to UCEC from the Gene Cards database (https://
www.genecards.org/). Subsequently, our analysis revealed significant
differences in the expression of multiple disease-related genes between
the radiosensitive and radiotolerant groups (Figure 3A).

To further explore the relationship between these five key genes and
the 20 disease-related genes, we conducted a Pearson correlation analysis.
This analysis enabled us to measure the degree of interrelation among
these genes at the expression level. The findings are presented in bubble
plots, which illustrate the correlations for both the radiosensitive group
(Figure 3B) and the radioresistant group (Figure 3C) with respect to the
disease-related genes. Notably, the core genes MACC1, GPX8, NINJ2,
MARCKS, and GRB10, along with the genes related to UCEC, exhibited
significant correlations with the expression of various disease-related
genes. Figures 3B, C illustrates that in the radiosensitive group, high
NINJ2 expression is positively correlated with CDKN2A, HMGA2, and
MAPK10, while in the radioresistant group, this correlation is negative.
Similarly, high MACC1 expression shows a positive correlation with
IL1A, NFKB1, and SPP1 in the radiosensitive group but a negative one in
the radioresistant group. These patterns suggest a strong connection
between these genes and the development of radiosensitivity and
radiotolerance.

3.4 Analysis of the level of immune
infiltration in the radiosensitive and
radioresistant groups

The tumor microenvironment comprises a complex interplay
between tumor cells and their surrounding components,
significantly influencing tumor diagnosis, survival outcomes, and

FIGURE 1
Visual display of differentially expressed genes (DEGs), including volcano and heat maps. (A): The volcano plot depicts the distribution of DEGs. The
red dots represent upregulated genes, i.e., genes with increased expression levels, while the green dots represent downregulated genes, i.e., genes with
decreased expression levels. (B): Heatmap showing the expression of DEGs in 12 radiosensitive samples (blue) versus 20 radioresistant samples (green). In
this heatmap, blue color indicates genes with lower expression levels, while red color indicates genes with higher expression levels.
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therapeutic responsiveness. Tumor immune infiltration occurs
when immune cells penetrate the tumor interior. This
phenomenon has dual implications: immune cells may exert
immunosurveillance to contain tumor progression, while certain
immune cells can facilitate tumor escape, thereby accelerating tumor
growth. Consequently, there exists a tight correlation between tumor
immune infiltration and tumor progression.

To delve deeper into the immune infiltration characteristics of the
radiosensitive and radioresistant groups, we performed an immune
infiltration analysis using CIBERSORT. Figure 4A clearly shows the
proportion of immune-infiltrating cells among the 32 patients, offering
visual representation of their immune status. Figure 4B further reveals
the Pearson correlation among immune cells within each patient, aiding
in the understand the interactions between different immune cells types.
For a comprehensive grasp of immune infiltration’s impact on tumor
progression, we also analyzed the expression levels of 22 cell sets
associated with immune infiltration, as shown in Figure 4C. The

expression changes provided deeper insights into the effects of
immune infiltration on tumors. Lastly, we compared the expression
disparities in immune infiltration cell sets between the radiosensitive
and the radioresistant groups using a box-and-line plot (Figure 4D). By
integrating the results from Figures 4C, D, we observed that patients in
the radioresistant group tended to exhibit lower proportions of
macrophage M0 compared to those in the radiosensitive
group. However, this difference was not statistically significant,
potentially due to our study’s relatively small sample size, which
resulted in notably high variability in the results.

3.5 GO and GSVA analysis of DEGs and GSEA
analysis of key genes

We conducted GO analysis on 162 DEGs shared by three
gynecological tumors, gaining insight into the biological processes

FIGURE 2
Screening and validation of prognostically relevant key genes. (A): Breast cancer (BRCA) and ovarian cancer (OV) were selected as references, and
162 genes consistent with the trend of 765 DEGs in UCEC were identified by Deseq2 analysis. These 162 genes were screened using the Lasso regression
model (based on least squares and penalty coefficients), and six genes with significant predictive value were successfully identified with coefficients that
were not 0. (B, C): The same 162 genes were independently analyzed to validate key genes associated with prognosis using the random ForestSRC
model, and the model ultimately identified 28 prognostically relevant genes. (D): Wayne plots show that the Lasso regression model and random
ForestSRCmodel together identified 5 common genes that were considered to be prognostically relevant key genes. (E): Box plots showing the 5 genes in
common (MARCKS, MACC1, GRB10, NINJ2, GPX8) in the 12 radiosensitive and 20 radioresistant samples.
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(Figure 5A), cellular components (Figure 5B), and molecular
functions (Figure 5C) involved in these genes. To validate the
GO analysis results, we further performed GSVA (gene set
variation analysis) on these DEGs. The GSVA analysis revealed
significant differences between the radiosensitive and radioresistant
groups (Figure 5D).

To uncover the pathways enriched for prognosis-related
genes in the radioresistant group, we performed GSEA (Gene
Set Enrichment Analysis) on five key genes related to UCEC
prognosis (Figure 6). The results demonstrated enrichment of
these genes in specific pathways. The GSEA results also indicated
that low expression of the MACC1, GRB10 and MARCKS genes,

FIGURE 3
Expression of UCEC-related genes and correlation analysis with prognostic genes. (A): Genes associated with the development of UCEC were
retrieved from the GeneCards database (https://www.genecards.org/). Following this, a comprehensive analysis was conducted to evaluate the
differential expression of these genes between radiosensitive and radioresistant groups. The figure showcases a list of twenty genes that are associated
with the occurrence of UCEC. These genes exhibit significant differences in their expression levels between the radiosensitive and radioresistant
groups. Using pearson correlation analysis, the correlation between the five genes strongly associated with prognosis and these 20 UCEC-related genes
in different radiation outcomes ((B) for radiosensitivity and (C) for radioresistance) is visualized. Horizontal coordinate: 20 genes associated with UCEC.
Vertical coordinate: 5 genes closely associated with prognosis. Bubble size: -log10PValue, representing the statistical significance of the correlation
between genes, the larger the bubble, the higher the significance. Bubble color: reflects the strength of correlation between genes, the darker the red
color, the stronger the positive correlation, the darker the blue color, the stronger the negative correlation.

Frontiers in Genetics frontiersin.org06

Wan et al. 10.3389/fgene.2025.1469610

https://www.genecards.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1469610


FIGURE 4
Detailed analysis of immune infiltration in 32 samples. (A): Proportion of immune infiltrating cells in each of the 32 patients in vivo, including
12 radiosensitivity (blue) and 20 radioresistance (green). (B): Pearson’s correlation between immune cells in each patient in vivo. (C): Expression levels of
22 cell sets associated with immune infiltration in each patient, 12 radiosensitivity (blue) and 20 radioresistance (green). (D): Box plot comparing the
difference in expression on immune infiltrating cell sets between the radiosensitive group and the radioresistant group.
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along with high expression of the NINJ2 gene, were associated
with tumourigenesis, including breast, pancreatic and
bladder cancers.

3.6 Survival analysis and risk factor linkage
analysis of key genes

We further explored the relationship between these five key
prognostic genes and survival. The analysis showed that low
expression of MARCKS, MACC1 and GRB10 was significantly
associated with better overall survival, while high expression of
NINJ2 was significantly associated with better overall survival
(Figures 7A–D). However, no significant correlation was found

between GPX8 expression and overall survival. To delve deeper
into the discrepancies noted in their survival analyses, we will
subsequently focus on these four key genes: MARCKS, MACC1,
GRB10, and NINJ2.

To gain a deeper understanding of the relationship between
these key genes and risk factors, we performed risk factor linkage
analysis on the above key genes with significant expression
differences (Figures 7E, F). The results showed that in the
high-risk group, the expression levels of MARCKS, MACC1,
and GRB10 were elevated, whereas the expression of
NINJ2 was decreased (Figure 7G). These findings align with
the results of survival analysis, further validating the
important role of these genes in predicting the prognosis of
UCEC patients.

FIGURE 5
GO analysis and GSVA analysis of differentially expressed genes (DEGs) shared by gynecological tumors. (A): Biological processes in gene ontology
(GO) analysis, revealing the potential roles of these genes in tumor biology. (B): Cellular component analysis, detailing the distribution and potential roles
of these genes within cells. (C): Molecular functional analysis, revealing the specific functions of these genes at the specific functions at the molecular
level. (D): Gene set variation analysis (GSVA) was performed to validate the results of the above GO analyses and to further explore the functional
modes of these DEGs in tumors.
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3.7 COX regression forest analysis and
column lines to predict the prognosis of
UCEC patients

Using the TCGA UCEC dataset, we performed a COX
regression forest analysis to assess the impact of age, FIGO
staging, initial diagnosis, and four key genes (GRB10, NINJ2,
MACC1, MARCKS) on the prognosis of UCEC patients
(Figure 8A). The results showed that the expression of
GRB10 and MARCKS significantly affect the patient prognosis.
This analysis provided insights into how these factors collectively
affect patient survival.

The nomogram, an intuitive and practical tool, aids physicians
in more accurately predicting a patient’s prognosis and subsequently
tailoring a more personalized treatment plan. We employed the
nomogram to comprehensively analyze the aforementioned
variables and predict their effects on the survival time of UCEC
patients (Figure 8B). The line segments within the bar chart
represent the contribution of each factor to the probability of the
outcome variable’s occurrence. Specifically, this column line graph
facilitates the assessment of radiation tolerance by predicting the
distribution of points across various predictors and subsequently
calculating a total score. A higher total score is associated with a
shorter survival time. For instance, a total score below 104 indicates

FIGURE 6
Genomic enrichment analysis (GSEA) of five key genes associated with UCEC prognosis. MARCKS (A), GRB10 (B), MACC1 (C), NINJ2 (D), GPX8 (E)
were all independently subjected to GSEA to assess their possible functional and biological significance in UCEC prognosis.
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a 90% probability of surviving more than 5 years, whereas a score
exceeding 144 suggests a 90% likelihood of surviving approximately
1 year. Among these factors, the UCEC patients with high
expression had poorer survival rates compared with low
expression of MARCKS, MACC1, and GRB10, whereas the
UCEC patients with high expression had higher survival rates
compared with low expression of NINJ2.

3.8 Validation of key genes using the
CPTAC database

To further confirm the reliability of the genes screened for
radiosensitivity and radioresistance in UCEC, we utilized the
CPTAC database for review. However, the dataset had a limited
number of radioresistant (7 cases) and radiosensitive (6 cases)

FIGURE 7
Expression of key prognostic genes in relation to overall survival and risk factors. (A–D): Correlation analyses between the expression levels of five
key prognostic genes (MARCKS, MACC1, GRB10, NINJ2, and GPX8) and overall survival are demonstrated. The blue line represents low expression of the
genes and the red line represents high expression of the genes. (E, F): A cascade analysis between four genes with significant expression differences
(MARCKS, MACC1, GRB10, and NINJ2) and risk factors was performed. (G): Heatmap depicting the expression levels of MARCKS, MACC1, GRB10,
and NINJ2 in the low-risk group (first 12 samples) and high-risk group (second 12 samples).
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UCEC samples due to the challenges associated with sample
acquisition. Among the four key genes—MARCKS, MACC1,
GRB10, and NINJ2—we observed that the expression trends of
two, namely, MARCKS and NINJ2, were consistent with our
previous analysis results (Supplementary Figure S1A).
Although this concordance has not yet reached statistically
significance, it still supports our previous findings.

Additionally, we performed a survival analysis using this
dataset, which showed that the expression patterns of
MARCKS and NINJ2 were consistent with those obtained
from the TCGA dataset (Supplementary Figures S1B–E).
Due to the limited sample size in the CPTAC database, we
continue to place greater confidence in the conclusions derived
from the TCGA database.

FIGURE 8
COX regression forest analysis and column lines to predict the prognosis of UCEC patients. (A): COX regression forest analysis based on the TCGA
UCEC dataset to assess the impact of age, FIGO stage, initial diagnosis, and four key genes (GRB10, NINJ2, MACC1, MARCKS) on the prognosis of patients
with UCEC. (B): The nomogram selects key variables, including age, FIGO staging, initial diagnostic status, and four key genes (GRB10, NINJ2, MACC1,
MARCKS). In the figure, each line not only labels the range of values available for each variable, but also cleverly visualizes the magnitude of the
variable’s impact on the clinical outcome event through the length of the line segment. Specifically, the influence of each variable at different values is
represented by “individual scores” (Points), which are labeled directly on the graph lines, facilitating the understanding of the contribution of each variable
when acting independently. Further, the individual scores of all variables are summed to obtain a “Total Point”, which is a composite of the overall impact
of all the variables together and corresponds to the corresponding survival percentage.
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4 Discussion

Radiation therapy undoubtedly holds a pivotal role in the
treatment of UCEC. However, achieving a comprehensive
understanding of radiosensitivity is crucial for enhancing
treatment efficacy and optimizing patient outcomes. Regrettably,
studies exploring the genetic underpinnings of radiosensitivity based
on clinical data remain scant. Consequently, our study aimed to
delve deeply into the molecular mechanisms governing
radiosensitivity and radioresistance in UCEC samples.

In this study, we initially screened 765 genes from 12 radiosensitive
UCEC samples and compared them with 20 radioresistant samples,
revealing significant differences between the two groups. The distinct
expression patterns of these genes in radiosensitive versus radioresistant
samples suggest their potential significance in modulating UCEC
radiosensitivity. To pinpoint the key genes influencing UCEC
prognosis, we employed Lasso regression and a random survival
forest model for rigorous screening. Through meticulous
comparison and analysis, we successfully screened five key genes,
MARCKS, MACC1, GRB10, NINJ2 and GPX8. Among these,
MARCKS plays a crucial role in various cellular activities, including
cell adhesion, motility, mucin secretion, cytokinesis, and inflammatory
response. Previous studies have implicated MARCKS in aberrant
signaling during the development and progression of multiple
cancer types, driving cancer metastasis by regulating cancer cell
migration and invasion (Chiu et al., 2022). Inhibition of MARCKS
has been shown to impair cell proliferation, invasion, migration, and
mammosphere formation, and therefore, positioning it as a potential
therapeutic target for 28% of MARCKS-positive inflammatory breast
cancer patients (Manai et al., 2022). However, whether MARCKS
modulates cancer cell migration and invasion in UCEC to impact
radiosensitivity requires further investigation. Clarifying its specific role
in UCEC radiosensitivity and assessing its potential as a therapeutic
target are ongoing research priorities. MACC1 is closely linked to the
development, invasion, and metastasis of variety malignancies (Stein
et al., 2008). GRB10, meanwhile, is involved in regulating cancer onset
and progression, encompassing critical aspects such as cell metabolism,
growth, and apoptosis (Ren et al., 2023). Furthermore, NINJ2, a
member of the homophilic adhesion molecule family, has recently
emerged as a significant player in tumorigenesis and progression (Yan
et al., 2023; Zhang et al., 2024). GalR3, a cancer-dependent gene, plays a
role in cancer progression (Kiezun et al., 2022), albeit its specific role in
endometrial cancer unreported. In contrast, GPX8 shows high
expression in most cancers, including endometrial cancer (Zhijing
et al., 2022). The key genes we screened are all closely related to
cancer development. In UCEC, variations in their expression may
influence cancer cell radiosensitization and, consequently,
therapeutic efficacy. Notably, despite identifying these genes, their
precise mechanisms of action still await further exploration.
Additionally, our study has limitations, such as a relatively small
sample size and insufficient experimental validation. Future research
should aim to expand the sample size, conduct extensive bioinformatics
analysis, and perform experimental validation to reveal the exact
mechanism of action by which these key genes contribute to UCEC
radiosensitization.

In our in-depth analysis of these key genes, we found a positive
correlation between them and 24 disease genes intimately linked to
UCEC tumorigenesis within the no-response group, reinforcing

their significance in UCEC radiation resistance. Additionally, we
examined the immune infiltration levels between radiosensitive and
radioresistant groups and found a decreased proportion of
Macrophages.M0 in the radiation-resistant group. Notably,
Macrophages.M0 have been established as a prognostic factor in
endometrial adenocarcinoma, positively correlating with favorable
disease outcomes (Pan et al., 2021). Our findings align with these
reports and offer crucial insights into the intrinsic relationship
between tumor microenvironment and radiosensitivity.

To elucidate the specific roles of these key genes in UCEC, we
conducted GO and GSVA analyses, revealing their involvement in
various biological processes such as cell proliferation, differentiation,
apoptosis, and signal transduction. Furthermore, GSEA analyses
highlighted their enrichment in specific signaling pathways,
providing a foundational understanding of their
mechanisms in UCEC.

Survival analysis revealed that low expression of MARCKS,
MACC1 and GRB10 was associated with better survival
outcomes, whereas high expression of NINJ2 was also linked to
favorable survival. This suggests potential biomarker for predicting
the prognosis of UCEC patients in clinical settings. Additionally,
through COX regression forest analysis and column-line graph
prediction, we verified the effects of GRB10, MACC1 and
MARCKS on UCEC patient prognosis. Specifically, patients with
UCEC exhibiting elevated expression levels of MARCKS, MACC1,
and GRB10 experienced reduced survival rates, whereas those with
increased expression of NINJ2 showed improved survival outcomes.
The study revealed that heightened expression of radioresistant
genes (MARCKS, MACC1, GRB10) corresponds with higher
prognostic scores and shorter survival durations, whereas higher
expression of the radiation-sensitive gene NINJ2 is associated with
lower prognostic scores and longer survival periods. These findings
propose that these genes may serve as valuable prognostic
biomarkers for UCEC.

Regrettably, over the past year or two, we have faced challenges
in obtaining tumor tissue samples post-radiotherapy for
endometrial cancer due to various reasons. Specifically, the
survival status of these patients post-radiotherapy varied widely,
making further tissue collection ethically and practically challenging.
This limitation impacted our ability to conduct more detailed
functional studies and experimental validations.

In conclusion, through comprehensive bioinformatics analysis,
this study unveiled the molecular mechanisms underlying
radiosensitivity and radioresistance in UCEC, identifying several
key genes. These findings enhance our understanding of
radiosensitivity in UCEC and suggest new approaches to improve
treatment outcomes for UCEC patients in clinical settings. However,
this study represents a preliminary exploration, and future work will
require additional experimental validation and clinical data to
further substantiate these findings and facilitate their application
in clinical practice.
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