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Objective: This study aims to identify characteristic genes associated with
cutaneous squamous cell carcinoma (cSCC).

Methods: Differentially expressed genes (DEGs) and hub genes in key module
were identified using the limma package and weighted gene co-expression
network analysis (WGCNA) in R software, respectively. The intersection of
these genes was then subjected to LASSO regression to pinpoint
characteristic genes. The correlation between immune cell infiltration and
these characteristic genes was further elucidated using single-sample Gene
Set Enrichment Analysis and Spearman correlation analysis.

Results: A total of 113 DEGs were identified, along with their associated biological
pathways. From this pool, five characteristic genes—ADH1B, CCL27, ID4, LRP4
and S100A9—were selected and validated. Immune infiltration analysis revealed
significant correlations between these genes and various immune cell types,
particularly with CCL27, ID4, LRP4 and S100A9.

Conclusion: The identification of characteristic genes for cSCC provides valuable
insights into its molecular mechanisms. The correlations between these genes
and immune cell infiltration suggests their potential roles in tumor immunity.
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Highlights

• Utilizing GO analysis and KEGG enrichment analysis, we delved into the cellular
functions and signaling pathways potentially implicated in the differentially expressed
genes of cutaneous squamous cell carcinoma.

• We identified five characteristic genes in cutaneous squamous cell carcinoma through
integrated analysis of differential expression gene and weighted gene co-expression
network analysis.

• Our findings unveiled that four characteristic genes exhibit a strong correlation with
infiltrating immune cells, suggesting their potential role in shaping the tumor immune
microenvironment.

OPEN ACCESS

EDITED BY

Domenico Mallardo,
G. Pascale National Cancer Institute Foundation
(IRCCS), Italy

REVIEWED BY

Yunxian Dong,
Shandong First Medical University and
Shandong Academy of Medical Sciences, China
Jin Zhang,
University of Mississippi Medical Center,
United States
Edward Vitkin,
Tel Aviv University, Israel

*CORRESPONDENCE

Yousheng Mao,
maoyousheng1992@163.com

†These authors share first authorship

RECEIVED 06 August 2024
ACCEPTED 31 March 2025
PUBLISHED 14 April 2025

CITATION

Xiao Q, Xu P, Xu W, Song Q and Mao Y (2025)
Identification of characteristic genes in
cutaneous squamous cell carcinoma based on
weighted gene co-expression network analysis.
Front. Genet. 16:1470584.
doi: 10.3389/fgene.2025.1470584

COPYRIGHT

© 2025 Xiao, Xu, Xu, Song and Mao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 14 April 2025
DOI 10.3389/fgene.2025.1470584

https://www.frontiersin.org/articles/10.3389/fgene.2025.1470584/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1470584/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1470584/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1470584/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1470584/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1470584&domain=pdf&date_stamp=2025-04-14
mailto:maoyousheng1992@163.com
mailto:maoyousheng1992@163.com
https://doi.org/10.3389/fgene.2025.1470584
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1470584


1 Background

Cutaneous squamous cell carcinoma (cSCC) is the second most
common type of non-melanoma skin cancer (NMSC), accounting
for approximately 20% of all skin cancer cases (Gong et al., 2018). In
the United States, cSCC affects an estimated one million new
patients annually, leading to up to 9,000 deaths each year (Karia
et al., 2013). Globally, the incidence of cSCC has been rising steadily,
with an annual growth rate of 10%–12% (Rogers et al., 2010). This
increase poses a significant public health threat, particularly in
regions with high ultraviolet exposure, where the incidence is
markedly higher. (Green and Olsen, 2017). While most cases of
cSCC are curable through surgical excision, approximately 4% of
patients experience poor outcomes due to tumor metastasis or local
recurrence (Brantsch et al., 2008). The high incidence of cSCC has
resulted in a death toll comparable to that of melanoma (Fitzmaurice
et al., 2019), imposing substantial physical and economic burdens on
patients, a challenge likely to worsen with the aging population.

Early diagnosis and treatment of cSCC remain challenging.
Early-stage cSCC often presents as skin nodules or scaly plaques,
which can easily be mistaken for other benign conditions,
complicating clinical diagnosis (Stratigos et al., 2020a). Although
several studies have explored molecular markers for cSCC, there is
currently a lack of highly specific and sensitive markers for early
diagnosis, limiting their clinical application (Stratigos et al., 2020b).
For metastatic cSCC, traditional treatments such as surgery and
radiotherapy have shown limited efficacy in advanced stages (Que
et al., 2018). Despite recent advances in targeted therapies, effective
therapeutic targets for metastatic cSCC remain elusive and
treatment outcomes continue to require improvement (Karia
et al., 2013; Burton et al., 2016). Therefore, further investigation
into the molecular mechanisms underlying cSCC and the
identification of reliable biomarkers for early diagnosis and
targeted therapies are essential for improving patient outcomes.

Characteristic genes involved in tumorigenesis and progression
is crucial for advancing cancer research. These genes, whose
abnormal expression or mutations can serve as diagnostic and
prognostic biomarkers, also present potential therapeutic targets.
For example, the estrogen receptor (ER) is a characteristic gene in
breast cancer, with approximately 70%–80% of breast cancer
patients being ER-positive (ER+), who typically respond well to
hormone therapies such as tamoxifen (Davies et al., 2011). In the
case of cSCC, mutations in genes such as TP53, NOTCH1 and
CDKN2A have been implicated in the initiation and progression of
the disease (South et al., 2014). However, these mutations are not
exclusive to cSCC and are observed in various other cancers. For
instance, TP53 mutations are present in approximately 42% of all
cancer patients and are closely associated with tumorigenesis,
progression and prognosis (Kandoth et al., 2013). Notably, TP53
mutations are also detected in 20%–30% of cases of actinic keratosis,
a precursor lesion to cSCC (Padilla et al., 2010). This suggests that
the currently identified characteristic genes for cSCC lack both
sensitivity and specificity. Therefore, further investigation is
required to identify more specific and sensitive characteristic
genes for cSCC, along with understanding their molecular
mechanisms, to improve early diagnosis and targeted therapy.

High-throughput sequencing technologies, combined with
weighted gene co-expression network analysis (WGCNA), has

proven effective in identifying characteristic genes in cancer
research. High-throughput sequencing enables comprehensive gene
expression profiling, while WGCNA identifies disease-related gene
modules and hub genes. For instance, in hepatocellular carcinoma,
WGCNA and Least Absolute Shrinkage and Selection Operator
(LASSO) algorithms have been employed to identify macrophage-
related genes and further establish a prognostic model (Wang et al.,
2022). While similar approaches have been applied to ovarian cancer
to identify fibroblast-related genes and their roles in the tumor
microenvironment (Feng et al., 2022). Despite these advances, the
application of these techniques to cSCC remains unexplored. In this
study, we utilized genome-wide mRNA transcriptomic data from
cSCC and normal skin samples available in the Gene Expression
Omnibus (GEO) database. By integrating WGCNA and LASSO
algorithms, we identified characteristic genes for cSCC. These
findings provide a deeper understanding of the molecular
mechanisms underlying cSCC.

The tumor immune microenvironment plays a critical role in
the initiation and progression of cSCC. Previous studies have
demonstrated that tumor-infiltrating lymphocytes in cSCC are
closely associated with immune evasion, tumor progression and
patient prognosis (Saeidi et al., 2023). Additionally, tumor-
associated neutrophils contribute significantly to cSCC growth
and immune evasion, thereby facilitating tumor progression
(Khou et al., 2020). Investigating the correlation between the
expression patterns of characteristic genes and immune cells
infiltration provides valuable insights into the molecular
mechanisms underlying tumor growth and immune evasion. This
approach also offers the potential to identify biomarkers with
diagnostic, prognostic, or therapeutic relevance. In the present
study, we further explored the relationship between cSCC
characteristic genes and immune cell infiltration. Our findings
reveal that cSCC characteristic genes are significantly correlated
with the infiltration of various immune cell types. These results
enhance our understanding of the immune landscape of cSCC.

2 Objects and methods

2.1 Objects

This study utilized data from patients with cutaneous squamous
cell carcinoma (cSCC) obtained from the GEO database. Tumor
tissue samples were classified as the “Tumor” group, while
corresponding normal skin tissue samples were categorized as the
“Normal” group for subsequent bioinformatics analysis.

2.2 Methods

2.2.1 Data collection and preprocessing
Gene expression data for cSCC were retrieved from the GEO

database using the search terms “Squamous cell carcinoma of skin”
AND “Homo sapiens”. The inclusion criteria for the datasets were as
follows: (1) the dataset contained genome-wide mRNA
transcriptomic data, (2) the dataset included samples from both
cSCC tissues and normal skin tissues and (3) datasets lacking proper
annotation files were excluded. After applying these criteria, five
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cSCC microarray datasets were selected: GSE7553, GSE42677,
GSE45164, GSE2503 and GSE117247. Among them, GSE7553,
GSE42677 and GSE45164 were used as the training set for
primary analysis, which included 31 cSCC tissue samples and
17 normal skin tissue samples. GSE2503 and GSE117247 were
used as the test set for further validation, which included
13 cSCC tissue samples and 16 normal skin tissue samples.
Descriptive statistics for the samples are shown in Supplementary
Table 1. Data processing, includingmatrix organization, imputation,
normalization and merging, was performed using the Perl and R
programming languages. The limma package from the Bioconductor
suite was used for data normalization and integration. Subsequently,
the normalized gene expression data were used for analyses.

2.2.2 Identification of differentially expressed
genes (DEGs)

DEGs between the Tumor and Normal groups in the training set
were identified using the limma package in R. To identify genes with
significant expression changes and robust statistical significance, the
screening criteria for DEGs were set as |logFC| > 2 and an adjusted P <
0.05, ensuring both biological relevance and statistical significance
(Ritchie et al., 2015; Liu et al., 2019). A linear model and eBayes
(empirical Bayes adjustment) were applied to enhance statistical
robustness. To visualize the DEG results, heatmaps and volcano
plots were generated using the pheatmap and ggplot2 R packages.
These visualizations were used to highlight the most significantly
altered genes between cSCC and normal skin tissue samples.

2.2.3 GO and KEGG pathway enrichment analysis
To further explore the biological functions and underlying

mechanisms of the identified DEGs, Gene Ontology (GO)
functional enrichment analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis were
performed. The analysis was conducted using the clusterProfiler,
enrichplot and ggplot2 R packages (Yu et al., 2012). GO analysis
provided insights into the biological processes, molecular functions
and cellular components associated with the DEGs, while KEGG
pathway analysis helped identify the key signaling pathways
potentially involved in cSCC development.

2.2.4 WGCNA and identification of hub genes in
key module

To explore the gene interactions and their potential associations
with cSCC, WGCNA was performed on the normalized gene
expression data using the R package “WGCNA”. First,
hierarchical clustering (hclust) was employed to construct a
sample dendrogram, facilitating the detection and removal of
outlier samples. The pickSoftThreshold function was then applied
to determine the optimal soft-thresholding power to ensure the
network’s scale-free topology. Next, gene modules were identified
using the cutreeDynamic function, which employs a dynamic tree-
cutting approach. The minimum module size was set to 60, and the
cut height was set to 0.25.Modules with high similarity were merged.
The relationship between each module and clinical phenotypic data
was evaluated by calculating module-trait correlations. A module-
trait heatmap was generated to highlight modules significantly
associated with cSCC. Hub genes in key modules were selected
based on Module Membership (MM) > 0.8 and Gene Significance

(GS) > 0.5, ensuring that the identified hub genes not only play a
crucial role within the module (high MM) but also exhibit a strong
correlation with the studied phenotype (high GS) (Langfelder and
Horvath, 2008; Ai et al., 2020). The hub genes identified in this
manner were then intersected with the DEGs obtained in the
previous analysis for further exploration.

2.2.5 LASSO regression analysis
The intersecting genes identified in the previous step were

subjected to LASSO regression analysis to further select potential
characteristic genes for cSCC. A ten-fold cross-validation approach
was used to determine the optimal regularization parameter lambda
(λ). The value of λ corresponding to the minimum cross-validation
error (λ. min = 0.0003287787) was selected as the optimal model
complexity (Friedman et al., 2010). Genes with non-zero coefficients
in the optimized LASSO model were identified as characteristic
genes of cSCC.

2.2.6 Validation of cSCC characteristic genes
To evaluate the reliability of the identified characteristic genes in

cSCC, we conducted comprehensive validation through multiple
approaches. Initially, the pROC package in R was used to evaluate
the average achieved model performance for ten-fold cross-
validation based on the intersecting genes and the characteristic
genes in the training set. Subsequently, the overall performance of
the model for these characteristic genes in the test set was assessed
using the pROC package. Following this, comparative analysis of
gene expression profiles between cSCC tumor tissues and normal
was performed in both training and test sets using boxplot
visualizations created with the ggpubr package.

Additionally, protein-level validation was carried out through
immunohistochemical staining of three matched cSCC tumor-
adjacent normal tissue pairs, confirming the translational
relevance of the identified molecular signatures. Descriptive
statistics for the samples are shown in Supplementary Table 2.
Tissue sections underwent standard deparaffinization through
xylene-ethanol series and microwave-assisted antigen retrieval in
citrate buffer (pH 6.0). After cooling to room temperature and
phosphate-buffered saline washing (pH 7.4), endogenous peroxidase
activity was blocked with 3% H2O2. Non-specific binding was
minimized through 30-min incubation with 3% bovine serum
albumin (BSA). Sections were incubated overnight at 4°C with
primary antibodies against ADH1B (Proteintech), CCL27
(Proteintech), ID4 (Proteintech), LRP4 (Bioss) and S100A9
(Proteintech), followed by room temperature incubation with
horseradish peroxidase-conjugated secondary antibodies for 1 h.
Color development was achieved using 3,3’-diaminobenzidine with
hematoxylin counterstaining. Sections were subsequently
dehydrated through ethanol-xylene series and mounted with
neutral gum. Staining intensities were quantified as mean optical
density using ImageJ software (NIH), normalized to a designated
reference sample (set as 1.0 arbitrary unit), and subsequently
visualized through GraphPad Prism 10 (GraphPad).

2.2.7 Correlation analysis between cSCC
characteristic genes and immune cell infiltration

To explore the association between characteristic genes and
immune cell infiltration in cSCC, single-sample Gene Set
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Enrichment Analysis (ssGSEA) was used to estimate the relative
abundance of 28 immune cell types across all samples. ssGSEA was
performed using the normalized expression matrix and an immune
gene set (GMT file), generating standardized enrichment scores that
reflect the abundance of each immune cell type in each sample.
Heatmaps visualizing the ssGSEA scores were constructed using the
pheatmap R package. Differences in immune cell infiltration
between the Tumor and Normal groups were compared using
violin plots, which were created with the vioplot package, and
statistical significance was assessed using the Wilcoxon rank-sum
test. To further investigate the relationship between characteristic
genes and immune cell infiltration, Spearman’s rank correlation
coefficients (cor) were calculated using the cor. test function in R.
The significance of these correlations was determined by P-values,
and correlation heatmaps were generated using the ggplot2 package,
with annotations to indicate the strength and significance of the
associations.

3 Results

3.1 Identification of DEGs

We conducted a comprehensive analysis of the preprocessed
gene expression data using R, resulting in the identification of
113 DEGs. Among these, 38 genes were downregulated, and
75 genes were upregulated. The differential expression of these
genes was visualized using heatmaps and volcano plots (Figure 1).

3.2 Functional enrichment analysis of DEGs

To further explore the biological roles and pathways of the
identified DEGs, we performed GO and KEGG enrichment analyses
using the ClusterProfiler package. The DEGs were categorized and

analyzed in terms of biological processes, cellular components and
molecular functions. In terms of biological processes, the DEGs were
predominantly associated with keratinization, keratinocyte
differentiation, epidermal development, epithelial cell
differentiation and skin development (Figures 2A–C). These
findings indicate that these genes play critical roles in skin
development, keratinization, and cell differentiation. With respect
to cellular components, the DEGs were enriched in the cornified
envelope, secretory granule lumen, cytoplasmic vesicle lumen,
vesicle lumen and keratin filaments (Figures 2A–C), underscoring
their significant roles in keratinization and secretion-related
processes. Regarding molecular functions, the DEGs were
involved in activities such as structural constituent of skin
epidermis, RAGE receptor binding, calcium-dependent protein
binding, serine-type endopeptidase activity and serine-type
peptidase activity (Figures 2A–C).

Furthermore, KEGG pathway analysis revealed that the DEGs
were predominantly implicated in several pathways, including the
IL-17 signaling pathway, PPAR signaling pathway, viral protein
interaction with cytokines and cytokine receptors and amoebiasis
(Figures 2D–F).

3.3 Identification of hub genes
using WGCNA

To identify biologically significant characteristic genes, uncover
potential regulatory mechanisms of cSCC, narrow the research
focus, and enhance analytical efficiency, we applied WGCNA to
identify gene modules and hub genes that were highly correlated
with specific phenotypes.

Initially, hierarchical clustering was performed on the gene
expression data to construct a sample dendrogram. No outlier
samples were detected, indicating that the samples exhibited a
concentrated clustering pattern and the data quality was high,

FIGURE 1
DEGs analysis. (A) Heatmap of DEGs. The heatmap displays the normalized expression levels of DEGs in the Normal and Tumor groups. The color
scale represents the scaled expression of each gene. (B)Volcano plot of DEGs. The volcano plot visualizes the distribution of DEGs. Upregulated genes are
represented by red dots, and downregulated genes are represented by blue dots. The threshold for the corresponding |logFC| and adjusted P-value is
represented by the blue dashed line. DEGs, differentially expressed genes.
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FIGURE 2
Functional enrichment analysis of DEGs. (A) Circular plot of GO enrichment. This plot illustrates the enriched GO terms associated with DEGs in three
categories: BP, CC and MF. (B) Bar plot of GO enrichment. GO terms are ranked by significance (−log10(P-value)). (C) Bubble plot of GO enrichment. The size of
each bubble represents the number of DEGs associated with a specific GO term, while the color gradient reflects the q-value. (D)Circular plot of KEGG pathway
enrichment. This plot displays the KEGG pathways significantly enriched by DEGs. (E) Bar plot of KEGG pathway enrichment. Pathways are ranked
by −log10(P-value), with bars showing the corresponding q-values and the number of DEGs associated with each pathway. (F) Bubble plot of KEGG pathway
enrichment. Bubble size indicates the number of DEGs associated with each pathway, while the color gradient reflects q-value significance. DEGs, differentially
expressed genes. GO, Gene Ontology. BP, biological processes. CC, cellular components. MF, molecular functions.
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FIGURE 3
Co-expressionmodule construction and identification of keymodule and hub genes usingWGCNA. (A) Sample clustering dendrogram. Hierarchical
clustering is performed based on gene expression data. (B) Scale Independence and mean connectivity. The scale-free topology fit index (R2)
corresponding to soft thresholding powers (β) from 1 to 20 is shown in the left panel, and the average connectivity (k) of β values from 1 to 20 is shown in
the right panel. (C) Gene dendrogram and modules Identification. Differentially expressed genes are clustered based on the dynamic tree cutting
method, with representing different gene modules are represented by different colors. (D) Identification of key module. The correlation between
13 modules and two traits (Normal group and Tumor group) is shown in the figure. The correlation coefficient and significance level are indicated by the
numerical values. The scaled correlations are represented by the color scale. (E) Identification of hub genes. A scatter plot between the module

(Continued )
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providing a reliable foundation for subsequent analysis (Figure 3A).
The optimal soft-thresholding power was determined to be β = 12,
ensuring that the network met the scale-free topology criterion (R2 =
0.85) while maintaining high gene connectivity. The high scale-free
topology value indicated that the gene expression network adhered
to the characteristics of biological networks (Figure 3B).

Subsequently, the minimum module size was set to 60, and the
cut height was set to 0.25. Using the dynamic tree-cutting method,
the genes were grouped into 13 modules, with each module color
reflecting the similarity in gene expression patterns. These modules
served as the foundation for exploring phenotype-related modules
(Figure 3C). The correlation between genes within each module and
the phenotypic data was calculated, and a module-trait heatmap was
generated. This analysis revealed that the green-yellow module
exhibited a strong positive correlation with cSCC (r = 0.85, P <
0.001), suggesting its potential as a key module for further
analysis (Figure 3D).

Hub genes within the green-yellowmodule were identified based
on thresholds for MM > 0.8 and GS > 0.5. We identified 65 hub
genes, which not only played a crucial role within the module but
also exhibited strong correlations with the phenotype of interest
(Figure 3E). The hub genes were then intersected with the DEGs,
and a Venn diagram was generated. This analysis revealed
12 intersecting genes that were both highly correlated within the
green-yellow module and differentially expressed (Figure 3F).

3.4 LASSO regression analysis

To identify characteristic genes associated with cSCC while
minimizing the risk of overfitting, we performed LASSO regression
combined with ten-fold cross-validation on the expression levels of
the 12 intersecting genes. Genes with non-zero regression coefficients
were selected, and the results were visualized (Figures 4A, B). The
12 intersecting genes and their coefficients, which reflect the
significance of each gene, obtained from the LASSO regression are
presented in Supplementary Table 3. Ultimately, five genes—Alcohol
Dehydrogenase 1B (ADH1B), C-C Motif Chemokine Ligand 27
(CCL27), Inhibitor of DNA Binding 4 (ID4), LDL Receptor
Related Protein 4 (LRP4) and S100 Calcium Binding Protein A9
(S100A9)—were identified as characteristic genes of cSCC.

3.5 Validation of cSCC characteristic genes

To validate the characteristic genes, the receiver operating
characteristic (ROC) curves on the training set were used to
assess the overall performance of the models based on
12 intersecting genes and five characteristic genes. The model
based on 12 intersecting genes had an Area Under the Curve
(AUC) value of 0.68, while the model based on five characteristic
genes achieved a higher AUC of 0.86 (Figure 5A). This

FIGURE 3 (Continued)

membership (MM) in the green-yellowmodule and the gene significance (GS) for cSCC is displayed in the figure. Genes in the upper right corner are
selected as hub genes. (F) Venn diagram of intersecting genes. The intersecting genes between DEGs and hub genes are shown in the Venn diagram. GS,
gene significance. MM, module membership.

FIGURE 4
LASSO regression analysis for the selection of characteristic genes in cSCC. (A) The binomial deviance plot at different log(λ) values. The relationship
between Log(λ) and the model fit is shown in the figure. The optimal λ value determined by cross-validation is indicated by the dashed line on the left. (B)
The gene coefficient curve plot at different log(λ) values. The relationship between the coefficient values of different genes and Log(λ) is shown in the
figure, and the figure has been marked with the selected feature genes at the optimal λ value.
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demonstrated that the model after combined LASSO regression
offers superior predictive performance. Additional performance
metrics, such as sensitivity and specificity are provided in
Supplementary Table 4. Subsequent external validation on the
test set revealed exceptional generalizability, demonstrating
robust discriminative capacity with an AUC of 0.99 (Figure 5B).

mRNA expression analysis, visualized using boxplots generated
by ggpubr, revealed consistent expression patterns between the
training and test sets for all characteristic genes, with statistically
significant differential expression (Figures 5C, D). This finding
confirmed the stable identification of these genes across distinct
patient cohorts. Notably, to corroborate the transcriptional findings
at protein level, we conducted comparative immunohistochemical
analysis between cSCC lesions and matched normal skin tissues. The
protein expression profiles demonstrated distinct differential patterns

that mirrored the mRNA expression trends (Figure 6). Quantitative
evaluation revealed consistent downregulation of ADH1B, CCL27,
ID4 and LRP4 in tumor tissues compared to normal counterparts.
Conversely, S100A9 exhibited marked upregulation in tumor. This
multi-level concordance between transcriptional and translational
data strongly corroborates the biological relevance of these
characteristic genes in cSCC development.

3.6 Correlation analysis between cSCC
characteristic genes and infiltrating
immune cells

Although the five characteristic genes were identified, their exact
roles in cSCC tumorigenesis and progression remain unclear. Given

FIGURE 5
Validation of cSCC characteristic genes. (A) ROC curve of the training set. The ROC curve of the model based on 12 intersecting genes and five
characteristic genes in the training set is shown. (B) ROC curve of the test set. The ROC curve of the model based on five characteristic genes in the test
set is shown. (C) Box plot of the training set. ThemRNA expression levels of five characteristic genes (ADH1B,CCL27, ID4, LRP4 and S100A9) in the normal
group and tumor group in the training set are shown. (D) Box plot of the test set. The mRNA expression levels of five characteristic genes in the
normal group and tumor group in the test set are displayed. * indicates P < 0.05. ** indicates P < 0.01. *** indicates P < 0.001.
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the established connection between the immune microenvironment
and cSCC development (Saeidi et al., 2023), and the functional
enrichment analysis indicating the involvement of these genes in
immune-related pathways (e.g., S100A9 in the IL-17 signaling
pathway as shown in Supplementary Table 5), we further
explored the relationship between these genes and the infiltration
of immune cells.

Using the ssGSEA method, we analyzed the infiltration of
28 immune cell types in the Tumor and Normal groups. The
results revealed statistically significant differences in the
infiltration of 14 immune cell types (Supplementary Table 6).
Among these, 10 immune cell types exhibited higher levels of

infiltration in the Tumor group, while five showed significantly
lower levels in the Tumor group compared to the Normal group
(Figures 7A, B).

Furthermore, we performed a correlation analysis between the
cSCC characteristic genes and the abundance of infiltrating immune
cells (Figure 7C). The analysis revealed that four of the characteristic
genes—CCL27, ID4, LRP4 and S100A9—were significantly
associated with various types of infiltrating immune cells. For
instance, S100A9 expression was positively correlated with the
abundance of Type 17 T helper cells, neutrophils, effector
memory CD4 T-cell, CD56 bright natural killer cells and
activated dendritic cells. The correlations between the five

FIGURE 6
Expression of cSCC characteristic genes in immunohistochemistry. Representative immunohistochemical images of ADH1B, CCL27, ID4, LRP4 and
S100A9 expression in adjacent normal skin (left panel) and cSCC tumor (middle panel). Nuclei were counterstained with hematoxylin (blue), with positive
signals shown by 3,3’-diaminobenzidine deposition (brown). Scale bars: 50 μm. Quantitative analysis of normalized expression levels (right panel). Data
expressed as Mean ± SD. n = 3. * indicates P < 0.05. ** indicates P < 0.01. *** indicates P < 0.001.
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characteristic genes and various immune cell types, along with their
corresponding P-values, are provided in Supplementary Table 7.
These results suggest that the characteristic genes CCL27, ID4, LRP4
and S100A9 may play a role in modulating the immune
microenvironment of cSCC.

4 Discussion

cSCC, a major subtype of NMSC, is characterized by its potential
for local invasion and distant metastasis. Although the overall
metastatic rate is relatively low, with approximately 4% of
patients developing lymph node metastasis and 1.5% succumbing
to the disease (Karia et al., 2013), advanced cSCC remains a
significant clinical challenge. Early-stage cSCC can be effectively
treated with current therapies, but management of advanced cases
continues to pose considerable difficulties. Understanding the
characteristic genes involved in cSCC pathogenesis is critical for
elucidating the mechanisms underlying its development and

progression, and for advancing diagnostic and therapeutic
strategies. However, research into the molecular profiles of cSCC
remains limited, and systematic investigations to identify and
explore characteristic genes are urgently needed.

In the present study, we identified five characteristic genes from
three cSCC datasets (GSE45164, GSE42677 and GSE7553) for the
first time. While the original study of GSE42677 also identified
S100A9 as a DEG, our combined approach, which includes
WGCNA, LASSO regression analysis and immunohistochemical
staining, further validates that S100A9, along with the other four
genes, collectively serves as a set of characteristic genes for cSCC.
Due to significant differences in research objectives, analytical
methods, sample sizes and sample compositions, the conclusions
drawn in our study exhibit notable disparities from those of the
original studies.

Among these characteristic genes, ADH1B, CCL27, ID4 and
LRP4 were found to be significantly downregulated in cSCC
(Figure 5C). Previous studies have highlighted the roles of these
genes in the tumorigenesis and progression of other cancers,

FIGURE 7
Correlation of characteristic genes with infiltrating immune cells in cSCC. (A) Heatmap. This heatmap illustrates the relative abundance of
28 infiltrating immune cell types in the tumor and normal groups. The color scale represents the degree of infiltration for each cell type. (B) Violin Plot. This
plot compares the differences in immune cell infiltration between the tumor and normal groups. P-values are provided to assess statistical significance.
(C)Correlation Heatmap. The picture depicts the relationships between five characteristic genes and various infiltrating immune cell types. The color
scale represents positive correlations in red and negative correlations in blue. * indicates P < 0.05. ** indicates P < 0.01. *** indicates P < 0.001.
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suggesting that their altered expression may be crucial for the
development of cSCC. For instance, polymorphisms in the
ADH1B gene, such as rs1229984, have been shown to correlate
with a reduced risk of head and neck cancer (Imani et al., 2024).
Additionally, ADH1B expression is notably reduced in
hepatocellular carcinoma (HCC), with low expression levels
associated with poor prognosis (Liu et al., 2020). Although our
study does not provide direct evidence linking ADH1B to cSCC
prognosis, its downregulation suggests that it may be involved in
disease progression, warranting further investigation in clinical
cohorts. CCL27, a chemokine involved in immune cell
recruitment and lymphangiogenesis, has been shown to be
upregulated in several cancers, including breast cancer and
melanoma, where it contributes to tumor metastasis by
promoting lymphatic spread (Karnezis et al., 2019). However,
this study indicates that CCL27 is downregulated in cSCC. Given
that cSCC exhibits significantly lower lymph node metastatic
potential compared to breast cancer and melanoma, this finding
suggests that CCL27 may play a role in the differential lymphatic
metastasis capabilities among various cancers. Further research is
needed to elucidate the molecular and biological functions of CCL27
in tumor metastasis. The expression of ID4 has been reported to be
suppressed by UVB irradiation via DNA methylation, which in turn
promotes cell proliferation, migration and invasion, contributing to
tumor formation in mouse models of skin cancer (Li et al., 2020). In
non-small cell lung cancer (NSCLC), ID4 upregulation is associated
with improved prognosis, suggesting its potential role as a tumor
suppressor (Rodón et al., 2019). Similarly, ID4 was found to be
downregulated in cSCC in our study. It remains unclear whether this
downregulation contributes to cSCC progression, and further
experimental validation is needed to explore its potential role.
LRP4, a member of the low-density lipoprotein receptor family,
has been implicated in various cancers. In NSCLC,
LRP4 downregulation promotes tumorigenesis and progression
by modulating the Wnt/β-catenin signaling pathway (Zhang
et al., 2024). In contrast, LRP4 is upregulated in papillary thyroid
carcinoma, where it promotes cell proliferation, migration and
invasion (Zhou et al., 2018). This contradictory expression
pattern suggests that LRP4 may have context-dependent roles in
different cancer types, potentially influenced by the tumor
microenvironment. However, the prognostic significance of LRP4
in cSCC remains to be determined, and further studies are needed to
explore its functional role. In summary, our findings reveal that four
of the identified characteristic genes (ADH1B, CCL27, ID4 and
LRP4) are consistently downregulated in cSCC, and prior studies
suggest their involvement in tumor proliferation, migration and
invasion. However, the specific roles of these genes in cSCC require
further clinical and experimental validation.

In addition to the four downregulated characteristic genes
mentioned, this study also confirmed the upregulation of S100A9
in cSCC (Figure 5C). S100A9 is a member of the S100 protein family,
which binds calcium and plays a critical role in the recruitment and
adhesion of immune cells such as neutrophils and monocytes,
especially in inflammatory responses and inflammation-
associated diseases (Wang et al., 2018). Previous studies have
demonstrated that S100A9 is upregulated in various cancers and
is closely associated with tumor initiation, progression and
prognosis (Acharyya et al., 2012; Eisenblaetter et al., 2017). In

cSCC, elevated S100A9 expression has been found to bind to
Receptor for Advanced Glycation Endproducts on myeloid-
derived suppressor cells (MDSCs), activating NF-κB signaling.
This interaction promotes the recruitment of MDSCs to the
tumor site, which suppresses the immune system’s anti-tumor
response, thereby facilitating tumor growth and metastasis
(Markowitz and Carson, 2013). Our study also observed a
potential positive correlation between S100A9 and MDSC
infiltration (Figure 7C). While the p-value was not sufficient to
confirm statistical significance, the results partially support previous
findings. Interestingly, downregulation of S100A9 expression in
cSCC has been shown to inhibit tumor proliferation and
migration (Zhang et al., 2021). Furthermore, IL-6 has been
clinically associated with poor prognosis in cSCC (Mallardo
et al., 2023), thereby underscoring the critical involvement of
inflammatory molecules in tumor progression. Future
investigations into how these inflammatory mediators
collaboratively orchestrate tumor development through
synergistic molecular networks will be of paramount importance
for advancing therapeutic strategies.

Notably, the intricate tumor immune microenvironment
involves not only MDSC-mediated immunosuppression but also
dynamic equilibrium among immune cell populations. Our study
revealed concurrent infiltration of functionally antagonistic CD8+

cytotoxic T-cell and immunosuppressive Tregs within tumor tissues,
a paradoxical coexistence that has been previously documented in
renal clear cell carcinoma and lung adenocarcinoma (Pan et al.,
2020; Meng et al., 2024). Current research demonstrates functional
heterogeneity in tumor-infiltrating CD8+ T-cell, where many exhibit
non-reactive “bystander” phenotypes that challenge the prognostic
utility of quantitative assessments alone (Simoni et al., 2018).
Moreover, Treg cell-mediated immunosuppression further
impairs the functional state of CD8+ T-cell (Sakaguchi et al.,
2008). These findings collectively suggest that effective
immunotherapeutic strategies should adopt dual targeting
approaches: enhancing effector T-cell functionality while
selectively inhibiting Treg-mediated immunosuppression to
achieve durable antitumor responses.

Furthermore, in this study, we established correlations between
the cSCC characteristic genes and various infiltrating immune cell
populations through bioinformatics analysis (Figure 7C). These
findings suggest that these genes may play a role in shaping the
cSCC immune microenvironment and promoting immune evasion,
a hypothesis supported by previous studies. For instance, S100A9 is
highly expressed in neutrophils and monocytes and acts as a
promoter by regulating tumor metabolism and the immune
microenvironment, thereby facilitating tumor growth and
metastasis (Chen et al., 2023). Further research has revealed that
tumor-associated neutrophils can suppress CD8+ T-cell function
and express Programmed Death-Ligand 1, contributing to immune
evasion and promoting cSCC progression (Khou et al., 2020). Our
study reaffirms the positive correlation between high
S100A9 expression and increased neutrophil infiltration in cSCC,
consistent with previous reports. While there is substantial evidence
supporting the involvement of S100A9 in the tumor immune
microenvironment and immune evasion, the roles of CCL27, ID4
and LRP4, genes that also showed strong correlations with
infiltrating immune cells, remain inadequately explored. Future
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research is needed to clarify whether these genes influence the tumor
immune environment and to elucidate their specific mechanisms.
Such studies will deepen our understanding of cSCC and could
uncover novel targets for immunotherapy.

However, this study has several limitations. First, the available
datasets that met the analysis criteria were limited, resulting in a
relatively small sample size that may not fully capture the
heterogeneity of cSCC. Second, although multiple screening
methods were employed, the stability and generalizability of the
identified characteristic genes require validation in larger, multi-
center cohorts. Additionally, the prognostic significance of these
genes in cSCC has not been systematically evaluated, which should
be addressed in future studies. Future research should focus on
expanding sample sizes, incorporating diverse data sources,
conducting functional validation experiments, integrating multi-
omics data, and performing prospective clinical studies to improve
the representativeness and clinical applicability of the findings.

In conclusion, this study employed bioinformatics techniques,
including WGCNA, to identify five characteristic genes associated
with cSCC: ADH1B, CCL27, ID4, LRP4 and S100A9. Additionally,
we demonstrated that CCL27, ID4, LRP4 and S100A9 are correlated
with the infiltration of various immune cell types in cSCC. Further
investigation into the roles and mechanisms of these characteristic
genes in cSCC formation, progression, migration and immune
evasion will enhance our understanding of the disease and may
provide a foundation for future diagnostic biomarkers and
therapeutic targets.
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