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Introduction: Melanoma, a highly aggressive malignancy characterized by rapid
metastasis and elevated mortality rates, predominantly originates in cutaneous
tissues. While surgical interventions, immunotherapy, and targeted therapies
have advanced, the prognosis for advanced-stage melanoma remains dismal.
Globally, melanoma incidence continues to rise, with the United States alone
reporting over 100,000 new cases and 7,000 deaths annually. Despite the
exponential growth of tumor data facilitated by next-generation sequencing
(NGS), current analytical approaches predominantly emphasize single-gene
analyses, neglecting critical insights into complex gene interaction networks.
This study aims to address this gap by systematically exploring immune gene
regulatory dynamics in melanoma progression.

Methods: We developed a bidirectional, weighted, signed, and directed
topological immune gene regulatory network to compare transcriptional
landscapes between benign melanocytic nevi and cutaneous melanoma.
Advanced network analysis tools were employed to identify structural
disparities and functional module shifts. Key driver genes were validated
through topological centrality metrics. Additionally, deep learning models
were implemented to predict drug-target interactions, leveraging molecular
features derived from network analyses.

Results: Significant topological divergences emerged between nevi and
melanoma networks, with dominant functional modules transitioning from cell
cycle regulation in benign lesions to DNA repair and cell migration pathways in
malignant tumors. A group of genes, including AURKA, CCNE1, APEX2, and
EXOC8, were identified as potential orchestrators of immune
microenvironment remodeling during malignant transformation. The deep
learning framework successfully predicted 23 clinically actionable drug
candidates targeting these molecular drivers.
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Discussion: The observed module shift from cell cycle to invasion-related
pathways provides mechanistic insights into melanoma progression, suggesting
early therapeutic targeting of DNA repair machinery might mitigate metastatic
potential. The identified hub genes, particularly AURKA and DDX19B, represent
novel candidates for immunomodulatory interventions. Our computational drug
prediction strategy bridges molecular network analysis with clinical translation,
offering a paradigm for precision oncology in melanoma. Future studies should
validate these targets in preclinical models and explore network-based biomarkers
for early detection.
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1 Introduction

Melanoma is a highly malignant cancer originating from
melanocytes, notorious for its rapid spread and high mortality
rates. Even tumors just a few millimeters in size can be fatal,
making it one of the most aggressive forms of cancer.
Melanomas primarily occur on the skin (over 90% of all
melanoma diagnoses), with mucosal and uveal melanomas being
less common (<1–5% of diagnoses, varying by region). There are
also rare cases in children with neurocutaneous melanocytosis where
melanomas occur in the central nervous system (CNS) (Bittencourt
et al., 2000; Elder et al., 2020; Neale et al., 2022). Over the past half-
century, the incidence of cutaneous melanoma has been steadily
rising globally, surpassing the incidence rates of other cancers
(Welch et al., 2021; Sung et al., 2021). The incidence is highest
among non-Hispanic white patients, primarily attributed to
ultraviolet (UV) exposure. Individuals with skin of color have
lower incidence rates but significantly lower survival rates,
mainly due to delayed diagnosis, insufficient patient education,
and limited treatment options (Brunsgaard et al., 2023).
According to a 2021 U.S. statistic, an estimated 106,110 new
cases of melanoma were diagnosed, and 7,180 deaths occurred
due to the disease (Siegel et al., 2021). Additionally, patients’
survival and quality of life are significantly impacted, with over
one-third of melanoma patients reporting clinically significant levels
of distress (Cornish et al., 2009; Rosenberg et al., 2021). Survival
rates vary significantly depending on the tumor site, as the primary
treatment for melanoma is surgical excision. According to the SEER
(Surveillance, Epidemiology, and End Results) database, the 5-year
survival rate for localized melanomas amenable to early surgical
intervention is nearly 100%. In contrast, the 5-year survival rates for
regional (involving regional lymph nodes) and distant (metastatic)
melanomas are 74.8% and 35%, respectively (Patel V. R. et al., 2023;
National Institutes of Health, 2024). Understanding the molecular
networks of melanoma is crucial for improving patients’ survival
and quality of life.

For a long time, treatment options for melanoma were highly
limited, resulting in extremely low survival rates for advanced-stage
patients. However, immune checkpoint inhibitors (ICI) and target
medicines have made significant progress in improving survival
rates, particularly for those with inoperable advanced melanoma
(Patel S. P. et al., 2023). Before 2010, only dacarbazine chemotherapy
and high-dose interleukin-2 (IL-2) were approved by the U.S. Food

and Drug Administration (FDA) for the treatment of metastatic
melanoma (Lo and Fisher, 2014). These treatments had limited
efficacy and significant side effects. Currently, therapies targeting
CTLA-4, PD-1, and PD-L1 have increased the 5-year survival rate
for patients with advanced melanoma from less than 5% to 30%–40%
(Hamid et al., 2019; Spagnolo et al., 2019). This success has established
ICIs and target therapies as first-line treatments for melanoma and
other cancer types. However, 40%–60% of melanoma patients do not
achieve significant therapeutic effects, and many responders
experience tumor recurrence (Kalaora et al., 2022). Low response
rates and frequent treatment resistance impede further improvements
in therapeutic outcomes. Therefore, a more comprehensive
understanding of the immunomolecular mechanisms of melanoma
is necessary. The immune environment of melanoma is highly
complex, and further interpretation of related experimental data is
urgently required.

In the past decade, the cost reduction and widespread adoption of
new technologies have led to an explosive growth in sequencing data.
This has significantly enhanced our understanding of the molecular
regulatory networks involved in various diseases. However, our
methods for interpreting sequencing data have not kept pace.
Current stratification methods, which are based on gene expression
differences, often focus on single genes. While this reductionist
approach can simplify the identification of key genes associated with
disease risk, it fails to capture the complexity of disease processes, which
are regulated by intricate networks ofmultiple genes. Ethical constraints
in research further complicate our efforts, as it is often challenging to
obtain sequencing data from different pathological stages within the
same individual, such as multiple samples during the progression from
nevi tomelanoma. Isolated time-point data hinder our ability to observe
dynamic changes in molecular regulatory networks and their
interrelationships. In contrast, directed topological network models
are well-suited for describing these complexities and have shown
promising results in understanding disease mechanisms.

In this study, we constructed a bidirectional, weighted, signed,
and directed topological immune gene regulatory network of human
cutaneous melanoma. We applied and adapted an ecological model,
which was originally used in ecological and biological research. This
model provided new insights into tree growth characteristics and gut
microbiome statistics. Within this topological network, we
conducted a comprehensive analysis of transcriptome sequencing
data to describe the immune gene regulatory networks that may
influence melanoma formation. We compared the molecular

Frontiers in Genetics frontiersin.org02

Cui et al. 10.3389/fgene.2025.1471037

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1471037


regulatory network differences between benign nevus and
melanomas. At the same time, we also introduced directional
topological homology theory to compare differences between
various topological networks. Using this approach, we
characterized previously unknown gene interactions that could
better represent biomarkers of melanoma. Additionally, we used
deep learning models to make drug-target interaction (DTI)
predictions, offering new insights for clinical drug selection for
melanoma treatment.

2 Methods

2.1 Real-world datasets

A cross-sectional cohort study was conducted to collect
transcriptome sequencing data from a series of benign
melanocytic nevi and primary melanoma samples (Kunz et al.,
2018). This dataset comprises 23 benign melanocytic nevi
samples and 57 primary melanoma samples. The thickness of the
harvested primary melanoma tumors, measured according to the
Breslow principle—a widely used metric for evaluating melanoma
invasion—ranged from 0.40 to 3.86 mm. All analyses were approved
by the local ethics committee and conducted in accordance with the

principles outlined in the Declaration of Helsinki. Detailed
descriptions of the cohort study design, sampling strategy, and
transcriptome sequencing have been previously published (Kunz
et al., 2018).

Sequencing data were annotated using Illumina platform
information and Ensembl Gene IDs, resulting in expression data
for 33,897 genes. From these, 3,272 immune-related genes were
identified based on annotations from InnateDB, currently the most
comprehensive database for annotating immune genes and protein
functions (Breuer et al., 2013). Using the expression data of these
genes, we reconstructed topological networks to focus on analyzing
the fluctuations in immune networks during melanoma progression.
Differentially expressed genes (DEGs) were analyzed using the
limma package. Figures were created using R packages, including
ggplot2 and tidyHeatmap. Enrichment analysis was conducted using
the clusterProfiler package and Metascape (Zhou et al., 2019).

2.2 Topological network design

The reconstruction of the immune topological network was
based on the idopNetwork model proposed by Professor Rongling
Wu’s team (Chen et al., 2019; Dong et al., 2023) and subsequently
adapted for our study. This model is a mathematical framework

FIGURE 1
The methodological workflow of this study.
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rooted in ecological theory, initially designed to describe the
regulatory interactions among various species and populations
within an ecosystem. While population change curves can be
observed in an ecosystem, the direct or indirect regulatory
relationships among populations remain obscured (e.g.,
cooperation/symbiosis, inhibition/predation, or independence).
Similarly, in the study of gene expression patterns within an
organism, comparable challenges arise. In this research, we
treated each sample as an ecosystem and each gene (or cluster)
as a population within that ecosystem, using a directed topological
network to mathematically represent their expression patterns
(Figure 1). This approach allowed us to infer the bidirectional
dynamic regulatory relationships between each gene (or cluster)
and their associations with the overall gene expression background
from static sequencing data.

2.3 Gene expression patterns fitting and
functional clustering

Assume we havem RNA-seq samples, stratified based on clinical
data and patient information such as age, sex, Breslow thickness,
BRAF mutation, NRAS mutation, and pathological verification of
inflammatory infiltration. Additionally, samples are classified into
benign (melanocytic nevi) and malignant (melanoma) groups based
on pathological diagnosis. For each sample, the expression levels of n
genes are measured, and the gene IDs are consistent across all
samples. Consider gij as the abundance of gene i in sample
(with i � 1, . . . , m and j � 1, . . . , n). Each sample can be viewed
as an ecosystem made up of m interacting genes. The total
expression of all genes in a sample is termed the habitat index
(HI), denoted as:

Hi � ∑
m

j�1
gij

This index reflects the sample’s ability to support the simultaneous
expression of all its genes. Under this framework, gij and Hi

establish a part-whole relationship across samples, meaning that
gij can be modeled as a function of Hi, represented as gj(Hi). This
conceptual framework forms the basis for reconstructing regulatory
networks in benign nevi and melanoma samples. The expression
level of a single gene and the overall expression level generally follow
the part-whole relationship described by the allometric scaling law
(Zhou et al., 2021; Baller et al., 2019). Therefore, we attempt to
quantify the mathematical relationship between the overall gene
expression background and a specific gene using a power function
equation, represented as:

gij � αjH
βj
i

where αj is the intercept constant for gene j, and βj is its scaling
exponent. Together, they determine the shape of the fitted power
function curve, reflecting the variation of gene j as the overall
expression abundance i changes.

Due to the large number of genes, directly calculating the
interactions among all genes would complicate data
interpretation. Studies suggest that in constructing network
models, the number of nodes should be limited to a manageable

level to satisfy Dunbar’s law, ensuring modeling accuracy (Lehmann
and Dunbar, 2009). Based on the similarity of the allometric scaling
curves fitted to different genes, we used a mixture functional
clustering algorithm to cluster the genes (Kim et al., 2008). This
method combines k-means clustering with the expectation-
maximization algorithm and the simplex algorithm to optimize
model parameters. In this algorithm, the posterior probability of
each gene belonging to each module is calculated to determine its
most likely assignment. Additionally, we use information criteria
(Akaike Information Criterion, AIC, and Bayesian Information
Criterion, BIC) to assess whether the clustering result is optimal
within the given range. This clustering strategy allows us to
reconstruct multi-layered topological networks to simplify the
model. Compared to analyzing the interactions of all genes
directly, the number of genes in each module is much smaller,
and the genes within each module are likely more closely related.
Moreover, by calculating the overall expression abundance of each
module, we can directly compute the regulatory relationships
between modules to identify the most critical immune
gene modules.

2.4 Inferring gene interactions based on
evolutionary game theory

The inter-regulatory relationships between genes can be
explained through the concepts of evolutionary game theory. In a
system, the abundance of different genes is determined by their
intrinsic expression levels as well as their mutual regulatory
interactions with other genes. This complex regulatory network
will eventually reach a Nash equilibrium, typically described
as follows:

spi ∈ argmaxsi∈Siui si, s−i*( )

In this formula, spi represents the optimal strategy for player i, which
maximizes their utility ui given the strategies sp−i of all other players.
This state occurs when no player can improve their payoff by
unilaterally changing their strategy, signifying a stable and
balanced outcome in the network. In the context of gene
expression, this means that the expression levels of different
genes stabilize under a given gene expression environment. By
combining evolutionary game theory with a predator-prey model
through allometric scaling laws, we can construct a quasi-dynamic
system of ordinary differential equations (qdODE).

gj′ Hi( ) � Qj gj Hi( );∅j( ) + ∑
j′≠j

Qj ← j′ gj′ Hi( );∅j ← j′( )

On the left side of the differential equation, the time derivative is
replaced by the HI derivative, representing the rate of change of gene
j’s expression level under the influence of the environment Hi. On
the right side, the expression level of a gene is determined by both
independent and dependent components. Qj(gj(Hi);∅j) captures
the intrinsic regulatory effects on gene j’s expression.
∑j′≠jQj ← j′(gj′(Hi);∅j ← j′) represents the regulatory effects
of other genes j′ on gene j’s expression. This approach allows us
to solve the differential equation using allometric scaling curves and
Legendre polynomials, ultimately revealing the intrinsic expression
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capabilities of each gene as well as the interaction relationships
among different genes. Based on the results from this equation, we
can further construct a directed topological network.

2.5 Variable selection and network
reconstruction

Based on empirical evidence and extensive experimental data, it
has been confirmed that in a gene regulatory network, it is
impossible for a gene to have significant regulatory interactions
with all other genes. Connecting all nodes would make the network
structure highly vulnerable to random perturbations, causing noise
to be mistaken for interactions between nodes. This implies that
computing the interactions between all genes is unnecessary and
unscientific when deriving a gene network model. To identify the
most significant dependent components, a regression model based
on ridge regression and lasso regression has been introduced,
typically described as follows:

min y −Xw
����

����22{ + λ w‖ ‖22}
min y −Xw

����
����22{ + λ w‖ ‖1}

where y is the target variable vector, X is the feature matrix to be
selected,w is the regression coefficient vector, and λ is the regularization
parameter. For each target variable, we specifically minimize these two
objective functions in sequence to select the appropriate interaction
pairs. Simultaneously, a non-parametric approach is introduced to
optimize model construction. The non-parametric method
determines regression coefficients flexibly without relying on a
specific functional form, which helps capture complex relationships
within the data. Additionally, the penalty parameter is determined by
BIC or extended BIC to balance model complexity and fit, while a
weighting function is used to accelerate algorithm convergence, thereby
improving computational efficiency. By solving the regression problem,
the variables/genes that most significantly affect gene j are selected for
re-solving the qdODE, facilitating network reconstruction. Following
these steps, we reconstructed a directed topological network for
melanoma immune genes using the selected genes/modules and
their qdODE equations. Each gene/module’s independent
component is treated as a node, while the corresponding dependent
components are treated as edges. These edges are labeled as positive or
negative to indicate promoting or inhibiting relationships and are
weighted by the absolute value of the dependent component to
represent the regulation strength.

As a result, the model is a two-layer directed topological
network. The first layer represents the regulatory interactions
between different modules, while the second layer represents the
regulatory network within each module. By comparing the
differences between these regulatory networks, we may explore
the differences in immune regulation networks between nevi
and melanomas.

2.6 Drug prediction based on deep learning

Based on the results of the topological network reconstruction,
we identified genes as potential therapeutic targets. The amino acid

sequences corresponding to these genes were obtained from the
UniProt database (https://www.uniprot.org/). We then searched
various drug and compound databases to obtain the SMILES
chemical structures of drugs that are “marketed,” in “Phase I/II/
III clinical trials,” “pre-registered,” or “registered.” Using the
DeepPurpose model, we performed drug–target interaction (DTI)
predictions (Huang et al., 2021). This model, based on deep learning,
combines previously proposed amino acid and compound encoders
in various ways to predict binding affinity, encompassing a total of
15 prediction modes. The final data displayed the top five results
from each prediction mode.

3 Results

3.1 Abundance analysis of individual and
overall immune genes

In our study, a total of 3,272 immune-related genes from
80 samples were analyzed. The clinical information of the
patients from whom the samples were derived varied, including
factors such as age, sex, tumor (benign or malignant) infiltration
depth, and BRAF and NRAS mutation status. Samples were
stratified into two groups based on pathological diagnosis:
melanocytic nevi (n = 23) and melanoma (n = 57). Previous
studies often identified several differentially expressed genes as
marker or potential target genes. However, changes in expression
levels do not directly reflect the function of each gene, prompting the
development of new mathematical modeling methods.

We utilized an ecological theory-based approach (idopNetwork)
to reconstruct a directed topological network to describe the
differences and dynamic patterns of immune activity in the gene
networks betweenmelanocytic nevi andmelanoma.Mathematically,
we defined the Habitat Index (HI) to reflect the overall expression
levels of all detected immune genes in each sample. The overall gene
expression and the expression level of individual genes followed the
allometric scaling law. We attempted to transform gene expression
abundance and define it as the Niche Index (NI), fitting it to the
allometric scaling equation with the Habitat Index. The scaling-law
equation demonstrated robust capacity to capture the nonlinear
dynamics of gene expression level variations in response to habitat
instability (HI) changes, as evidenced by the strong agreement
between model predictions and empirical data (Figure 2, dots vs
fitted curves). The genes were randomly selected by the algorithm to
verify the universality of the successful fit. Genes displayed divergent
regulatory behaviors: HOXC10 showed progressive upregulation
with increasing HI, while PTPRC and TRIM38 exhibited significant
downregulation. The directionality of these nonlinear interaction
(NI) trajectories reflects fundamental biological adaptations -
upward curves indicate transcriptional amplification under
environmental fluctuation, whereas downward patterns suggest
targeted pathway suppression during gene background (habitat)
destabilization.

Notably, our analysis revealed pronounced intergroup
disparities in NI expression patterns, particularly exemplified by
genes including AIM2, FLG2, and SLC8A1. Furthermore, systematic
evaluation of allometric scaling parameters (α, scaling exponents; β,
proportionality constants) identified 2,166 genes demonstrating
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statistically significant alterations, defined as α deviations exceeding
10-fold or β variations surpassing baseline thresholds. We calculated
the residuals for each gene and plotted them against the predicted
values. The independence of these residuals indicated the statistical
robustness of the power fit. Furthermore, we noticed that the HI
range for nevus samples was lower than that for the melanoma
group, which might indicate differences in gene expression
backgrounds between the two. However, a higher HI range
should not be simply interpreted as pointing to melanoma risk,
and further topological network reconstruction is necessary.

3.2 Functional clustering of the melanoma
immune network

To further elucidate the topological patterns within gene
networks, we implemented functional clustering following the
theoretical framework established by Kim et al. (2008). This
methodological choice was particularly appropriate since our data
transformation had already converted gene expression profiles into
allometric scaling equations describing the relationship between
individual genes and the systemic background. Unlike

conventional unsupervised clustering methods, this functional
approach inherently accounts for the scale-dependent biological
constraints embedded in the transformed data. The clustering
optimization process was systematically guided by information-
theoretic criteria, with Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC) being employed to determine
optimal cluster configurations (Supplementary Figure S1A). This
dual-criterion approach ensures both model parsimony and
goodness-of-fit while mitigating overfitting risks associated with
complex biological datasets. All genes were grouped into
30 functional clusters based on the similarity of their NI change
patterns (Figure 3A). This topological modeling approach includes
not only the genes with significant differential expression but also
those with less pronounced differences between the two sample
groups to construct a comprehensive topological
network (Figure 3B).

Unlike traditional analysis methods, this approach highlights
genes like AIM2 and SLC8A1 from Figure 2, which might not be
recognized as significantly differentially expressed genes but show
notable intergroup differences in topological analysis. The
interaction patterns of these genes within different groups will be
reassessed and weighted in subsequent steps. Furthermore, our

FIGURE 2
The relationship between gene abundance (niche index, NI) and total gene abundance (habitat index, HI) in randomly selected genes from nevi and
melanoma, shown by the fitting of the allometric scaling equation. The HI is on the x-axis and the NI is on the y-axis. The dots represent the NI and HI
levels of specific genes within individual samples, while the curves depict functional fittings derived through allometric scaling laws. The red curve
represents the benign group, and the purple curve represents themalignant group. The shape of the curves is determined by their intercept constant
and scaling exponent.
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FIGURE 3
Functional clustering and module allometric scaling fit of immune networks. (A) Heatmap of the 3,272 immune-related genes included in the
analysis, grouped by their clusters and by benign or malignant status. (B) Volcano plot of DEGs among all immune-related genes. (C) Top enriched
functions in each module. X-axis, different modules derived from functional clustering process. Y-axis, enriched functions. (D) Allometric scaling curves
for each clusteredmodules, with the habitat index on the x-axis and the niche index on the y-axis. The numbers in parentheses indicate the quantity
of genes contained within each module. The dots represent the NI and HI levels of specific genes within individual samples, while the curves depict
functional fittings derived through allometric scaling laws. The red curve represents the benign group, and the purple curve represents the
malignant group.
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FIGURE 4
Reconstruction of immune networks in nevi and melanoma. (A) Directed topological network of all modules in nevi and melanoma. Each node
represents a module, and each edge represents a regulatory relationship. Red arrows indicate promotion, blue arrows indicate inhibition, and the
thickness of the curve represents the strength of the regulation. (B) Bar chart of the interaction relationships within the two groups’ networks. The x-axis
represents themodules, and the y-axis represents the number of regulations. Orange bars (input) show incoming regulatory interactions from other
modules, while blue bars (output) represent outgoing regulations to other modules. (C) Decomposition curve of each module’s NI based on the trend of
HI changes, obtained from the qdODE equation. The x-axis represents the HI, and the y-axis represents the NI. The purple curve represents the observed
expression, the red curve represents the module’s independent expression ability, and the green curve represents the influence of other modules on this
module (dependent component).
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clustering analysis revealed distinct functional enrichments across
different clusters (Figure 3C). The enrichment analysis revealed
distinct functional associations for each module. For examples,
modules 8, 9, 19, 22, and five demonstrated significant
correlation with immune response. Modules 15, 2, 3, 13, and
seven were associated with the production and response to
inflammatory factors. The activation and migration of immune
cells were primarily linked to modules 14 and 19. Module one
showed specific relevance to neural cells, while modules 18 and four
were associated with cell cycle regulation and phosphorylation
activities. We also treated each module as an independent entity
to calculate its relationship with the overall gene expression pattern
(HI), similar to the analysis we performed to isolated genes. Some
modules exhibited significant pattern differences between the two
groups, such as M1, M4, M28, and M29, which showed distinct
separation curves. In contrast, modules like M5, M20, M25, and
M27 demonstrated group-specific expression changes across the
HI (Figure 3D).

3.3 Melanoma exhibits immune activation
and regulation involving multiple
hub modules

Using the qdODE equation, we calculated each module’s
independent expression ability and their mutual influences. Based
on this data, we reconstructed a directed topological network with
modules as nodes (Figure 4A). In the network of nevi, M29 emerged
as the most influential and widely affecting module, suggesting that
M29 could be the immune hub module in the nevus state. Most
modules exhibited either bidirectional or unidirectional synergistic
effects with M29, while a few modules, which contained a larger
number of genes, inhibited or were inhibited by M29. However, this
pattern was dramatically altered in melanoma samples.

Firstly, the connections between modules increased significantly
(Figures 3B, 4B). As a result, there was an increase in the number of
edges in the network, which heightened the complexity of the
topological pattern. The hub module shifted from M29 to M1,
M11, M17, and M21 in the melanoma immune network. The
regulatory influence of these hub modules on other modules
became more intense (Figure 4C), with M17 being the most
prominent, followed by M11 (Supplementary Figure S3).
Although M1 and M21 had extensive influence, their impact was
relatively weaker (Supplementary Figures S2 and S4). The overall
regulatory effects on many modules also changed. Some modules
that were previously promoted became inhibited (e.g., M11, M17,
M19), and some modules that were weakly regulated before
exhibited more dependency, such as M6, M12, M24, and M27.
These phenomena likely reflect the more complex and intense
immune activities in melanoma tissues.

Our comparative analysis of cross-module gene regulation in
benign and malignant samples (Figure 4) revealed distinct
functional landscapes. qdODE algorithm identified multiple gene-
rich modules exhibiting suppressed activity in benign states, with
enrichment analysis (Supplementary Figure S1) linking these
modules to inflammatory cytokine production, cellular stress
response mechanisms, and pro-tumor pathways. This aligns with
established mechanisms where benign lesions maintain homeostasis

through constrained inflammatory signaling and active suppression
of oncogenic processes. In contrast, the melanoma network
demonstrated significant functional reconfiguration, with
pronounced enrichment of immune-related processes.
Specifically, modules governing adaptive immune activation, pro-
inflammatory cytokine networks, and immune cell recruitment were
robustly activated. This paradoxical amplification of immune-
associated functions in malignancy reflects a dynamic interplay
wherein tumor cells paradoxically activate immune-modulatory
pathways, potentially as a compensatory mechanism to
counterbalance malignant progression. The observed
dichotomy—suppressed inflammatory/stress responses in benign
contexts versus hyperactivated immune networks
melanoma—mirrors clinical-pathological transitions, suggesting
these modules may encode critical switches governing the
melanocytic nevi-to-melanoma transformation.

3.4 Homology analysis reveals complexity
and instability in melanoma
immune networks

Homology, a tool from algebraic topology, associates algebraic
structures like groups, rings, or modules with topological spaces. It
provides a framework for capturing features like “holes” in
geometric shapes (such as connected components, loops, and
voids). The GLMY homology theory, proposed by Shing-Tung
Yau and colleagues, holds promise for evaluating melanoma
immune-directed topological networks (Wu et al., 2023). Building
on prior findings, we extended our analysis to examine the
homology of both coarse-grained and fine-grained networks.

Under Betti-0 conditions, we found that benign samples
contained more connected components (15 in total), with only
one Betti-1 loop and no Betti-2 voids. In contrast, malignant
samples exhibited the highest number of Betti-2 voids (112 in
total), but far fewer lower-dimensional features (Supplementary
Data S1). This pattern suggests that, in benign samples, gene
networks tend to form multiple submodules that function in a
relatively independent and stable manner, whereas in malignant
samples, the immune module network appears more fragmented,
with some modules potentially involved in unrelated biological
functions. Additionally, the features in benign samples persisted
for a longer duration during the filtration process, while those in
malignant samples vanished more quickly, reflecting the instability
of tumor immune networks. We also observed that the M29-
associated filtration interval had the broadest coverage in the
benign network, further underscoring its dominant role.

3.5 DNA repair and cell migration genes as
hub module in melanoma immune network

We also conducted a homology analysis of the fine-grained
networks within the modules and observed phenomena similar to
those seen in the coarse-grained analysis. The internal gene
networks of module 17 and module 29 exhibited significantly
higher complexity in malignant groups, though with shorter
filtration intervals (Supplementary Data S1). Furthermore, Betti-0
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features (connected components) were relatively scarce in both
benign and malignant groups, likely due to stronger interactions
among genes within individual modules.

Based on enrichment analysis and a review of previous studies,
we examined the main functions of genes within the M29 and
M17 modules. M29 is a hub module in nevus group, with genes

FIGURE 5
Immune network reconstruction of the hub module (M29) in nevi. (A) Fine-grained directed topological network within the M29 module. (B) Bar
chart of the interaction relationships within the two groups’ networks. (C) Decomposition curve of each module’s NI based on the trend of HI changes.
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FIGURE 6
Immune network reconstruction of the hub module (M17) in melanoma. (A) Fine-grained directed topological network within the M17 module. (B)
Bar chart of the interaction relationships within the two groups’ networks. (C) Decomposition curve of each module’s NI based on the trend of
HI changes.
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TABLE 1 Predicted drug-target binding score of top 22 drugs in 15 different models.

Drug name Target CNN_CNN_DAVIS Morgan_CNN_DAVIS MPNN_CNN_DAVIS Daylight_AAC_DAVIS Morgan_AAC_
DAVIS

CNN_CNN_
BindingDB

Morgan_CNN_
BindingDB

AEG-41174 KLC4 4.97 5.08 10.47 5.06 5.24 6.65 6.36

ENMD-2076 ADD2 5.15 5.34 4.79 5.18 5.12 5.66 5.11

MLN-8054 AURKA 6.01 7.35 7.20 7.66 7.49 6.83 8.44

tozasertib lactate BLOC1S2 5.04 5.08 5.09 5.42 5.02 5.86 5.21

IPH-1101 CHKA 4.91 5.07 4.47 5.06 5.16 6.97 4.28

imatinib AURKA 6.59 5.06 4.11 5.06 4.95 4.92 4.98

tezacitabine APEX2 5.02 5.10 4.45 5.07 5.93 5.11 4.31

fludarabine phosphate DDX19B 4.89 5.06 36.03 5.07 5.68 5.09 3.40

nilotinib DDX19B 5.47 5.06 40.75 5.09 4.97 4.95 5.12

imidazo[1,2-a] pyrazines DDX19B 4.93 5.05 4.91 5.02 5.10 7.12 5.87

AG-957 AURKA 6.59 5.65 4.93 5.08 5.12 4.19 5.42

R-763 DOCK2 4.96 5.07 4.75 6.86 5.73 7.34 7.44

ABT-510 ARHGEF3 5.01 5.07 20.87 5.05 5.21 5.68 4.68

SUN-K954 AURKA 6.75 5.80 8.63 5.04 4.98 7.49 6.15

aurora A kinase inhibitors AURKA 6.40 7.21 5.92 6.97 7.40 6.85 7.02

BAY-1217389 CHKA 4.98 5.13 7.60 5.39 5.11 7.92 6.25

alisertib AURKA 5.48 7.08 7.08 6.78 7.32 5.91 7.12

luvixasertib APEX2 4.88 5.07 8.26 5.08 5.18 8.39 7.09

tinengotinib APEX2 4.89 5.12 3.52 5.08 5.21 7.14 4.31

risedronic acid sodium DDX19B 5.09 5.03 43.72 5.45 5.17 5.61 5.15

plitidepsin PAFAH1B3 4.95 5.06 5.10 5.03 5.03 7.28 6.00

olverembatinib ARHGAP24 4.77 5.09 3.74 5.08 5.06 6.84 8.94

MPNN_CNN_
BindingDB

Transformer_CNN_
BindingDB

Daylight_AAC_
BindingDB

Morgan_AAC_
BindingDB

Morgan_CNN_
KIBA

MPNN_CNN_
KIBA

Daylight_AAC_
KIBA

Morgan_AAC_
KIBA

28.18 5.18 6.52 6.20 11.73 12.15 11.63 11.73

6.54 5.74 5.00 3.99 11.56 38.61 12.24 11.56

4.23 3.30 7.67 7.15 11.99 12.35 12.65 11.99

(Continued on following page)
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TABLE 1 (Continued) Predicted drug-target binding score of top 22 drugs in 15 different models.

MPNN_CNN_
BindingDB

Transformer_CNN_
BindingDB

Daylight_AAC_
BindingDB

Morgan_AAC_
BindingDB

Morgan_CNN_
KIBA

MPNN_CNN_
KIBA

Daylight_AAC_
KIBA

Morgan_AAC_
KIBA

6.72 3.85 5.85 6.07 11.20 39.00 11.52 11.20

6.77 5.83 7.01 6.04 11.60 39.77 11.27 11.60

2.45 5.65 5.01 5.09 12.01 20.47 12.26 12.01

4.67 8.89 6.55 4.42 11.39 11.50 11.09 11.39

17.08 3.93 6.76 3.86 11.82 6.78 10.76 11.82

15.55 5.01 5.00 5.06 11.17 6.47 11.57 11.17

3.21 3.93 7.42 6.66 14.50 11.02 13.47 14.50

5.91 4.43 4.97 5.97 10.79 12.82 11.68 10.79

3.94 4.06 7.60 7.05 13.13 10.00 14.21 13.13

5.59 3.95 4.05 3.75 11.48 47.77 11.44 11.48

5.43 5.30 6.91 7.04 12.00 12.21 10.63 12.00

10.96 3.30 7.48 6.30 11.91 10.67 12.11 11.91

6.96 5.90 9.62 6.99 11.01 11.59 11.56 11.01

4.68 3.30 7.54 7.08 12.33 22.36 12.82 12.33

5.06 8.78 8.45 6.45 11.34 17.18 11.82 11.34

4.29 8.80 7.29 4.07 11.58 10.82 11.96 11.58

18.34 4.11 4.99 3.76 11.02 6.05 11.53 11.02

32.68 4.06 8.00 7.16 10.82 11.86 11.48 10.82

6.23 6.46 8.22 7.80 11.33 11.09 12.04 11.33
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predominantly involved in cell cycle-related functions. These genes
are crucial for regulating the cell cycle, ensuring proper cell division
and proliferation, and affecting immune responses and cellular
functions. AURKA ensures proper mitosis, CCNE1 drives the
transition from G1 to S phase, and FOXM1 promotes G2/M
progression. E2F1 controls DNA synthesis and S phase entry,
while MAD2L1 and TTK (Mps1) ensure accurate chromosome
segregation through the spindle checkpoint. UBE2S and UBE2T
regulate cell cycle progression via the ubiquitin-proteasome system,
ensuring genomic stability and effective immune function
(Supplementary Figure S1, Supplementary Data S2).

In contrast, M17 is an active module in melanoma, with genes
primarily associated with DNA damage and repair mechanisms, the
Rho GTPase pathway, and immune cell migration. Genes like APEX2,
RNF168, and RPA2 are involved inDNA repair, crucial formaintaining
genomic stability in immune cells. ARHGAP24 and ARHGEF3 are

linked to the Rho GTPase signaling pathway, which is vital for the
activation, morphological changes, and migration of immune and non-
immune cells. Additionally, genes such as DOCK2, ARHGAP24, and
KCTD18 regulate cytoskeletal reorganization and cell migration,
ensuring that immune cells effectively reach infection or
inflammation sites (Supplementary Figure S1, Supplementary Data
S2). Overall, these genes play significant roles in enhancing immune
response and maintaining immune cell function.

3.6 The immune shift fromnevi tomelanoma
is regulated by gene clusters involving
AURKA and APEX2

Using a similar approach, we also reconstructed the networks for
modules M17 and M29. M29, the hub module in the nevus network,

TABLE 2 Clinical data of interested drugs.

Drug Name Mechanism of action Drug disease Highest status
reached

ABT-510 Angiogenesis inhibitor; Thrombospondin 1 agonist, etc Cancer Phase II Clinical Trial

AEG-41174 Apoptosis stimulant; Bcr-Abl inhibitor; etc Cancer, leukaemia Phase I Clinical Trial

AG-957 Apoptosis stimulant; Bcr-Abl inhibitor Cancer, unspecified Preclinical

alisertib Aurora kinase inhibitor; Mitotic inhibitor; etc Cancer, leukaemia, lymphoma, myeloma, etc Phase II Clinical Trial

aurora A kinase inhibitors Aurora kinase inhibitor Cancer, unspecified Preclinical

BAY-1217389 TTK kinase inhibitor Cancer, breast Phase I Clinical Trial

ENMD-2076 Angiogenesis inhibitor; Aurora kinase inhibitor; etc Cancer, leukaemia, lymphoma, myeloma, etc Phase II Clinical Trial

fludarabine DNA repair enzyme inhibitor; etc Cancer, leukaemia, lymphoma, melanoma, etc Phase III Clinical Trial

fludarabine phosphate DNA repair enzyme inhibitor; DNA synthesis
inhibitor; etc

Infection, HIV/AIDS Preclinical

imidazo[1,2-a] pyrazines Aurora kinase inhibitor Cancer, unspecified Preclinical

IPH-1101 Immunostimulant; T cell stimulant Cancer, leukaemia, melanoma, Infection, etc Phase II Clinical Trial

luvixasertib TTK kinase inhibitor Cancer, breast Cancer, solid, unspecified Phase II Clinical Trial

MLN-8054 Aurora kinase inhibitor; Mitotic inhibitor; Protein kinase
inhibitor

Cancer, colorectal, lung, sarcoma, unspecified, etc Phase I Clinical Trial

nilotinib Abl receptor tyrosine kinase inhibitor; Bcr-Abl inhibitor;
C-kit inhibitor; etc

Cancer, unspecified Preclinical

olverembatinib Bcr-Abl inhibitor; C-kit inhibitor Cancer, leukaemia, gastrointestinal, etc Phase II Clinical Trial

plitidepsin Apoptosis stimulant; Cell cycle inhibitor;
CLN1 inhibitor; etc

Cancer, myeloma, lymphoma, Hodgkin’s, etc Phase III Clinical Trial

R-763 Aurora kinase inhibitor; Mitotic inhibitor; Protein kinase
inhibitor

Cancer, breast, colorectal, leukaemia,
lymphoma, etc

Phase III Clinical Trial

risedronic acid sodium,
delayed-release

Bisphosphonate; Bone resorption inhibitor; etc Osteoporosis Launched

SUN-K954 Bcr-Abl inhibitor Cancer, leukaemia, chronic myelogenous, etc Preclinical

tezacitabine DNA inhibitor; DNA synthesis inhibitor; etc Cancer, biliary, leukaemia, lung, oesophageal, etc Phase II Clinical Trial

tinengotinib Aurora kinase inhibitor; FGF receptor 1 tyrosine kinase
inhibitor; etc

Cancer, biliary, breast, gastrointestinal,
prostate, etc

Phase III Clinical Trial

tozasertib lactate Aurora kinase inhibitor; Bcr-Abl inhibitor; Mitotic
inhibitor; etc

Cancer, colorectal, leukaemia, lung,
Myelodysplastic syndrome, etc

Phase II Clinical Trial
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exhibited a significant increase in the number of edges and
regulatory intensity after malignancy, similar to the changes
observed between modules (Figures 5A, B). In the benign group,
the network was primarily controlled by AURKA, HSPA6, and
ORC6, but the regulatory intensity was not strong (Figure 5C). In
contrast, the malignant group’s network structure became more
complex, with multiple genes, led by CCNE1, jointly regulating and
displaying more antagonistic effects. Furthermore, in the malignant
group, many genes showed steeper curves, indicating stronger
allometric scaling and mutual regulation (Figure 5C).

In comparison, the situation with M17 might be even more
complex (Figure 6A). On one hand, M17 had a larger number of
nodes; on the other hand, there were more active genes within M17.
Their interactions were predominantly inhibitory, with
FGOD1 being the most regulated, while HCCS and
APEX2 exerted more regulation (Figure 6B). However, similar to
what was previously described, in the benign group, although there
were numerous interactions between nodes, the weights were
relatively weak, and the impact on target genes might be limited
(Figure 6C). This was also observed in modules like M1, M11, and
M21 (Supplementary Figure S2–S4). In the malignant group, gene
interactions became more frequent, and there was a lack of a
significant hub gene, indicating a network determined by
multiple genes. Most genes exhibited mutual antagonistic trends,
with stronger regulatory intensities compared to the benign
group (Figure 6C).

3.7 Drug screening using deep learning-
based molecular docking models

To further explore the clinical value of potential targets
identified through the topological network, we conducted drug-
target interaction predictions using a deep learning model. A total of
15 structural prediction models were utilized, each incorporating
25,112 drug-target pairs to calculate the binding affinity of drug-
target proteins. By selecting the top five scoring drug-target pairs in
any model, 22drugs were identified as having potential therapeutic
capabilities for melanoma (Table 1, Supplementary Data S3). Some
of these drugs are already in phase III clinical trials or are currently
in clinical use (e.g., imatinib, which is undergoing continuous
clinical trials for repurposing) (Table 2). Almost all drugs have
indications for malignant neoplastic diseases. Notably, some drugs
exhibited binding affinity to multiple proteins, which might be
attributed to the similar substructures of these proteins.

4 Discussion

Melanoma is a highly aggressive and potentially lethal type of
skin cancer. Its danger stems from its rapid metastasis to other body
parts, resulting in considerable morbidity and mortality. The
molecular mechanisms underlying melanoma are complex,
involving various genetic mutations, signaling pathways, and
interactions with the tumor microenvironment. These intricate
molecular processes contribute to the cancer’s resilience and
ability to evade the immune system. As a result, treating
melanoma is exceptionally challenging. Traditional therapies

often fall short, and while new targeted therapies and
immunotherapies offer hope, their effectiveness can be limited by
the cancer’s ability to adapt and develop resistance. This complexity
underscores the critical need for ongoing research to better
understand melanoma’s biology and to develop more effective
treatments.

Firstly, through directed topological network reconstruction, we
observed significant changes in the immune gene regulatory
network during the progression from benign melanocytic nevi to
malignant melanoma. The transition from module M29 in benign
nevi to module M17 in malignant melanoma highlights substantial
shifts in tumor biology. M29, crucial in nevi, is primarily involved in
cell cycle regulation. Upon malignant transformation, the key
module changes to M17, indicating a shift in cell cycle regulation
focus during tumor progression. This transition suggests major
adjustments in cellular functions during malignancy. In
melanoma, the M17 module is associated with DNA damage
repair, the Rho GTPase pathway, and immune cell migration.
This change may reflect the adaptation of malignant melanoma
cells through enhanced DNA repair capabilities, altered cell
migration patterns, and immune microenvironment modulation.
These adaptations enable tumor cells to thrive and spread within the
microenvironment. Furthermore, the functions of M17, related to
immune cell migration and the tumor’s immunemicroenvironment,
suggest that melanoma cells can evade host immune surveillance by
modifying immune-related mechanisms. This enables better escape
and dissemination of the tumor cells, illustrating the evolving
strategies of malignancy in response to the immune system.

Our findings may also offer valuable guidance for clinical drug
treatments of melanoma and could help elucidate some reasons
behind the poor drug responses observed in certain cases. For
instance, genes such as AURKA, APEX2, CCNE1, and
FOXM1 have been reported to be associated with tumor
resistance (Grunda et al., 2010; Quan et al., 2013; Zheng et al.,
2023; Turner et al., 2019). Notably, their regulatory relationships
within the melanoma immune network have undergone significant
alterations (Figures 5, 6), indicating their potential role in melanoma
drug resistance. However, further understanding of tumor resistance
relies on specifically designed clinical data. For example, Mallardo
et al. conducted a series of studies to explore factors influencing the
efficacy of anti-PD1 therapy in melanoma across different grades
(Mallardo et al., 2022a, 2022b; Mallardo et al., 2023; Mallardo et al.,
2024). One of their studies collected clinical follow-up data, RNA
sequencing, and proteomic data from melanoma patients treated
with anti-PD1 drugs (Mallardo et al., 2024). The researchers
employed LASSO regression to identify potential genes associated
with responsiveness to anti-PD1 therapy, ultimately confirming five
genes that were closely related to treatment sensitivity and patient
progression-free survival (PFS). Topological analyses of sequencing
data from resistant versus drug-sensitive samples will further aid in
unraveling the mechanisms underlying drug resistance.

Secondly, using deep learning models, we have identified
potential targeted drugs that could hold significant promise in
the treatment of melanoma. These include various kinase
inhibitors, DNA repair modulators, and immune modulators,
targeting crucial molecular pathways involved in melanoma
progression. For instance, drugs like imatinib and nilotinib target
specific tyrosine kinases, which play a critical role in cell
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proliferation and survival. Aurora kinase inhibitors, such as MLN-
8054 and alisertib, disrupt mitosis, leading to cell cycle arrest and
apoptosis in melanoma cells. Additionally, drugs like fludarabine
and plitidepsin modulate DNA repair mechanisms and enhance
immune responses, respectively. Some of these drugs have shown
potential efficacy against melanoma in experimental or early clinical
trials, such as fludarabine, IPH-1101 and imatinib (Jiang et al., 2008;
Vilgelm et al., 2015; Plummer et al., 2013). These compounds offer
promising avenues for enhancing therapeutic efficacy, overcoming
resistance, and potentially improving patient outcomes in
melanoma treatment. By targeting multiple pathways, these drugs
can work synergistically to inhibit tumor growth and metastasis,
highlighting their potential as part of comprehensive melanoma
treatment strategies. Further, as previously mentioned, several drugs
exhibited binding affinity to multiple proteins. Some of these
interactions had not been identified before, potentially addressing
gaps in our understanding of the mechanisms of action of
these drugs.

Thirdly, andmost importantly, we introduce a new topology and
deep learning-based paradigm for NGS data research. In the past
decade, the cost of transcriptome sequencing has decreased by over
100-fold, making it comparable to or even less expensive than some
common clinical tests such as blood biochemistry, MRI, and CT.
Simultaneously, the precision and depth of transcriptome
sequencing have significantly improved—under similar
conditions, RNAseq demonstrates much higher performance than
metagenomics (Hempel et al., 2022). Additionally, the sample size
required for RNAseq has been continuously decreasing. A decade
ago, RNAseq in laboratories often required a sample volume of 5 ×
5 × 5 mm to ensure sufficient RNA extraction and identification.
Currently, some commercial RNAseq services require only
1,000 cells for sequencing. Gene testing is now widely applied in
clinical diagnosis, and RNAseq, with its higher potential for
application, provides a novel non-invasive or minimally invasive
approach for detecting lesion status or conducting microbial
screening at the gene expression level. However, relying solely on
a single analytical method may not adequately meet researchers’
needs. Traditional approaches, which calculate average expression
levels or log fold changes of genes based on their FPKM values in
samples, allow us to highlight genes that exhibit significant changes
during pathological processes and identify potential biomarkers or
targets. In contrast, topological methods shift the focus from
revealing expression differences of individual genes or modules to
emphasizing the regulatory relationships among multiple genes and
modules. Our topological analysis uses NI and HI functional curves
to describe the dynamic expression patterns of each gene across
different conditions (benign ormalignant). This approach highlights
how gene or module expression fluctuates with habitat changes and
enables us to calculate interactions between genes or modules.
Consequently, some genes may not demonstrate the most
pronounced changes in expression levels—such as those typically
ranked in the top 10 or top 20—yet from a topological perspective,
they can exert strong regulatory effects on the entire functional
network. This broader approach has the potential to address gaps in
traditional methods and enhance our understanding of gene
interactions.

Simultaneously, numerous studies have advanced sequencing
algorithm improvements through various technological approaches

(Datlinger et al., 2021; Han et al., 2021). Many researchers have
trained diagnostic models based on sequencing data using machine
learning and large language model (LLM) methods (Shokhirev and
Johnson, 2022; Elsborg and Salvatore, 2023). However, these
models, based on “weak AI” (as nearly all current AI models
are), often suffer from the “black box effect.” While they can
accurately identify and classify data, their internal decision-
making processes remain opaque, limiting our ability to
understand specific pathological processes and discover
therapeutic solutions. In contrast, reconstructing topological
networks allows for a clearer observation of the logic behind
gene network fluctuations. Topology offers a promising solution,
with numerous excellent studies already leveraging topological
methods to address research questions (Failmezger et al., 2020;
Benjamin et al., 2024). However, most current topological models
in use are undirected, making it difficult to observe regulatory
relationships between different nodes. Directed topological
models, on the other hand, enable us to understand these
relationships, thereby enhancing our understanding of disease
pathology and aiding in the interpretation of sequencing data for
future clinical diagnostic applications.

We also utilized deep learning models for DTI (Drug-Target
Interaction) prediction. Unlike clinical data analysis, AI-based deep
learning is inherently suitable for in silico drug screening. As
clinicians, we are often more interested in knowing which drugs
can be used for targeted therapy, even if we do not yet understand
the molecular binding mechanisms due to the “black box effect.”
Clinical and preclinical drug screening is typically extremely
expensive and time-consuming (costing billions of dollars and
taking 5–10 years), and can occasionally encounter ethical issues
(Jentzsch et al., 2023). In silico screening effectively addresses these
problems and has already been widely applied in fundamental
research in physics, chemistry, and biology (Wang et al., 2023).
Meanwhile, previous drug development efforts heavily relied on
human understanding and knowledge of the underlying
mechanisms of the system being studied, which can be
suboptimal and inefficient. AI based on deep learning can better
fit the key parameters of complex systems and identify new
breakthroughs.

Despite these insights, there are still areas where the level of
topological analysis could be further enhanced. Firstly, although our
dataset of 80 RNA-seq samples is relatively large, it remains limited,
and expanding it could improve model accuracy. At the same time,
our study focused exclusively on immune-related genes, but it would
be intriguing to extend topological analyses to whole sequencing
data or explore different formats, such as large-scale single-cell
sequencing. Integrating multi-omics data, including genomics,
transcriptomics, and proteomics, through layered analyses would
also be a valuable approach. Moreover, incorporating time-series
data, particularly large datasets that capture distinct stages of
melanoma progression, could offer deeper insights into the
development of the disease. However, these efforts would
demand more powerful computational resources and more
advanced model designs. Secondly, there remains room for
further mathematical optimization in topological gene network
analysis. For instance, the application of new algorithms for
allometric scaling laws or other linear and nonlinear fitting
methods could enhance our findings, as well as improve the
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interpretation of topological data. While our results are interpreted
based on homology theory, numerous other algorithms exist for
analyzing topological networks. For example, in social network
analysis, metrics such as degree distribution and clustering
coefficient can reveal social patterns among individuals and help
understand how information spreads within groups. Community
detection techniques are applied in fields like network security and
sociology, while some protein interaction network models are also
based on these theories. Random networks and small-world network
models hold potential for interpreting neuronal activity.
Incorporating diverse methods to parse sequencing data could
lead to new discoveries, though additional work is necessary to
connect this approach with clinical data. Lastly, while DTI
predictions can evaluate the binding strength of known drugs,
discovering more effective targeted treatments still depends on
ongoing laboratory research and molecular structure predictions.
We believe that further exploration in these areas will contribute
significantly to our clinical and experimental research.
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