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Background: MicroRNAs (miRNAs) represent a class of noncoding small RNAs
and are implicated in many diseases. However, the role of miRNA in obstructive
sleep apnea (OSA)-inducedwhite adipose tissue (WAT) dysfunction remains to be
fully elucidated. Using miRNA sequencing (miRNA-seq), we uncovered the
miRNA expression profiles in chronic intermittent hypoxia (CIH)-induced WAT
dysfunction mice.

Methods: We established an apolipoprotein-deficient (ApoE−/−) CIH mouse
model and identified differentially expressed miRNAs (DEmiRs) using miRNA-
seq technology. With the help of Gene Ontology (GO) functional enrichment and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we
determined the biological functions of these DEmiRs. In addition, RT-qPCR was
performed for further evaluation of the sequencing data. Finally, we constructed a
conserved negative correlation (CNC) network to expound the relationship
between miRNA and target genes.

Results: Overall, 13 miRNAs were found to be upregulated and 18 miRNAs
downregulated in the CIH-induced mouse model of WAT dysfunction. KEGG
pathway analysis results indicated that the lysosome pathway participated in CIH-
induced WAT dysfunction. Then, eight miRNAs were shortlisted for RT-qPCR
validation. Based on the data, we chose these DEmiRs to construct a
miRNA–mRNA regulatory network.

Conclusion: Overall, we identified 31 DEmiRs in the ApoE−/− CIH mouse model.
Our findings may play a major role in explaining the pathophysiological
mechanisms of WAT dysfunction induced by obstructive sleep apnea.
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1 Introduction

Obstructive sleep apnea (OSA), a sleep disorder syndrome
characterized by upper respiratory collapse during sleep, which
induces chronic intermittent hypoxia (CIH) in the body. Previous
studies have shown that the distribution proportion of OSA in
middle-aged men and women is 34% and 17%, respectively
(Yeghiazarians et al., 2021). OSA often leads to several
complications, such as neuroinflammation (Liu et al., 2020),
cardiac diseases (Bouzerda, 2018; Diamond and Ismail, 2021;
Song et al., 2020), metabolic diseases (Liguori et al., 2019; Parati
et al., 2016), and changes in gut microbiota (Durgan, 2017; Kuvat
et al., 2020; Lv et al., 2023). Although there has been great progress in
people’s understanding of OSA nowadays, there are also far more
complications related to OSA than imagined, such as white adipose
tissue (WAT) dysfunction (Gozal et al., 2017a; Varela-Guruceaga
et al., 2020). Furthermore, it is difficult to separate obesity from
OSA, as obesity and OSA often overlap and enhance each other,
further worsening the condition (Kuvat et al., 2020). To date, the
molecular mechanisms of OSA-associated WAT dysfunction
remain unclear.

MicroRNAs (miRNAs) are a class of small noncoding RNAs that
function in posttranscriptional regulation of gene expression. They
are powerful regulators of various cellular activities including cell
growth, differentiation, development, and apoptosis. Recently, as
posttranscriptional regulators, miRNAs have been found to play a
key role in fibrosis and cirrhosis (Gao et al., 2022a; Hochreuter et al.,
2022a; Zhou et al., 2014). Furthermore, miRNAs also participate in
cardiovascular disease (Kim et al., 2018; Li et al., 2019). In addition,
miR-125b-5p in exosomes derived from adipose stem cells mitigates
ferroptosis in pulmonary microvascular endothelial cells through
the Keap1/Nrf2/GPX4 pathway in sepsis-related lung injury (Shen
et al., 2023). However, the mechanism and role of miRNA in OSA-
induced WAT dysfunction has not been well elucidated yet.

In the current study, we first used miRNA-seq technology to
identify the miRNA expression profile of CIH-induced WAT
dysfunction in a mouse model. Then, Gene Ontology (GO) and
KEGG analyses were utilized to analyze the differential expression of
mRNA targeting function, followed by RT-qPCR validation. Finally,
we constructed a regulatory network for miRNA–mRNA based on
the above results. This study contributes to a more detailed
description of the WAT dysfunction mechanism associated to OSA.

2 Methods

2.1 Animals

Male ApoE-deficient mice were acquired from Guangdong
Yaokang Biotechnology Co., Ltd. All experiments were approved
by the Institutional Animal Care and Use Committee of the Second
Affiliated Hospital of Fujian Medical University, China.

2.2 CIH samples

The ApoE-deficient mice were randomly divided into the
CIH and the control group. We adopted the modeling approach

from our earlier study (Chen et al., 2019). The mice were placed
in cages equipped with gas control systems, which could alter
nitrogen, oxygen, and air concentrations. Next, we simulated
CIH in mice by controlling the inspiratory oxygen fraction to
decrease oxygen from normal levels (21%) to approximately 6%
within 60 s, followed by reoxygenation to normal levels within
the next 60 s. The duration of CIH treatment was 8 weeks, during
which oxygen level was measured by an O2

concentration monitor.

2.3 microRNA extraction and sequencing

All RNAs were extracted from injured mice WAT of the CIH
models. The extracted RNA samples were subjected to agarose gel
electrophoresis and NanoDrop quality inspection and
quantification, after which RNA-seq library was constructed. Its
quality was determined using an Agilent 2100 Bioanalyzer. The
mixed sequencing libraries of different samples were denatured with
0.1M NaOH to generate single-stranded DNA, which was then
sequenced on an Illumina sequencer following the manufacturer’s
instructions.

2.4 Bioinformatics data analysis

We used GO enrichment analysis and the KEGG pathway to
analyze the advanced functions of differentially expressed miRNA
(DEmiR)-targeted genes. GO analysis organizes genes into
hierarchical categories and reveals gene regulatory networks
based on biological processes and molecular functions. KEGG
analysis offers an analysis of gene signal transduction and disease
pathways, thereby providing a foundation for gene function and
pathway research. These analyses were based on information from
the GO resource (http://www.geneontology. org) and the KEGG
database (http://www.genome.jp/kegg/), using Cytoscape 3.10.
1 software. P < 0.05 was considered statistically significant
enrichment.

2.5 RT-qPCR

First, we reverse-transcribed all samples from all RNA to
cDNA. We selected U6 small nucleolar RNA as the internal
control. Subsequently, RT-qPCR was performed three times. The
expression of tissue miRNAs was revealed after CIH treatment by
RT-qPCR. Gene expression was analyzed using the 2−ΔΔCT

method. The sequences of PCR primers were presented in
Table 1.

2.6 Prediction of target genes of identified
CIH-related miRNAs

In order to detect the potential functions of these DEmiRs,
miRNA–mRNA networks were constructed using mRNAs
predicted by at least two databases and a visualized network
between miRNA and mRNA established using Cytoscape software.
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2.7 Statistical analysis

Data were expressed as mean ± standard deviation (SD) from
independent experiments and statistical analysis performed using
SPSS (version 19.0) and Prism 7.0 (GraphPad). We compared the
two groups using unpaired Student’s t-test. Differences were
considered significant at p < 0.05.

3 Results

3.1 Differential expression of miRNAs

Using miRNA-seq, we confirmed the DEmiRs in the mouse
model of WAT dysfunction induced by CIH. We found
31 differentially expressed miRNAs, of which 13 were
upregulated while 18 were downregulated. Hierarchical clustering
analysis and volcano plot analysis of all differentially expressed
miRNAs are displayed in Figure 1A, B, respectively. Chromosomal
distribution of these DEmiRs is shown in Figure 1C. Scatter plots
were utilized to illustrate gene expression variation between the CIH
and control groups (Figure 1D).

3.2 GO and KEGG analysis

To better elucidate the potential function of DEmiRs in the
pathogenesis of CIH-induced WAT dysfunction, we utilized GO
analysis to make a detailed explanatory note of targeted genes. The
results confirmed that these DEmiRs mainly participate in the
following domains: biological process, cellular process, and
molecular function (Figures 2A,B). All these findings
demonstrated that these DEmiRs play specific roles in CIH-
induced WAT dysfunction. In addition, we identified 71 KEGG

pathways for all DEmiRs. The top 10 pathways of up- and
downregulated DEmiRs are listed in Figures 3A, B, including the
lysosome pathway, insulin signaling pathway, the CGMP–PKG
signaling pathway, and the CAMP signaling pathway.

3.3 Validation of DEmiRs using RT-qPCR

Several DEmiRs were selected to determine the expression levels
using RT-qPCR. The results showed that four RNAs (mmu-miR-
211-5p, mmu-miR-9-3p, mmu-miR-21c, and mmu-miR-18a-3p)
were upregulated and four RNAs (mmu-miR-1843a-3p, mmu-
miR-181b-1-3p, mmu-miR-411-3p, and mmu-miR-450-3p) were
downregulated, which was consistent with our sequencing results
(Figure 4). This indicated reliability of the sequencing data results.
However, the RT-qPCR results for mmu-miR-9-3p showed only a
minimal increase, which is inconsistent with the miRNA-seq
findings. This discrepancy may be attributed to the differences in
sensitivity between the two techniques, and potential biological
variability in the samples.

3.4 Construction of the
miRNA–mRNA network

miRNAs for the miRNA–mRNA network construction were
selected based on their statistical significance, fold-change values,
and biological relevance, as determined through GO and KEGG
pathway analyses. We chose eight miRNAs, mmu-miR-211-5p,
mmu-miR-184b-1-3p, mmu-miR-450b-3p, mmu-miR-411-3p,
mmu-miR-9-3p, mmu-miR-1843a-3p, mmu-miR-21c, and mmu-
miR-18a-3p, and integrated them with the corresponding target
genes into the miRNA–mRNA network created using the Cytoscape
platform (Figure 5). Our research findings provided a new research

TABLE 1 Primers used for RT-qPCR analysis.

Gene Sequence (5’->3′) Length (bp)

U6 F:5′GCTTCGGCAGCACATATACTAAAAT3′
R:5′CGCTTCACGAATTTGCGTGTCAT3′

89

mmu-miR-21c GSP:5′GGGGGTTAGCTTATCAGACTG3′
R:5′GTGCGTGTCGTGGAGTCG3′

65

mmu-miR-411-3p GSP:5′GGGGTATGTAACACGGTCCA3′
R:5′GTGCGTGTCGTGGAGTCG3′

64

mmu-miR-211-5p GSP:5′GGTTCCCTTTGTCATCCT3′
R:5′CAGTGCGTGTCGTGGAG3′

64

mmu-miR-18a-3p GSP:5′GGGAACTGCCCTAAGTGCTC3′
R:5′GTGCGTGTCGTGGAGTCG3′

65

mmu-miR-1843a-3p GSP:5′GGGCTCTGATCGTTCACCTC3′
R:5′GTGCGTGTCGTGGAGTCG3′

64

mmu-miR-181b-1-3p GSP:5′GGGGGCTCACTGAACAATG3′
R:5′GTGCGTGTCGTGGAGTCG3′

64

mmu-miR-9-3p GSP:5′GGGGGGATAAAGCTAGATAACC3′
R:5′ GTGCGTGTCGTGGAGTCG3′

66

mmu-miR-450b-3p GSP:5′GGGATTGGGAACATTTTGC3′
R:5′GTGCGTGTCGTGGAGTCG3′

63
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FIGURE 1
miRNA-seq data corresponding to the DEmiRs. (A) Hierarchical clustering analysis of DEmiRs in WAT from the CIH and control groups. The color scheme
indicates upregulatedmiRNAs in red anddownregulatedmiRNAs in green, allowing visualizationofmiRNAexpression patterns across samples. (B)Volcanoplot of
DEmiRs. This plot highlights the most significant changes in miRNA expression between the CIH and control groups. Red dots represent upregulated miRNAs,
while green dots represent downregulated ones. The X-axis represents the fold change, and the Y-axis represents the statistical significance of the changes
(log10 of P-value). (C) Chromosomal distribution of DEmiRs. The figure shows the chromosomal locations of the upregulated (red) and downregulated (green)
miRNAs. This distribution provides insights into the genomic context of these miRNAs within the mouse genome. (D) Scatter plot of gene expression variation
between theCIH and control groups. The scatter plot illustrates the expression differences between the CIH and control groups. Red dots representmiRNAs that
were upregulated in CIH, and green dots indicate those that were downregulated. The plot visually summarizes the overall gene expression changes.

Frontiers in Genetics frontiersin.org04

Zhang et al. 10.3389/fgene.2025.1474223

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1474223


FIGURE 2
GO analysis of the target genes of DEmiRs. (A) GO analysis for the target genes of upregulated DEmiRs. This analysis categorizes the biological
processes, cellular components, and molecular functions associated with the upregulated miRNAs. The most enriched GO terms suggest that these
miRNAs may be involved in various metabolic and inflammatory processes in CIH-induced WAT dysfunction. (B) GO analysis of the target genes of
downregulated DEmiRs. Similar toA, GO analysis of the downregulatedmiRNAs identifies biological pathways and functions potentially impacted by
the reduction in miRNA expression. These findings are indicative of miRNA-mediated regulatory networks affecting cellular processes critical to
WAT function.
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strategy for exploring the potential mechanisms of these DEmiRs by
revealing their targeted mRNA.

4 Discussion

To our knowledge, our current study reported for the first time a
comprehensive analysis of the differential expression profile of
miRNAs in a mouse model of WAT injury induced by CIH. We
also systematically explained the potential functions and pathway
enrichments through bioinformatics analysis. The results of the
study could promote our understanding of how miRNA expression
alteration acts in the unrevealed mechanism of OSA-related WAT
dysfunction.

OSA has been considered one of the causes of several metabolic
disorders. CIH, a key characteristic of OSA, plays an important role
in the pathological process of the disease. Previous studies have
proven that long-term CIH leads to insulin resistance in leanmice by
durably altering the insulin signaling pathway in WAT (Murphy

et al., 2017). Importantly, insulin resistance is the independent risk
factor of OSA (Bros et al., 2018; Gao et al., 2022b). The ApoE−/−
model is well-established in obesity-related pathophysiology,
making it an ideal system for studying metabolic dysfunction in
the context of CIH-induced WAT injury. Furthermore, the model
has been shown to exhibit significant metabolic alterations, making
it highly relevant to OSA-related research. Additionally, CIH can
also lead to vascular rarefaction and inflammation in the body.
Vascular rarefaction obstructs the nutrient acquisition of white
adipose tissue, while inflammation leads to changes in the size,
morphology, and dysfunction of white adipose tissue (Kawai et al.,
2021). Recent studies suggest that continuous positive airway
pressure (CPAP) may be beneficial for adipose tissue hormone
levels among individuals with OSA (Zirlik et al., 2011). All these
factors might result in WAT dysfunction. However, the exact
mechanism between OSA and WAT dysfunction remains to
be explored.

miRNAs represent a series of noncoding small RNAs and play
key roles in the posttranscriptional regulation of gene expression.

FIGURE 3
KEGG pathway. (A) KEGG pathway analysis of the target genes of upregulated DEmiRs. The top 10 pathways enriched for upregulated miRNAs are
shown, highlighting key signaling pathways, such as the lysosome and insulin signaling pathways, that are likely disrupted in CIH-induced WAT
dysfunction. These pathways are involved in cellular degradation, metabolism, and tissue remodeling. (B) KEGG pathway analysis of the target genes of
downregulated DEmiRs. This panel shows the top 10 pathways enriched for downregulated miRNAs. The analysis reveals pathways involved in
cellular stress response and lipid metabolism, which are crucial for understanding the metabolic alterations associated with WAT dysfunction under CIH
conditions.
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This suggests that miRNA may be a new perspective for
understanding diseases, and many studies have indeed confirmed
this, such as miRNAs acting as therapeutic targets for cardiovascular
diseases (Zhou et al., 2018). Zhou et al.’s (2018) research showed that
it is possible to prevent post-infraction remodeling and improve
cardiac function by administering miR22 anti-miRNAs in elderly
mice (Zhou et al., 2018). In addition, Kim et al. found that
microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes
chronic obstructive pulmonary disease pathogenesis (Kim et al.,
2021). However, few studies have combined miRNA and CIH-
induced WAT dysfunction. Therefore, we took advantage of the
ApoE-deficient mouse model to reveal role miRNAs play in the
pathology of WAT dysfunction caused by CIH.

In the current study, 31 miRNAs were found to be differentially
expressed during the process of CIH-induced WAT injury, of which
13 were upregulated and 18 were downregulated. The specific
DEmiRs were evaluated by RT-qPCR, and the results were found
to be consistent with miRNA-seq data. In addition, miRNAs may
participate in diverse biological and pathological processes. For
instance, miR-210 was significantly upregulated during hypoxia
and played a protective role by inhibiting apoptosis and
regulating cell proliferation, differentiation, migration, and
angiogenesis in hypoxic cells (Guan et al., 2019). Additionally,
research revealed that miR-133a participated in the early
pathology of MI, and in subsequent cardiac remodeling (Xiao

et al., 2019). Furthermore, the enlargement of miR-411-3p could
inhibit cell proliferation and migration in lung fibroblasts with TGF-
β1 treatment and attenuate lung fibrosis in silicotic mice (Gao et al.,
2020). However, the roles of these DEmiRs in the development of
CIH-induced WAT injury remain poorly understood.

We subjected these DEmiRs to GO and KEGG enrichment
analyses in order to further determine their biological function in
CIH-induced WAT dysfunction. The results showed that
approximately 71 pathways might be regulated by these DEmiRs.
For the upregulated DEmiRs, the lysosome pathway was the most
enriched one. The autophagy–lysosomal degradation pathway plays
a fundamental role in cellular, tissue, and organismal homeostasis.
During autophagy, excess mitochondria in adipose tissue are
eliminated, leading to the transformation of brown adipose tissue
into white adipose tissue (Li and Ding, 2017). Excessive white
adipose tissue could cause a series of tissue function disorders.
Previous research have demonstrated that it is possible to ameliorate
liver steatosis and fibrosis and to decrease serum FFA levels via
adipose tissue–liver crosstalk under autophagy suppression
conditions (Sakane et al., 2021). We subjected the GO and
KEGG enrichment analyses of DEmiRs. Combining the results
and previous studies, we concluded that the enriched lysosome
pathway might participate in many disease procedures. Although
lysosome pathways play important roles during the pathological
process of CIH-induced WAT dysfunction, the exact mechanism

FIGURE 4
RT-qPCR validation of candidate DEmiRs. Four miRNAs (mmu-miR-211-5p, mmu-miR-9-3p, mmu-miR-21c, and mmu-miR-18a-3p) were
upregulated, and four miRNAs (mmu-miR-1843a-3p, mmu-miR-181b-1-3p, mmu-miR-411-3p, and mmu-miR-450-3p) were downregulated in CIH-
treated mice. The RT-qPCR data confirm the trends observed in miRNA-seq, supporting the reliability of the sequencing results. Each miRNA’s relative
expression level was normalized to U6 and presented as fold change (mean ± SD).
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remains to be fully understood. Simultaneously, our investigation
into the realm of OSA disease has also yielded notable
advancements, such as the CGMP-PKG signaling pathway, which
may become a vital research direction in the future.

Thus, we predicted the assumed target of these DEmiRs using
miRWalk and miRDB databases. The intricate mRNA networks
demonstrated that the regulation of mRNA by miRNAs was not a
one-to-one process. Clarifying the functions of these target genes
could enrich our understanding of the complicated molecular

mechanisms of WAT dysfunction induced by CIH. In this study,
we found miR-211-5p could target Sirtuin 1 (SIRT1), a histone/
protein deacetylase implicated in aging, metabolism, and stress
resistance. SIRT1 regulates endothelial nitric oxide (NO)
synthase, restores NO availability, and is involved in different
aspects of cardiovascular disease. Previous research has shown
that the blood level of SIRT1 has a strong association with OSA
(Chen et al., 2015). Successful treatment for OSA with nasal CPAP
can restore blood levels of the SIRT1 protein and its activity and

FIGURE 5
miRNA–mRNA interaction network. This network was constructed based on the predicted target genes of the five selected DEmiRs. Blue nodes
represent the miRNAs, while red nodes represent the corresponding mRNAs. The edges between miRNAs and mRNAs indicate potential regulatory
relationships, suggesting how these miRNAs might influence gene expression in the context of CIH-induced WAT dysfunction.
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serum levels of NOx. Therefore, up- or downregulation of the gene
coding SIRT1 may be involved in the process of CIH-induced WAT
dysfunction. It is therefore imperative to explore in more detail the
function and molecular mechanism of these differentially expressed
miRNAs in the future.

However, our study still has some limitations. First, we did not
conduct cell-specific identification of these miRNAs. Their role in the
disease has not yet been elucidated, which will be the focus of our next
work. Second, we used only male ApoE-deficient mice in our study,
which limits generalizability across different biological sexes. Including
female mice would make the results more robust and applicable to a
broader population. Third, the small sample size of the experiment
makes it challenging to achieve universality of the current results.
Fourth, the study lacks appropriate controls to evaluate the impact
of ApoE deficiency independently of CIH-induced effects. Comparisons
with wild-type mice under similar hypoxic conditions could help
delineate the specific contributions of ApoE deficiency. Fifth, the
criteria for selecting CIH-induced injury in WAT are based solely
on miRNA expression profiles without consideration of gold standard
metabolic or histological assessments. This may undermine our
research, causing it to lack convincing persuasiveness.

In summary, our study for the first time used miRNA-seq
technology to analyze DEmiRs in a CIH-induced WAT
dysfunction mouse model. These findings have helped better
understand OSA-related WAT dysfunction molecular etiology. In
the future, further studies on the mechanism of these miRNAs will
help provide new treatment strategies for this disease.
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