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Background: Cancer-associated fibroblasts are an essential part of the tumor
immunoenvironment, playing key roles in malignancy progression and treatment
response. This study was to characterize cancer-associated fibroblasts-related
genes (CAFs) in colorectal cancer (CRC) and establish signature genes associated
with CAF for prognosis prediction.

Methods: We downloaded single-cell RNA sequencing (scRNA-seq) data from
the GEO database and bulk RNA-seq data from TCGA database to identify
differentially expressed genes related to fibroblasts. In the TCGA set, DEGs
were identified from tumor samples, and the WGCNA method was utilized to
identify module genes. By comparing the WGCNA module genes with tumor
fibroblast-related DEGs, we took the overlapped cohorts as crucial CAFs.
Moreover, the prognostic CAFs were identified using univariate analysis. A
CAFs risk model was established using the LASSO algorithm and then
validated using external datasets. Ultimately, the expression of prognostic
CAFs in CRC was confirmed using qRT-PCR.

Results: A large cohort of DEGswere identified as CAFs, with eight demonstrating
prognostic significance. These CAFs were primarily related to seven pathways,
including peroxisome function, B cell receptor signal, and cell adhesion
molecule. The CAFs risk model exhibited high accuracy for predicting
prognosis, as confirmed through validation using external independent
cohorts. Additionally, the risk signature showed significant correlations with
immune-related scores, tumor purity, estimate, and stromal scores. qRT-PCR
validated that the expression level of RAB36 was significantly downregulated in
the HCT116 and HT29 cell lines compared to the NCM460 cells. Conversely,
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CD177, PBX4 and CCDC78 were upregulated in the HCT116 and HT29 cell lines,
and ACSL6 and KCNJ14 only in HCT116 cells (P < 0.05). The expression trends of
CD177 and CCDC78 were consistent with our predicted results.

Conclusion: The CAFs risk model accurately predicted prognosis, immune cell
infiltration, and stromal estimates. The prognostic CAFs (CD177 and CCDC78) may
be potential therapeutic targets for CRC.
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cancer-associated fibroblast, colorectal cancer, prognosis, immunity, signature genes

Instruction

Colorectal cancer (CRC) ranks as the third most common
malignancy worldwide and the second leading cause of cancer-
related death across genders (Sung et al., 2021). GLOBOCAN data
from 2020 forecasts an annual incidence of over 1.9 million new
cases of CRC, resulting in 0.9 million deaths (Morgan et al., 2023).
Projections from 2024 cancer statistics anticipate approximately
152,810 new CRC cases and 53,010 fatalities in the United States
(Siegel et al., 2024). Noteworthy is the escalating incidence of early-
onset or young-onset cancer (<50 years), projected to account for
23% of rectal cancer and 11% of colon cancer by 2030 (Spaander
et al., 2023). Despite various treatment options for early-stage CRCs,
such as local endoscopic or surgical excision and systemic
chemotherapy, those in advanced stages encounter a less than
40% 5-year overall survival (OS) rate due to metastases and
treatment resistance (Ciardiello et al., 2022). Although
immunotherapy represents an innovative treatment for colon
cancer, only a minority of patients with specific biomarkers, such
as microsatellite instability-high and/or mismatch repair (MMR)
deficient tumors, benefit from this approach (Bando et al., 2023).
Relevant studies have shown that Chinese herbal medicines (CHMs)
can inhibit CRC progression through multi-target molecular
mechanisms and epigenetic regulation, as well as alleviate
chemotherapy side effects. However, their clinical application
requires addressing challenges such as complex composition,
standardized production, and efficacy validation (Kong et al.,
2020). Thus, there is a pressing need to explore novel potential
biomarkers and signatures for early CRC diagnosis to facilitate
targeted, personalized treatment strategies.

Cancer-associated fibroblasts represent the most common stromal
cellular constituents in the tumor microenvironment (TME) and play
multifaceted roles in cancer progression. They demonstrate significant
heterogeneity in origin and phenotype, influencing distinct tumor
biological behaviors, and predominantly facilitating tumor growth
(Chen and Song, 2019; Sahai et al., 2020). Cancer-associated
fibroblasts modulate cancer metastasis and invasion through
synthesizing matrix-crosslinking enzymes to allow the tumor
extracellular matrix (ECM) remodeling (Gaggioli et al., 2007;
Nguyen et al., 2019; DuFort et al., 2016), releasing growth factors,
cytokines, and exosomes that can influence angiogenesis, tumor
mechanics, drug delivery, and therapy responses (Calon et al., 2012;
Shi et al., 2019; Bruzzese et al., 2014; Straussman et al., 2012). Whereas,
specific subtypes of cancer-associated fibroblasts also exhibit tumor
inhibitory activities in some cancer types and have been associated with
improved treatment outcomes (Ogawa et al., 2021; Bhattacharjee et al.,
2021; Chen et al., 2021). In CRC, the prevailing theory posits that

cancer-associated fibroblasts significantly contribute to tumor
progression, which can promote angiogenesis (Hsu et al., 2023),
epithelial-mesenchymal transition (EMT) (Hu JL. et al., 2019),
metastasis, immunosuppression (Li et al., 2019), and chemotherapy
resistance (Herrera et al., 2021), thereby exacerbating the prognosis for
CRC patients. Despite multiple markers like α-smooth muscle actin (α-
SMA/ACTA2) (Lazard et al., 1993), fibroblast activation protein (FAP)
(Kraman et al., 2010), and periostin (POSTN) (Komura et al., 2024)
have been identified in colon cancer, accurately defining cancer-
associated fibroblasts remain challenging due to their marked
heterogeneity. Consequently, novel methodologies are imperative to
classify cancer-associated fibroblasts more precisely and elucidate their
specific roles in tumor development. Single-cell transcriptome analyses
have become essential resources for understanding the functional
activities and heterogeneity of cancer-associated fibroblasts (Grout
et al., 2022; Chen et al., 2020; Puram et al., 2017; Cords et al.,
2023). Recent studies have identified cancer-associated fibroblasts-
associated genes (CAFs) as biomarkers for risk assessment and
clinical prognosis in CRC patients (Herrera et al., 2021; Zhao et al.,
2022). It reported that CAFs model exhibited robust predictive
capabilities for clinical outcomes and immune responses (Wei et al.,
2024). These findings, in conjunction with previous research,
underscore the potential of identifying CAFs cohorts as a viable
method for assessing the effectiveness of immunotherapy and
forecasting the clinical prognosis in CRC.

This study utilized The Cancer Genome Atlas (TCGA) RNA-seq
dataset and single-cell RNA-sequencing (scRNA-seq) data to detect
differentially expressed CAFs in CRC tumor tissues in comparison
to normal. Subsequently, we performed a univariate analysis and
utilized the LASSO method to screen prognostic CAFs. These genes
were then utilized to generate a signature gene-related risk model for
prognosis prediction. The accuracy and reliability of the disease
model were assessed in both the TCGA set and a validation set.
Additionally, we investigated the correlations between the CAFs
expression and infiltration of immune cells in CRC. Our findings
offer valuable insights and present an effective approach for
investigating the role of CAFs during CRC progression.

Methods

Data resources

scRNA-seq data GSE231559 (Hsu et al., 2023) associated with
colorectal cancer were retrieved from the GEO public database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231559).
This dataset included 26 samples, focusing exclusively on colorectal
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cancer-related tumors and normal control samples. Subsequently,
we narrowed down the dataset to a total of 9 samples, consisting of
6 tumor samples and three normal control tissue samples based on
the quality and completeness of samples. The detection platform
utilized was GPL18573 Illumina NextSeq 500 (Homo sapiens).

Data preprocessing and cluster
identification

Data quality control was conducted applying the “Seurat” (Yu
et al., 2022) (version 4.3.0.1, https://cran.r-project.org/web/
packages/Seurat/index.html) in R4.1.2. The standard pre-
processing workflow included filtering out cells (such as red
blood cells, low-quality cells, doublets, mitochondrial, and
ribosomal cells) based on quality control (QC) metrics, removing
batch effects, normalizing, and scaling the data, and selecting highly
variable features. Subsequently, datasets were merged, and
integration anchors were defined using the
“FindIntegrationAnchors” function (with reduction = ‘rpca’). The
integrated objects were then clustered differentially (using the top
40 principal components with resolution = 0.4) and visualized using
the UMAP algorithm. Cell types were annotated using “SingleR”
(Aran et al., 2019) (version 2.2.0, http://www.bioconductor.org/
packages/release/bioc/html/SingleR.html) and canonical cell
marker genes from the update database “CellMarker” (Hu et al.,
2023) (http://bio-bigdata.hrbmu.edu.cn/CellMarker/). For each
cluster, the top gene was selected to generate a distribution
diagram illustrating gene expression within each cluster, along
with expression plots displaying top marker genes in each cluster.

Screening differentially expressed genes

The FindAllMarkers function in R4.1.2 Seurat package was used
to screen differentially expressed genes (DEGs, threshold: min pct =
0.1, |log fold-change|>1 and p value <0.05) in each cluster.
Functional enrichment analysis was carried out by using
“clusterProfile” version 4.10.0 (Yu et al., 2012) with a threshold
of corrected false discovery rate (FDR) value less than 0.05.

Cellular communication analysis

Cellchat could infer cell-state-specific signal communication
within scRNA-seq profiles through analyzing the expression
patterns of ligand-receptor among different clusters (Jin et al.,
2021). Here, we utilized “iTALK” (Wang et al., 2019), a
computational tool for characterizing and visualizing intercellular
communication signals. iTALK categorizes receptor-ligands into
four main groups: cytokines, growth factors, immune
checkpoints, and others.

TCGA dataset

Genomic expression profiles associated with colon and rectal
cancer were retrieved from the Xena database (https://xenabrowser.

net/datapages/). Normalized data was generated from the Illumina
HiSeq 2000 RNA Sequencing platform, comprising 438 tumor
samples and 41 normal samples, after matching with
corresponding clinical information.

Additionally, the GSE39582 (He et al., 2022) dataset from NCBI
GEO (https://www.ncbi.nlm.nih.gov/geo/) serving as a validated set,
was processed using the GPL570 Affymetrix Human Genome
U133 Plus 2.0 Array platform. GSE39582 includes 585 samples,
with 519 CRC samples providing prognostic information.

We analyzed the immune cell ratio in each sample based on the
whole genomic expression patterns using GSVA (Ye et al., 2019)
(version 1.36.3, http://www.bioconductor.org/packages/release/
bioc/html/GSVA.html). The Kruskal–Wallis test was employed to
assess the immune cell distribution between the tumor group and
normal tissue. Subsequently, focusing on fibroblasts related to
cancer progression, we integrated the single-cell results.

Using the “limma” package (Ritchie et al., 2015) (version 3.34.7,
https://bioconductor.org/packages/release/bioc/html/limma.html),
we identified DEGs in the tumor vs normal group from the TCGA
profiles, with thresholds set at FDR<0.05 and |log2FC|>1.

Weighted gene co-expression network
construction

For these TCGA-derived DEGs, we adopt WGCNA package
(Langfelder and Horvath, 2008) (version 1.61, https://cran.r-project.
org/web/packages/WGCNA/index.html) in R4.1.2 to identify
modules associated with CAFs. We selected an appropriate soft
threshold to ensure that the constructed gene co-expression network
exhibited scale-free properties. The cutHeight parameter was set to
0.995, and we employed a clustering algorithm to delineate distinct
gene modules. Each module consists of genes that are highly co-
expressed, with high connectivity among the genes within the same
module. For each identified module, we computed its eigengene,
which is the first principal component of the expression data for all
genes in that module. Additionally, we calculated the correlation
coefficient between the eigengenes of the modules and the CAFs to
assess their association. Subsequently, we compared the WGCNA-
screened DEGs with previously identified fibroblast-related DEGs
from scRNA data. Genes overlapping between these two cohorts
were deemed crucial for disease progression. Functional analysis of
these overlapping genes was performed using DAVID version 6.8
(Huang da et al., 2009) online tool (https://david.ncifcrf.gov/) to
identify GO processes and KEGG pathways.

A risk score model for CRC prognosis
prediction

The screened DEGs underwent univariate analysis using the
survival package (version 2.41–1, http://bioconductor.org/packages/
survivalr/) (Wang et al., 2016), with a p-value less than 0.05 as
threshold. Moreover, the LASSO algorithm regression analysis was
employed using the “lars” package (version 1.2, https://cran.r-
project.org/web/packages/lars/index.html) (Goeman, 2010) to
identify the optimal gene combination. The resulting prognostic
coefficients from LASSO were utilized to construct the risk score
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(RS) model, integrating the target gene expression. The RS formula
was defined as follows:

Risk score � esum each gene′s expression levels*corresponding coefficient( )
esum each gene′smean expression levels*corresponding coefficient( )

RS value was computed for each sample in both the TCGA set
and GSE39582 validation set, followed by their classification. The
association between risk grouping and actual clinical outcomes was
evaluated using Kaplan-Meier curves generated.

Analysis of somatic mutations and tumor
immune microenvironments

Mutation Annotation Format (MAF) files pertaining to CRC
tissue were acquired from TCGA, and the “maftools” (Zhang et al.,
2019) (version 2.6.05, https://bioconductor.org/packages/release/
bioc/html/maftools.html) package in R4.1.2 was utilized to
analyze somatic mutation status of signature genes across two
risk groups.

Meanwhile, the “estimate” package (Hu D. et al., 2019) (http://
127.0.0.1:29606/library/estimate/html/estimateScore.html) was
employed to compute the estimate, immune, stromal scores, and
tumor purity for all TCGA samples. Subsequently, the Kruskal–Wallis
test was conducted to evaluate the immune cell proportion differences
among two risk group, and assess the distribution variance of estimate
scores. Furthermore, the correlation of model gene expression and
immune cell ratio was analyzed.

Cell culture

The CC cell lines (HCT116 and HT29 cells) and NCM460 cells
were procured from the Cell Bank of the Chinese Academy of
Sciences. The HCT116 and HT29 cells were maintained in an
incubator set to 37°C and 5% CO2, utilizing McCoy’s 5A
medium (Servicebio Technology Co., Ltd., China, G4541-
500 ML) containing 10% Fetal Bovine Serum (Gibco,
United States, 16,000–044) for growth. Additionally, the
NCM460 cells were maintained in RPMI-1640 medium
(Servicebio Technology Co., Ltd., China, G4532-500 ML).

qRT-PCR validation

Total RNA was isolated from the cells using an RNA
extraction kit (Servicebio Technology Co., Ltd., China, product
number G3013). Subsequently, a cDNA synthesis kit (TransGen
Biotech, China, catalog number AU341-02) was employed for the
reverse transcription process. The relative mRNA expression
levels were assessed using the 2−ΔΔCq method, normalizing by
the expression levels of GAPDH. The CAFs sequences are
presented in Table 1.

Statistical analysis

Statistical analyses were conducted through R software (version
4.1.2) and GraphPad Prism 8.0 software. Multiple groups differences
were assessed using the One-way ANOVA. P < 0.05 was considered
significant.

Results

Classification of cell group in CRC based on
scRNA-seq data

The scRNA-seq data were extracted from nine samples,
comprising 6 tumor samples and three normal tissue samples.
Following data quality control (minGene = 500, maxGene =
6,000, pctRibo = 50, mitochondrial-encoded genes <30%), a total

TABLE 2 Counting of cell counts after quality control.

Group Normal Tumor Total

Cells 5,358 16,634 21,992

Median nCount_RNA 4,215 4,560 4,462

Min nCount_RNA 848 704 704

Max nCount_RNA 67,137 75,163 75,163

Median nFeature_RNA 1,248 1,410 1,372

TABLE 1 The CAFs sequences.

Gene name Forward sequence (5′-3′) Reverse sequence (5′-3′)

CD177 ATGAGCGCGGTATTACTGCTG GGTCGGACACCTTCCACAC

RAB36 GAAGCCTGTTTGCAGCTCAG CCCACGTAGAGATCGCCAA

ACSL6 GCACGGCGATCTGTGATTG GGCGGAACACCTGGTACAT

PBX4 TCCGTGGCATTCAAGACGAAG TGGTAAATCTGTCGGATCTGGG

CLDN11 CGGTGTGGCTAAGTACAGGC CGCAGTGTAGTAGAAACGGTTTT

PLIN1 TGTGCAATGCCTATGAGAAGG AGGGCGGGGATCTTTTCCT

CCDC78 AATGTTGTGCTACGAGCCAAG CTGGGGTCAGACTCCACTG

KCNJ14 GGTCGCTTCGTCAAGAAAGAC CACGCATGTGGTGAACAGG

GAPDH TGACAACTTTGGTATCGTGGAAGG AGGCAGGGATGATGTTCTGGAGAG
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of 21,992 cells were obtained, including 5,358 normal cells and
16,634 tumor cells. All cells underwent classification using
dimensionality reduction algorithms, with median count RNA
and feature gene in a single cell observed to be 4,462 and 1,372,
respectively, as detailed in Table 2.

Cell group classifications were annotated using specific gene
markers from the CellMarker database, resulting in the
identification of 20 different clusters, including naive T-cells, NK
cells, epithelial cells, enterocyte progenitor cells, enteroendocrine
cells (EECs), Paneth 1/2 cells, cycling B cells, myeloid cells, Treg
cells, LGR5+ stem cells, T follicular helper (Tfh) cells, dendritic cells
(DCs), enterocytes, plasma cells, fibroblasts, memory B cells, stromal
cells, and plasmacytoid DCs (Figures 1A,B). These results indicated
that the cancer cells were highly heterogeneous among patients.

A total of 3,306 DEGs were identified from tumor fibroblasts in
comparison to normal. Functional enrichment analysis showed that
upregulated cohorts were mainly associated with nuclease activity,
replication, and repair pathways, while downregulated genes were
predominantly involved in fatty acid metabolic processes and amino
acid metabolism pathways (Figures 1C,D).

Intercellular communication among the 20 cluster groups was
analyzed based on the expression of receptor-ligand pairs. Cellular
interactions were evaluated across four major modules: growth

factor, cytokine, immune checkpoint, and others. Numerous
cellular communication signals were identified within these
cluster groups, serving as crucial factors in intercellular
communication (Figure 1E). The top 20 genes related to cellular
communication in each cluster were depicted in Figure 1F. Of note,
our focus lay on the communicational signal alterations in cancer-
related fibroblasts. We observed that fibroblasts interacted with Tfh
cells, myeloid cells, and EECs through ligand-receptor pairs of
BMPR2-RGMA, BMPR2-BMP8B, and BMPR2-GDF7.
Additionally, fibroblasts could interact with B cells involved in
disease progression through the ligand-receptor pairs of CAMP-
P2RX7 (Figure 1F).

Screening CAFs-associated genes in the
TCGA and scRNA dataset

In the TCGA data, we assessed the immune landscape of CRC
samples, wherein the immune cell proportion in tumor tissues was
evaluated according to gene expression level. A comprehensive
screening process identified 23 immune cell types with notable
distribution changes in tumor samples compared to the normal
group (Figure 2A), such as, fibroblasts, memory B cells, CD56bright

FIGURE 1
Classification of cell groups in CRC utilizing scRNA-seq dataset. (A) Visualization of cell clusters through UMAP plotting. (B) Assessment of gene
marker expression levels across various clusters. (C) GO and KEGG analysis of downregulated genes in fibroblast cluster. (D) GO and KEGG analysis of
upregulated genes in fibroblast cluster. (E) Cell communication network of 20 cell clusters. (F) The top 20 highly expressed ligand-receptor interactions
among different cell clusters.
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NK cells, activated CD4 T cells, NK cells, immature DCs, and others.
Notably, fibroblast proportion was significantly increased in tumor
tissues, suggesting its prominent association with disease
progression (Figure 2B). Leveraging the TCGA expression profile
dataset, we utilized the limma package to screen 1,499 DEGs
meeting threshold conditions in the tumor vs normal
group (Figure 2C).

To pinpoint genes within modules that correlate with CAFs, we
analysed 1,499 DEGs using the WGCNA algorithm. To achieve a
scale-free network distribution, we explored the parameter value of
the adjacency matrix weight, selecting the value of weight power = 8
(Figure 2D). By calculating the dissimilarity coefficient among gene
nodes, we obtained a systematic clustering tree (Figure 2E). With a
pruning height set at cutHeight = 0.995, we identified seven different

modules, different colors represent different modules. We then
generated heatmaps to evaluate the correlation between these
modules and disease traits, employing the Spearman correlation
coefficient (Figure 2F). Heatmap colors indicate the strength of the
correlation: red for positive, blue for negative, with deeper hues
denoting stronger associations. Focusing on modules with
significant associations to CAFs expression within tumors, we
identified five modules (blue, brown, green, red, and turquoise)
where the correlation values with CAFs exceeded 0.5 (blue module:
r = −0.55, P = 3e−117; brown module: r = 0.63, P = 3e−163; green
module: r = 0.67, P = 5e−194; red module: r = −0.68, P = 5e−203; and
turquoise module: r = −0.52, P = 6e−105). This indicates that
950 genes within these modules are linked to CAFs and the
progression of CRC. Notably, while the MEgrey and MEyellow

FIGURE 2
Identification of CAFs in CRC samples fromTCGA and scRNA dataset. (A) The immune cell distribution in tumor and control group in TCGA database.
(B) Comparison of fibroblast distribution between tumor and control groups in TCGA database. (C) The DEGs between tumor and control samples. (D)
Selection plot of adjacency matrix weight parameter power (left) and mean connectivity as a function of the soft-threshold power (right). (E) Cluster
dendrogram of the networkmodules. (F) Relationship of genemodules and cancer-associated fibroblast. (G) Venn diagram of the overlapped DEGs
linked to CAFs. (H) GO terms and KEGG pathways enriched by overlapping DEGs. ***P < 0.001, NS, not significant.
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modules exhibited strong correlations with tumor tissue, their
correlations with CAFs were comparatively low. This suggests
that the gene expression patterns in these modules may not be
specific to CAFs but rather more generally associated with tumor
tissue characteristics. Consequently, we chose to exclude these
modules from further analysis.

Comparison of these modules’ screened DEGs with the
previously identified scRNA fibroblast-related DEGs yielded
131 overlapping genes for subsequent analyses (Figure 2G).
These candidate genes were associated with 14 GO terms and
7 KEGG pathways, encompassing functions such as B cell
proliferation related to immune response, cell adhesion
molecule, signal transduction, B cell receptor signal, and
peroxisome (Figure 2H).

Construction and verification of CAFs
risk model

Univariate analysis results showed 18 genes exhibited prognostic
significance values (Figure 3A). Further LASSO analysis revealed
that an optimal combination comprising eight DEGs, namely,
CD177, RAB36, ACSL6, PBX4, CLDN11, PLIN1, CCDC78, and
KCNJ14, was determined (Figure 3B). Subsequently, the RS model
was established based on the formula: RS = (−0.02774 p ExpRAB36)
+ (−0.00025 p ExpCD177) + (−0.00136 p ExpACSL6) + (0.011975 p
ExpPBX4) + (0.014539 p ExpCLDN11) + (0.031381 pExpPLIN1) +
(0.039063 pExpCCDC78) + (0.078007 p ExpKCNJ14).

Samples could be stratified into high- and low-expressed groups
according to each gene expression. Kaplan-Meier curve analysis

revealed a significant correlation between signature gene expression
and patient survival times (Figure 3C).

To assess the predictive capacity of the RS model, samples from
TCGA sets and GSE39582 datasets were classified into different risk
groups. The association of RS status and survival times of patients
were depicted (Figures 3D,E). In the TCGA training set, patients in
the low-risk group exhibited a more favorable prognosis compared
to individuals in the high-risk group (Figure 3D, left). The AUC
values for the ROC curve at 1-, 3-, and 5-years were 0.883, 0.874, and
0.857, demonstrating the high accuracy and efficacy of the risk
model (Figure 3D, right). Similarly, the performance of the RSmodel
was verified in the GSE39582 dataset, and AUC values for 1-, 3-, and
5-years were 0.854, 0.803, and 0.805 (Figure 3E, right).

Somatic variation of eight CAFs in
TCGA-CRC cohorts

The somatic mutation profiles of tumor samples were obtained from
TCGA-CRC cohorts, and the mutational signatures of eight CAFs were
visualized among different groups. Our results demonstrated consistent
mutation patterns across the eight genes in both groups (Figure 4).
Missense mutations were predominant, with single nucleotide
polymorphisms occurring more frequently than deletions (Figure 4).
Additionally, C>T was identified as the most frequent single nucleotide
variant (SNV) in all samples (Figures 4A,B). The mutation profiles of
eight CAFs in CRCwere further depicted, showing ranked percentages of
mutations. Notably, ACSL6 mutations were most prevalent in the low-
risk group (23%, Figure 4A), whereas RAB36 mutations accounted for
the highest proportion in high-risk group samples (32%, Figure 4B).

FIGURE 3
Establishment and validation of CAFs prognostic model. (A) The 18 prognostic CAFs by univariate analysis. (B) The lambda values and the associated
mean squared error by LASSO analysis. (C) The correlation between the eight gene expression and OS in CRC patients within the TCGA dataset. (D)
Kaplan-Meier survival curves, survival status and ROC curves analysis in the TCGA cohort. (E) Kaplan-Meier survival curves, survival status and ROC curves
analysis in the GSE39582 cohort.
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Association betweenmodel gene expression
and immune cell

The immune cell proportion was evaluated across different risk
group samples using the TCGA dataset. Notably, 8 cell types
exhibited significantly different ratios, including activated B cells,
neutrophils, central memory CD8 T cells, activated CD4 T cells,
regulatory T cells, immature dendritic cells, gamma delta-T cells,
and eosinophils (P < 0.05, Figure 5A). Additionally, the association
between the RS and tumor indicators were explored (Figure 5B). The
analysis revealed significant differences among two groups in the
tumor purity (P = 0.007812), estimate score (P = 0.036983), stromal
score (P = 0.007996), and immune score (P = 0.006668).

Furthermore, there was a significant correlation between the most
signature gene expression and tumor indicators (P < 0.05, Figure 5C).
Specifically, activated B cell was positively related to PLIN1 and
CLDN11 expression, but negatively correlated with
ACSL6 expression. Regulatory T cell proportion was positively
related to PLIN1, CLDN11, and CD177 expression, while negatively
associated with PBX4 and KCNJ14 expression (P < 0.05). The
proportion of activated CD4 T cells was negatively correlated with
CD177, PLIN1, CLDN11, and KCNJ14 expression (P < 0.05).

Additionally, most signature genes showed correlations with
fibroblast proportions in TCGA samples (Figure 5D). Furthermore,

the model gene expression was validated in scRNA fibroblasts.
Consistent with the previous expression analysis, aberrant
expression levels of the eight signature genes were observed in
CRC samples (Figure 5E).

Identification of prognostic CAFs expression

qRT-PCR results indicated that the expression level of
RAB36 was significantly downregulated in the HCT116 and
HT29 cell lines compared to the NCM460 cells. Conversely,
CD177, PBX4, and CCDC78 were upregulated in the
HCT116 and HT29 cell lines, and ACSL6 and KCNJ14 only in
HCT116 cells (P < 0.05) (Figure 6). The expression trend of
CD177 and CCDC78 was consistent with the results in
Figure 5E. Therefore, these prognostic CAFs may be potential
therapeutic targets for CRC.

Discussion

This study entailed the characterization of 131 CAFs, which
exhibited differential expression levels between CRC samples and
normal tissues. This characterization was achieved through an

FIGURE 4
Mutation feature of eight genes in the low-risk group (A) and high-risk (B) group samples in the TCGA set.
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integrative analysis of TCGA-CRC data and scRNA-seq profiles.
These genes demonstrated associations with various biological
processes, including B cell proliferation related to immunological
response, B cell receptor signal, signal transduction, cell adhesion
molecule, and peroxisome. Utilizing univariate regression analysis
and LASSO analysis, we identified eight signature genes (CD177,
RAB36, ACSL6, PBX4, CLDN11, PLIN1, CCDC78, and KCNJ14) that
displayed significant prognostic value in TCGA-CRC patients.
Subsequently, we generated a CAFs risk model and validated it
using the TCGA set and GSE39582 cohort.

The intricate interplay within the TME significantly impacts
cancer progression and therapy resistance. As key constituents of the
TME, CAFs actively engage with tumor cells and other TME
components, orchestrating various TME activities. Cellular
communication results showed CAFs interacted with several
other cell types (Tfh cell, B cell, myeloid cells, and
enteroendocrine cells) through ligand-receptor signaling to
regulate CRC progression. As for these cell clusters, Tfh cells
primarily provide the required support to B cell for antibody-

mediated immune response. In numerous solid organ tumors of
non-lymphocytic origin, an increased ratio of Tfh cells is frequently
linked to a more favorable prognosis (Gutiérrez-Melo and
Baumjohann, 2023). In the TME, Tfh cells predominantly
produce IL-21 cytokines, which facilitate humoral responses
through the stimulation of B cell activation, class-switch
recombination, and the secretion of anti-tumor IgG1 and IgG3
(Hollern et al., 2019). EECs are derived from the pluripotent stem
cells in the gastrointestinal tract, and the changes in the composition
and function could affect digestive physiology, potentially
correlating with gastrointestinal pathologies (Gunawardene et al.,
2011). The cellular compartment of EECs within the normal
pancreas expands during early tumorigenesis but diminishes
considerably with disease progression, as evidenced by a
significant decrease in their proportion as lesions advance
(Caplan et al., 2022).

We identified eight prognostic genes by qRT-PCR. The
expression level of RAB36 was significantly downregulated in the
HCT116 and HT29 cell lines compared to the NCM460 cells.

FIGURE 5
Association of risk model gene expression and tumor immunity in the TCGA cohort. (A) Immune cell infiltration disparity across different risk groups.
(B) Differences of tumor indicator between different group patients. (C) Correlation-ship significance between risk model gene and immune cell, and
ESTIMATE score. (D) Relationship between model candidate genes and fibroblast proportion. (E) Expression patterns of eight model genes in scRNA-seq
derived fibroblasts from normal and tumor samples. *P < 0.05, **P < 0.01, ***P < 0.001.

Frontiers in Genetics frontiersin.org09

Jin et al. 10.3389/fgene.2025.1476092

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1476092


Conversely, CD177, PBX4, and CCDC78 were upregulated in the
HCT116 and HT29 cell lines, and ACSL6 and KCNJ14 only in
HCT116 cells (P < 0.05). The expression trends of CD177 and
CCDC78 were consistent with our predicted results. Therefore, these
prognostic CAFs may be potential therapeutic targets for CRC. But
the results need further verification. RAB36 is a member of the RAS
oncogene family. RAB36 has been implicated in promoting CRC
progression and invasion, while its knockdown in cancer cells
resulted in reduced metastatic potential (Zhu et al., 2018).
Moreover, RAB36 was identified as a target of the oncogenic
protein HuR in CRC, and circPPFIA1s could inhibit liver
metastasis through modulation of the HuR/RAB36 and miR-155-
5p/CDX1 pathways (Ji et al., 2022). The proteins ACSL6 and
PLIN1 play distinct roles in the lipid metabolism in CRC cells,
supporting their growth and survival. PLIN1 or perilipin one
modulates lipid storage within lipid droplets (LDs) and serves as
a crucial modulator of human lipid metabolism (Desgrouas et al.,
2024). Dysregulation of lipid metabolism is a notable feature of
various cancers, and PLIN1 expression has been linked to disease
outcomes in multiple cancers (Bombarda-Rocha et al., 2023; Zhang
et al., 2021; Straub et al., 2019). ACSL6 regulates lipid synthesis and
degradation processes by catalyzing the long-chain fatty acids to
transform into the active form, for subsequent beta-oxidation
(Fedorchuk et al., 2020). Remarkably, ACSL6 expression is
typically diminished in various cancer types, yet it is notably
elevated in CRC, where its overexpression is linked to increased
cellular proliferation and elevated levels of glycolytic products
(Parsazad et al., 2023). Notably, ASCL6 mutation is more
common in the low-risk group (23%), while also ranking second
in the high-risk group (14%), suggesting that ASCL6 mutations may
be related to the biology of CRC, rather than merely being a marker
of risk stratification. In the future, we will perform
ASCL6 overexpression experiments to determine whether its
increased expression correlates with the advancement of CRC.

CD177, predominantly expressed in neutrophils, serves as a
valuable biomarker for myeloproliferative diseases (Kissel et al.,
2001). CD177 mRNA expression and CD177+ neutrophils
prevalence is notably higher in CRC tissues compared to controls

(Zhou et al., 2018). CD177 expression is associated with a better
prognosis in CRC (Dalerba et al., 2011). Tumor-expressed
CD177 exerts tumor-suppressive functions by regulating β-
catenin activation (Kluz et al., 2020). Moreover,
CD177 influences the function and homeostasis of tumor-
infiltrated Treg cells, as demonstrated by reduced tumor growth
and decreased tumor-infiltrated Treg frequency upon Treg-specific
deletion of CD177 in mice (Kim et al., 2021). Our results showed
that CD177 expression was positively correlated to stromal,
immune, and estimated scores while exhibiting a negative
correlation with the proportion of CAFs. Elevated CD177 levels
in CRC patients are associated with a better prognosis, suggesting its
potential role in prognosis prediction and immunological regulation
in CRC patients.

Moreover, CCDC78 is predominantly expressed in skeletal
muscle and is implicated in a unique autosomal-dominant
congenital myopathy resulting from mutations (Majczenko et al.,
2012). CCDC78 is identified as a prognosis biomarker in colon
cancer through the utilization of a prediction-scoring model (Yang
et al., 2019). The PBX homologue PBX1-4 regulate haematopoiesis,
primarily by interacting with the oncogenic factor HOX, and serving
as HOX cofactors (Song andMa, 2022). PBX4 has been implicated as
a potential novel onco-promoter in CRC, as evidenced by its
overexpression, which increases cancer cell proliferation and
upregulates the expression of markers of epithelial-mesenchymal
transition (EMT) and angiogenesis (Martinou et al., 2022). A
correlation analysis data revealed that increased
PBX4 significantly affects the infiltration of immune cells (Chao
and Zhang, 2023). Similarly, we also found PBX4 overexpression in
CRC was significantly correlated to infiltrated central memory CD8+

T cells, immature DCs, and activated B cells, further confirming the
oncogenic and immune regulatory effect of PBX4 in CRC
progression.

Tumor-infiltrating immune cells are recruited to establish a pro-
inflammatory microenvironment that fosters cancer progression.
Immune cell infiltration has emerged as a prognostic marker for
CRC, with CD4+ and CD8+ T cells being particularly favorable
prognostic factors, correlating with chemotherapy and

FIGURE 6
Identification of the mRNA expression of the eight prognostic CAFs in NCM460 cells and CRC cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.
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immunotherapy sensitivity. Enhanced infiltration of CD4+ T cells
contributes to the inhibitory immune microenvironment, thereby
leading to a poor prognosis in CRC patients. Comprehensive
correlation analyses between multiple prognostic factors and the
risk model were performed, and our results demonstrated the CAFs-
based prognostic model was significantly correlated with eight
immune cell proportion and immune estimate indicators.
Moreover, the KCNJ14 expression is positively correlated with
CD4 + T cell proportion, and increased KCNJ14 level can lead to
poor prognosis in CRCs. KCNJ14 is a type of ATP-sensitive inward
rectifier potassium (K+) channels (Töpert et al., 2000).
KCNJ14 exhibits abnormal upregulation in CRC and is
associated with poor prognosis in CRC patients (Li et al., 2022).
KCNJ14 deletion could significantly inhibit colorectal cancer cell
growth and migration.

In this research, we developed a CAFs prognostic model and
leveraged the integration of single-cell sequencing data with bulk
RNA-seq data to assess disease progression and prognostic risks in
individuals with CRC. Furthermore, our model enables the
stratification of patients into high- and low-risk categories and
evaluates their potential responses to immunotherapy, which is
essential for crafting tailored treatment strategies and follow-up
schedules. Additionally, our study has led to the discovery of novel
CRC biomarkers, which can help to identify high-risk patient groups
earlier, providing the possibility for early intervention and
treatment. To summarize, our study presents unique advantages
in terms of prognostic assessment, risk categorization, prediction of
immunotherapy responses, and the identification of new biomarkers
for CRC, which brings new perspectives and methods for the clinical
treatment of CRC.

However, limitations in this study should not be ignored. Firstly,
the sample size, derived from a public database, was inadequate,
potentially introducing bias into our results. To counteract these
limitations, future studies should involve a larger and more diverse
cohort of patients. This will be essential for validating the precision
and broader applicability of our prognostic model. Moreover,
although our research has identified the prognostic significance
of CAFs model in CRC, further experimental validation is
warranted. To gain a more profound understanding of how these
prognostic genes influence CRC progression and outcomes, we
intend to undertake a suite of in vivo and in vitro experiments.
Conducting gain-of-function or loss-of-function studies will be
crucial for assessing the biological relevance of the identified
signature genes. Lastly, the interplay between prognostic genes
and immune cell infiltration is an area that requires further
elucidation. We plan to employ flow cytometry in the future to
determine the distribution of these prognostic genes in immune cells
in vivo after inhibition or overexpression, especially fibroblasts.
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