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Background: Sepsis, a critical infectious disease, is intricately linked to the
dysfunction of the intracellular Golgi apparatus. This study aims to explore the
relationship between sepsis and the Golgi apparatus using bioinformatics,
offering fresh insights into its diagnosis and treatment.

Methods: To explore the role of Golgi-related genes in sepsis, we analyzed mRNA
expression profiles from the NCBI GEO database. We identified differentially
expressed genes (DEGs). These DEGs, Golgi-associated genes obtained from the
MSigDB database, and key modules identified through WGCNA were intersected
to determine Golgi-associated differentially expressed genes (GARGs) linked to
sepsis. Subsequently, functional enrichment analyses, including GO, KEGG, and
GSEA, were performed to explore the biological significance of the GARGs.A PPI
network was constructed to identify core genes, and immune infiltration analysis
was performed using the ssGSEA algorithm. To further evaluate immune
microenvironmental features, unsupervised clustering was applied to identify
immunological subgroups. A diagnostic model was developed using logistic
regression, and its performance was validated using ROC curve analysis.
Finally, key diagnostic biomarkers were identified and validated across multiple
datasets to confirm their diagnostic accuracy.

Results: By intersecting DEGs, WGCNA modules, and Golgi-related gene sets,
53 overlapping GARGs were identified. Functional enrichment analysis indicated
that these GARGs were predominantly involved in protein glycosylation and Golgi
membrane-related processes. PPl analysis further identified eight hub genes:
B3GNT5, FUT11, MFNG, ST3GAL5, MAN1C1, ST6GALL, C1GALT1C1, and GALNT14.
Immune infiltration analysis revealed significant differences in immune cell
populations, mainly activated dendritic cells, and effector memory CD8*
T cells, between sepsis patients and healthy controls. A diagnostic model
constructed using five pivotal genes (B3GNT5, FUT11, MAN1C1, ST6GAL1L, and
C1GALT1C1) exhibited predictive accuracy, with AUC values exceeding 0.96 for
all genes. Validation with an independent dataset confirmed the differential
expression patterns of BSGNT5, C1GALT1C1, and GALNT14, reinforcing their
potential as robust diagnostic biomarkers for sepsis.
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Conclusion: This study elucidates the link between sepsis and the Golgi apparatus,
introduces novel biomarkers for sepsis diagnosis, and offers valuable insights for
future research on its pathogenesis and treatment strategies.

sepsis, Golgi apparatus, immune infiltration, signature, gene co-expression network

1 Introduction

Sepsis, characterized as a systemic inflammatory response
syndrome triggered by infection, can precipitate organ
dysfunction and shock (Singer et al, 2016). It stands as the
predominant cause of mortality within hospital settings and
represents a significant public health challenge worldwide (Li
et al, 2023). Sepsis, a grave infectious condition, exhibits a
notably intricate pathogenesis that involves various biological
processes and the malfunctioning of organelles. Primarily,
bacterial infections, particularly those caused by Gram-negative
bacteria, are identified as the chief instigators of sepsis (Martin,
2014). Bacterial endotoxins, such as lipopolysaccharide, instigate the
activation of the host’s immune response, culminating in a systemic
inflammatory reaction. This inflammatory cascade is propelled by a
sequence of signal transduction pathways and the release of
inflammatory mediators, including tumor necrosis factor-alpha
(INF-a) and interleukin-1 beta (IL-1(). Historical research has
identifying the
infection, the pathogens involved, and the patient’s immune

predominantly concentrated on source of
response (Huang et al., 2019). Nonetheless, recent investigations
have illuminated the critical role of the Golgi apparatus in the
pathogenesis and progression of sepsis.

The Golgi apparatus, a crucial organelle within eukaryotic cells,
resides in the cytoplasm and consists of membranous vesicles (Hicks
and Machamer, 2005). It forms a continuous membrane system with
the endoplasmic reticulum (Casey et al., 2018). This organelle plays a
vital role in protein synthesis, modification, and distribution, and in
the metabolism of lipids and sugars. Additionally, it participates in
various biological processes, including cell signaling, division, and
apoptosis. A notable pathological characteristic of the Golgi
apparatus is its structural disintegration (Choi et al, 2022).
Under conditions of intracellular homeostasis, its distinctive
stacked structure remains intact, and its dynamic functions are
meticulously regulated (Jiang et al., 2011). Conversely, structural
modifications to the Golgi can precipitate or aggravate disease
conditions. Dysfunctional Golgi activity has been associated with
the development and progression of numerous diseases, such as
cancers, neurodegenerative disorders, and inflammatory conditions.
This association extends to physiological processes like intracellular
calcium ion balance, oxidative stress, and cell death. The impact of
sepsis on the Golgi apparatus may be mediated through various
mechanisms, including the production of reactive oxygen species
(ROS), influx of calcium, activation of proteasome pathways, and
induction of apoptosis (Jiang et al., 2011). Specifically, Golgi damage
can undermine its critical roles in cell signaling, protein synthesis,
and secretion (Liu et al., 2021). Recent investigations using animal
models of sepsis have demonstrated that Golgi dysfunction can
heighten apoptosis and inflammatory responses (Ma et al., 2008). In
models of acute lung injury, the Golgi stress response has been
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shown to mitigate lung damage via the HIF-1a/HO-1 signaling
pathway (Li et al., 2021). HO-1 mediates ferritin deposition in the
macrophage subtype Kupffer cells, driving immune-inflammatory
responses (Li et al., 2024). Therefore, the response to Golgi stress
could be pivotal in determining cell fate by modulating Golgi
apparatus changes. In the context of infection, disruptions in the
Golgi structure may facilitate evasion of host immune detection
(Derré et al., 2020).

Understanding the molecular interactions between sepsis and
the Golgi apparatus necessitates further research. Unraveling this
relationship could unveil novel therapeutic targets for
combating sepsis.

In our study, we sourced genetic data from both septic and
normal blood samples using the GEO database to identify
(DEGsS)

conditions. We applied Weighted Gene Correlation Network

differentially expressed genes between the two
Analysis (WGCNA) to pinpoint the gene modules most pertinent
to sepsis, leading to the identification of DEGs linked to the Golgi
apparatus. Additionally, we analyzed immune cell infiltration within
both septic and control groups employing the ssGSEA algorithm.
Our research culminated in the screening for potential diagnostic
markers of sepsis. By elucidating the connection between the Golgi
apparatus and sepsis, this study aims to enhance our comprehension
of sepsis’” pathological mechanisms and inspire novel diagnostic and
therapeutic strategies.

2 Methods

2.1 Acquisition of microarray data and
identification of differentially
expressed genes

Sepsis-associated transcriptome datasets GSE95233 and
GSE57065 were retrieved from the NCBI Gene Expression
Omnibus (GEO) database (Barrett et al, 2013). The
GSE57065 dataset, generated on the Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570 platform), includes data from
25 normal individuals and 82 sepsis patients (Tabone et al,
2019). GSE95233  was
GPL570 platform comprised 22 normal and 51 sepsis patient

Similarly, also produced on the
samples (Venet and Monneret, 2017). These datasets were
combined using the R package “sva,” with batch effects mitigated
through normalization techniques and the ComBat method within
the same package (Leek et al, 2012). The consolidated dataset
categorized samples into normal (n = 47) and sepsis (n = 133)
groups. Differential gene expression analysis was conducted using
the “limma” package in R, applying thresholds of
logFC >1 or < -1 and an adjusted P-value <0.05 (Ritchie et al.,
2015). Visualization of differentially expressed genes (DEGs) was
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achieved using “ggplot2” for the volcano and box plots and
“ComplexHeatmap” for heatmaps.

The gene set “GOCC_GOLGI_APP,” which pertains to Golgi-
related genes, was identified and downloaded from the Gene Set
(GSEA) MSigDB database

Enrichment (Liberzon

et al., 2015).

Analysis

2.2 Weighted gene correlation network
analysis (WGCNA)

WGCNA is a systematic biological method widely utilized to
delineate genetic association patterns among various samples,
elucidate gene network-phenotype relationships, and identify
core network genes. This approach facilitates the identification
of potential markers through genomic correlations and genome-
phenotype associations. It involves constructing hierarchical
clustering trees based on correlation coefficients, where
branches represent different gene modules, each color-coded for
distinction. Using the “WGCNA” package in R software
(Langfelder and Horvath, 2008), we constructed gene co-
expression networks for groups with and without sepsis. We
selected the top 5,000 genes with the highest expression
variability (coefficient of variation >0.5) for analysis and
applied a soft threshold power of 6 (scale-free R* > 0.85) to
compute a weighted adjacency matrix, subsequently
transformed into a topological overlap matrix (TOM). Modules
were identified using the dynamic tree cut method (minimum
module size = 30) and merged if the module eigengene similarity
exceeded 0.25. Modules significantly associated with sepsis (P <
0.05) were selected for further analysis. Subsequently, we assessed
the relevance of different modules to sepsis pathogenesis,
identifying the most pertinent modules as central genes through
WGCNA. The intersection of differentially expressed genes, Golgi-
associated genes, and WGCNA-identified central genes were
designated as Golgi-associated differential genes (GARGs),

offering new insights into the genetic underpinnings of sepsis.

2.3 Functional annotations for GARGs

To elucidate the roles of differentially expressed GARGs, we
conducted Gene Ontology (GO) (Gene Ontology, 2015) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Wrzodek et al.,
2011) pathway enrichment analyses using the “clusterProfiler” R
package (Yu et al, 2012). The significance threshold was set at a
P-value <0.05, employing the Benjamini-Hochberg correction for
multiple comparisons. GO analysis facilitated the large-scale
functional categorization of genes into molecular functions (MF),
biological processes (BP), and cellular components (CC). KEGG
provided insights into biological pathways, pharmaceutical drugs,
and genomic information. Visualization of the results was achieved
through Chord and Circle plots, utilizing “ggplot2” and “GOplot” R
packages, respectively. Additionally, gene set enrichment analysis
(GSEA) was performed on the “c5.go.v7.4.symbols” gene set from
the MSigDB database with “clusterProfiler” where results with a
P-value <0.05 were deemed statistically significant and visualized
using “ggplot2.”
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2.4 Protein-protein interaction (PPI) analysis
and hub gene identification

Initial PPI analysis of Golgi-related genes was executed using the
STRING database, setting a composite score threshold of >0.4
(Doncheva et al.,, 2019). The resulting data, in TSV format, was
imported into Cytoscape 3.10.0 for network graph visualization
(Szklarczyk et al., 2021). Subsequent identification of significant hub
genes (Hub-GARGs) within the network was facilitated by the
MCODE and CytoHubba plugins in Cytoscape, enhancing the
analysis and filtering process.

2.5 Prediction of transcription factor (TF)
networks and miRNA networks

The NetworkAnalyst online platform was employed to construct
a gene regulatory network, focusing on interactions between hub
genes and transcription factors (Castro-Mondragon et al., 2022).
This involved utilizing TF and gene target information from the
JASPAR (Xia et al., 2015) database and visualizing the Hub-GARGs-
TF network in Cytoscape 3.10.0. Hub-GARGs were further analyzed
against four databases, including the miRTarBase database, using R
software to validate and predict relationships with relevant miRNAs
(Huang et al., 2022). The final network visualization was conducted
in Cytoscape.

2.6 Immune infiltration analysis

We analyzed the infiltration of 28 immune cell types in normal and
septic samples using the “ssGSEA” method within the R package,
identifying significant differences at P < 0.05 (Chen et al., 2018). The
ssGSEA analysis was performed using the “GSVA” package with
method = data
log2 transformation and Z-score scaling. Additional immune

“ssgsea” and  input normalized  using
infiltration analyses, including Xcell, QuanTiseq, and MCP-counter,
were conducted using the “IOBR” package for a more comprehensive
assessment (Zeng et al., 2021). Box plots were utilized to delineate the
disparities in immune cell distributions between normal individuals and
sepsis patients. Concurrently, we undertook a correlation analysis of
these 28 immune cell types using R software. To delve deeper into the
relationships among immune cells and their association with Hub-
GARGs, Spearman correlation analysis was conducted using the

“Corrplot” function in R. Significance thresholds were set at P < 0.05.

2.7 Recognition of distinct immune
microenvironment subtypes by
unsupervised clustering

Using the expression profiles of sepsis and ssGSEA scores, the
number of unsupervised clusters in a sample of sepsis was
quantitatively =~ assessed ~ through  consensus  clustering,
implemented with the ConsensusClusterPlus software package
(50 iterations and an 80% resampling rate). Key metrics,
including the cumulative distribution function (CDF) curve

performance, the consensus matrix, the relative change in the
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area under the CDF curve, and the consensus clustering score (>0.9),
were evaluated. The number of clusters (k) was tested between 2 and
9, with the optimal k value determined when the CDF index
approached its maximum. Heatmaps and box plots were utilized
to visualize immune cell expression across immune subtypes, while
violin plots illustrated the differential expression of Hub-GARGs
among the immune subtypes.

2.8 Construction of diagnostic models

Logistic regression was employed to isolate the most potent
prognostic indicators, which is designed to prevent model
overfitting by constraining the absolute values of the regression
coefficients. The “glmnet” package was used, and the Least Absolute
Shrinkage and Selection Operator (LASSO) technique was applied
for preliminary gene screening related to sepsis. Subsequently, a
diagnostic model was constructed through logistic regression,
calculating the odds ratio (OR) and P-value for each variable to
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derive a risk score for each sample. Diagnostic marker genes selected
had P < 0.05 and OR values indicating significance. A nomogram
model was then developed to forecast the risk of sepsis utilizing the
“rms” software package (Park, 2018), and the diagnostic efficacy of
the candidate biomarkers was assessed by generating a Receiver
Operating Characteristic (ROC) curve with the ROC software
package. The accuracy of the model was quantified using the area
under the ROC curve (AUC).

2.9 Validation of key Golgi genes

The GSE26378 dataset, sourced from the GEO database and
generated on the Affymetrix Human Genome U133 Plus
2.0 Array (GPL570 platform), comprises data from 21 normal
and 81 sepsis patient samples (Wynn et al., 2011). The expression
patterns and distributions of Golgi-related genes were validated
and visualized using heatmaps and box plots with the “ggplot2”
R package.

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1483493

Ma et al. 10.3389/fgene.2025.1483493
e E 100~
50~ 5 50-
g E Groups g Groups
s’ o—1fat - LN S - -. GSES57065 :& Gl _. [®] esesroes
£ | GsE95233 £ GSE95233
50 E -50-
-100 ‘ E -100-
-100 -50 o 50 100 150
Dim1 (45%)
100~
100-
50-
g o——At L NGISNT, (34 M L. Groups g Groups
= normal g ) normal
g sepsis g sepsis
_s0-
-100- !
E -100-
-200 0 100 3bo
B Dim1 (45%) C
e o [ o 1 : Weewer
1! : | in | | ooy : sepsis ™ H 1
| 110 He ® c i H
W | I | | e @ | -iogiopuaiue) o ! Aors
ANKRD22 e ' ARG,
h” i el e IZ & e o e e
VNN1 40 — £
- i e
il | MCEWP1 | @ | H H e N w
i L [l 172 e 3@ S
I (i [ ozl o | 32 §
| | |  wovs { e | O« ouemd
1l co247 e | Os 2
| 1 | ) [l o 1o |R
| FCERIA { © :
1 | TRAC ° £
-2 (17 R ...
| qllllll ,!I I | I II | wole i . -
MMP8 CcD177 ARG1 OLFM4 HP MCEMP1 ANXA3 GPR84 VNN1 ANKRD22
e 13 o 12
. 125 ) 1L 12 = 125 2 s 3 0 i
10 & '
10 10.0 10 w0 1 ¢ 100 5 10 § J
LY . .
PR “ = }' : g 8 9] = s & R
5{ % .° e 751, : s 751 ¢ ¢ L
. - ° PO 5 ,'- & :’ 2, 3 o & b .
5 ¥ o % 1% so{s © 6 % 4
J e sol % - : ry 'y sof * 3 ¥
0 ° .-'; % -.5. o
. D . 4] - . . 4] - o
> > P > o > &P > o > P > o > o > >
oé& S 06‘6\ s 0040 s ¢ o7 o°§ S ¢°§ S od‘& S oé& S é’\é\ S s
LEF1 PRF1 TCRDV2 TRDV3 CD247 XIST TRAC BCL11B GNLY FCER1A
10 11 11 13
. 1220 - ‘ . 1251 7L gl & oo o« " I
ﬂ . [ 10 K} 109 5 [ 4 gl ¢
10 .9 AP (R . 10,09 °¢ o3 £ . N ls ! fg
. & - ~ 2 Tl % 5{ M 91 % g
-4 9 L < PP
3 s s ® o o LR ¢
10 , % 3 ; [ & s ol » & 6 F
o E . o
8 7 6 8 L4 3 i , : %
8 z 7 5.0{ ¢ . . 4 - s
6 5 oy £ 3 6 -]
¥ i o 6 So 25 R " J 2
. . . - o . . - > 5 A
> o > o NS NS NS > o N 3y o NS N
@ oF @ ¥ @ ¥ @ N D oF D o @ N @ oF @ oF @ ¥
N N N N 2 S L 8 N N 2
& & & & F ,\\0‘& K S & & & (\06“ K
FIGURE 2

Results of differential expression analysis in sepsis. (A) Principal component analysis (PCA) plot illustrating the dataset after batch effect correction.

(B, C) Clustered heatmaps and volcano plots displaying differentially expressed genes (DEGs) between sepsis and control groups. Upregulated genes are
shown in red, and downregulated genes are shown in blue, with significant thresholds set at adjusted P < 0.05 and |log2FC|>1. (D) Box plot summarizing
the expression levels of selected DEGs. Asterisks denote statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Module Membership in turquoise module

Weighted gene co-expression network analysis. (A) Gene clustering dendrogram based on the topological overlap, with dynamic tree cutting to
identify modules represented by different colours. (B) Soft threshold selection and corresponding scale-free topology fit index and mean connectivity,
with the optimal soft threshold chosen to maintain scale-free topology. (C) Heatmap showing module-trait correlations, illustrating the association
between identified gene modules and sepsis. The colour intensity indicates the strength and direction of the correlation. (D) Scatter plot of module
membership versus gene significance in the turquoise module, showing a strong correlation with sepsis.

3 Results

3.1 Identification and analysis of differential
genes in sepsis

The methodological framework of this study is depicted in
Figure 1. Datasets GSE9960 and GSE57065 were retrieved from
the GEO database and combined, with batch effects subsequently
mitigated. Analysis of data distribution and pre- and post-batch
effect mitigation was conducted using PCA plots. This analysis
aimed to assess potential disparities in the expression profiles of
the two datasets. Initially, distinct differences between the datasets
were evident. However, following the adjustment for batch effects,
these disparities were no longer observable (Figure 2A). Differential
expression analysis, facilitated by the “limma” package in R,
identified 1,222 DEGs between sepsis and control groups. This
comprised 661 upregulated and 561
(Figures 2B-D). Additionally, a

downregulated genes

gene set encompassing
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1,659 GARGs was acquired from the GSEA database (GOCC_
GOLGI_DATA), enriching the study’s resources.

3.2 Construction of WGCNA network and
identification of GARGs

To ascertain if gene modules are associated with sepsis, we
executed a Weighted Gene Co-expression Network Analysis
(WGCNA) on all candidate genes from the consolidated datasets.
This analysis resulted in the identification of 12 distinct modules
(Figures 3A-C). Subsequent analysis, focusing on positive
correlation coefficients, revealed the Meturquoise module as
exhibiting the highest correlation and significant divergence.
Hence, genes within the Meturquoise module were earmarked for
further examination (Figure 3D). Intersection analysis involving the
Meturquoise module, differential genes, and Golgi-related genes
yielded 53 Golgi Apparatus-Related Genes (GARGs) (Figure 4).
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in Golgi-related pathways in sepsis.

3.3 Functional interpretation of Golgi-
related differential genes in sepsis

We conducted functional annotation of the intersected genes through
GO and KEGG analyses. GO enrichment analysis indicated significant
enrichment of genes in biological processes (BPs) related to protein
glycosylation, glycosylation, and  glycoprotein
biosynthetic processes. In the cellular component (CC) category,

macromolecule

enrichment was observed in the integrative and intrinsic components
of the Golgi membrane, as well as Golgi apparatus subcompartments.
Molecular function (MF) analysis revealed a predominance of genes
involved in glycosyltransferase and hexosyltransferase activities (Figures
5A-C). KEGG enrichment analysis identified significant gene involvement
in the biosynthesis of various O-glycans, PD-L1 expression and PD-1
checkpoint pathways in cancer and the hematopoietic cell lineage (Figures
5D, E). Furthermore, Gene Set Enrichment Analysis (GSEA) highlighted
the primary enrichment of cellular component genes in specific granule,
tertiary granule, and tertiary granule membrane categories (Figures 6A, B).

3.4 PPI network construction and
identification of Hub-GARGs

Golgi-related differential genes were uploaded to the String
database, resulting in the construction of a protein-protein
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interaction (PPI) network comprising 53 nodes and 155 edges,
with an average node degree of 5.85. This was achieved using the
String database’s default criteria. The network data were then
exported from the String database and visualized using Cytoscape
software (Figure 7A). Within Cytoscape, the MCODE plugin was
utilized to identify significant modules, leading to the isolation of a
network graph featuring eight Golgi-related differential genes
(Figure 7B). Subsequently, the CytoHubba plugin, employing the
MCC algorithm, pinpointed seven potential hub genes within the
PPI network: B3GNT5, FUT11,ST3GAL5, MANICI1, ST6GALL,
C1GALTIC1, and GALNT14 (Figure 7C). The analysis also
included the investigation of interrelations among these hub
genes (Figure 7D).

3.5 miRNA network and transcription factor
network of GARGs

Utilizing R, miRNA predictions for Hub-GARGs were
conducted across three databases: ENCORI, miRDB, and
RNAInter. These analyses identified that hsa-miR-374a-5p is
associated with ST3GALS5, FUTI11, and B3GNTS5. Similarly, hsa-
miR-374b-5p showed associations with the same genes: ST3GALS5,
FUT11, and B3GNT5 (Figure 8A).
NetworkAnalyst platform facilitated the construction of a gene

Furthermore, the
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Functional enrichment analysis of GARGs.(A) Dot plots of GO enrichment analysis in BP, CC, and MF categories, with dot size representing gene
counts and colour indicating significance. (B) GO circle plot summarizing top enriched terms. (C) The circular heatmap shows Z-scores of the top
enriched GO terms, with red and blue indicating upregulated and downregulated trends, respectively. (D) Sankey plot showing the mapping of GARGs to
enriched KEGG pathways. (E) Circos plot illustrating the association between GARGs and their top enriched KEGG pathways, with the width of lines
representing the strength of the association.

regulatory network, which comprises 42 transcription factors
interacting with the Hub-GARGs network (Figure 8B).

3.6 Analysis of immune infiltration in sepsis

The ssGSEA algorithm was utilized to assess immune cell infiltration

across dataset samples to elucidate the variances in immune function
associated with sepsis. This analysis revealed significant differences in the
infiltration levels of 26 immune cell types between sepsis and control
samples (P < 0.05), highlighting pronounced disparities in activated

Frontiers in Genetics

dendritic cells, plasmacytoid dendritic cells, and effector memory CD8*
T cells (Figures 9A-D). Additionally, Xcell analysis indicated substantial
differences in macrophages and CD8" T cells across the two sample
groups (Figure 9E). QuanTiseq analysis revealed significant variations in
macrophages M1, NK cells, and B cells (Figure 9F). In contrast, MCP-
counter analysis showed notable differences in B lineage and CD8"
T cells between the groups (Figure 9G).

Further examination of immune cell interactions in sepsis identified a
strong synergistic relationship between central memory CD4" T cells and
immature B cells. Correlation analysis between immune cells and Golgi-
related differential genes found that ST3GALS5 showed the strongest
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association with effector memory CD8" T cells, whereas FUT11 was most
strongly correlated with activated CD8 T cells (Figures 10A-E).

3.7 Identification of subtypes of the immune
microenvironment in sepsis

To investigate the expression patterns associated with the
immune microenvironment in sepsis, we applied a consensus
clustering algorithm. The consensus matrix was utilized as a
similarity matrix to identify the final subtypes. Based on the
consensus clustering results, including cumulative distribution
function (CDF) plots, relative changes in the CDF curve area,
and consensus clustering scores, we determined k = 2 as the
optimal number of clusters. This grouping classified the
180 patients into two distinct subtypes, with 121 samples in
subtype 1 and 59 samples in subtype 2 (Figures 11A-C). A
comparative analysis of 28 immune cell subpopulations across
subtypes revealed significantly higher infiltration levels of
activated B cells, activated CD4 T cells, central memory
CD4 T cells, effector memory CD4 T cells, regulatory T cells,
and macrophages in subtype 1 (Cluster A) relative to subtype 2
(Cluster B) (Figures 11D, E). Furthermore, the expression levels of
eight key genes were significantly different between the two immune
subtypes (Figure 11F).
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3.8 Construction of sepsis risk prediction
diagnostic model and nhomogram model

LASSO regression analysis was applied to eight Golgi-associated
differential genes to identify those with prognostic potential (Figures
12A, B). This process resulted in the selection of five Golgi-
associated differential genes: B3GNT5, FUTI11, ST3GALS,
MANICI, ST6GALI, and CI1GALTICL. ROC curves were
generated for these five pivotal genes (B3GNT5, FUTI1I,
MANI1C1, ST6GAL1, and CI1GALTICl1) to evaluate their
diagnostic performance (Figure 12C). The Area Under the Curve
(AUC) values were as follows: BAGNT5 (0.964), FUT11 (0.989),
MANICI (0.978), ST6GAL1 (0.997), and CIGALTIC1 (0.983),
indicating high diagnostic efficacy. Subsequently, a nomogram
model was developed to predict the risk of sepsis (Figure 12D).

3.9 Validation of Golgi-related genes
in sepsis

To verify the robustness of our analysis on the sepsis dataset, we
employed the dataset GSE26378, which comprises 21 normal and
81 sepsis patient samples, as a validation set. Within this set, we
evaluated the expression of eight Golgi-associated genes using a
logFC threshold of greater than 1 or less than —1. The expression
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trends of six Golgi-related genes (B3GNT5, FUTI11, ST3GALS5,
MANICI1, C1GALTICl, and GALNTI14) aligned with the
patterns observed in the hub genes from the initial sepsis dataset
analysis (Figures 13A, B).

4 Discussion

Sepsis is a critical clinical condition characterized by a systemic
inflammatory response initiated by an aberrant host reaction to
infection, culminating in progressive multi-organ failure (Singer
etal,, 2016). The Golgi apparatus, a vital cytoplasmic organelle, plays
significant the post-translational modification,
transportation, and sorting of lipids and proteins produced by

a role in

the endoplasmic reticulum (ER). It ensures their delivery to
specific cellular destinations through processes such as cytophagy
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and cytotoxicity (Casey et al., 2018). The dysfunction of the Golgi
apparatus is increasingly acknowledged as a crucial contributor to
the pathogenesis of various human diseases (Joshi et al., 2015).
During sepsis, the interaction between pathogenic bacteria and cells
induces structural and functional alterations in the Golgi apparatus,
leading to a significant disturbance in the intracellular milieu.
Studies have shown that during sepsis, interactions between
pathogenic bacteria and host cells induce structural and
functional alterations in the Golgi apparatus, disrupting
intracellular homeostasis (Dusabimana et al, 2023). Golgi
fragmentation facilitates the enhanced secretion of inflammatory
mediators, thereby exacerbating the systemic inflammatory
response (Choi et al, 2022). Beyond traditional inflammatory
pathways, Golgi dysfunction has been linked to ER stress and
oxidative damage, which are hallmarks of sepsis progression (Liu

etal,, 2021). In addition, Golgi interactions with other organelles are
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FIGURE 8
miRNA and TF regulatory networks of GARGs. (A) miRNA regulatory network showing interactions between GARGs and their associated miRNAs.

The inner nodes represent GARGs, while the outer nodes represent regulatory miRNAs. (B) TF regulatory network illustrating the relationships between
GARGs and their upstream TFs. The central nodes represent GARGs, and the surrounding nodes indicate interacting TFs. Line colorus indicate the
strength and type of regulatory interactions.

critical in maintaining cellular homeostasis, and their dysfunction
may exacerbate the pathological process of sepsis. In sepsis, Golgi
stress may lead to loss of mitochondrial membrane potential and
accumulation of ROS, exacerbating cellular damage. Meanwhile, the
Golgi and endoplasmic reticulum synergize in protein folding and
secretion, and endoplasmic reticulum stress may further exacerbate
its dysfunction by enhancing Golgi protein loading (Nagashima
et al,, 2020). These findings further reinforce our hypothesis that
Golgi apparatus dysfunction is a critical factor in the pathogenesis of
sepsis. By identifying key Golgi-associated genes, our study builds
upon recent research, offering valuable insights and potential
biomarkers for early diagnosis and targeted therapeutic
interventions.

This study utilizes machine learning algorithms to develop
decision-making models aimed at improving the diagnosis and
treatment of sepsis. Acknowledging the pivotal role of the Golgi
apparatus in sepsis pathogenesis, we conducted a bioinformatics
analysis of Golgi-associated genes. Through a comprehensive
examination of publicly available sepsis transcriptional datasets,
we identified 661 upregulated and 561 downregulated differential
genes. By intersecting the modular species from WGCNA with these
differential and Golgi-related genes, 53 GARGs were identified.
Among these, several genes showed potential as diagnostic
markers or therapeutic targets. Studies have demonstrated that
(LPS) Golgi
fragmentation, and the production of related pro-inflammatory

lipopolysaccharide exposure escalates stress,
mediators both in vivo and in vitro (Dusabimana et al., 2023).
Additionally, under conditions like oxidative stress and nutritional
deficiencies, the Golgi apparatus can initiate a stress response,
leading to the cleavage of Golgi structure-associated proteins (Li

et al., 2019). The progressive damage to the Golgi apparatus in the
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rapid advancement of sepsis contributes to cell death and
exacerbates the inflammatory response. Therefore, understanding
the link between the Golgi apparatus and sepsis holds significant
theoretical and clinical relevance, offering insights for the improved
prevention and management of sepsis.

Sepsis is characterized by a dysfunctional immune response to
pathogens, often leading to severe immune-mediated damage to
vital organs and mortality. Our research identified significant
disparities in the type and abundance of immune cell infiltration
between sepsis patients and healthy controls, highlighting the critical
role of immune cells in sepsis. In sepsis, the Golgi apparatus is
central to orchestrating inflammatory responses and pathological
processes through its regulation of immune cell function. Beyond
serving as a central organelle for vesicular trafficking and protein
and lipid transport, the Golgi also acts as a critical platform for
innate immune signalling and the activation of downstream
effectors (Tu et al, 2022). As a central organelle for protein
processing and secretion, the Golgi apparatus orchestrates the
of the
modification and expression of key receptors in immune cells.

release inflammatory mediators and modulates
Furthermore, in close collaboration with the endoplasmic
reticulum, the Golgi regulates intracellular stress responses and
the activation of inflammatory vesicles, directly contributing to
the functional execution of immune cell activities (Tao et al,
2020). Dendritic cells (DCs), as key players in innate immunity,
are crucial for pathogen recognition, initiating immune responses,
and regulating inflammation. Research indicates that preventing
sepsis-induced DC apoptosis or enhancing DC functionality may
enhance the long-term survival rates of sepsis patients (Efron et al.,
2004). The Golgi apparatus plays a critical role in the assembly and
trafficking of major histocompatibility complex (MHC) molecules
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Immune infiltration analysis results. (A) A stacked bar plot shows the proportions of immune cell types identified by ssGSEA analysis in normal and
sepsis samples. (B) Heatmap illustrating immune cell infiltration levels in normal and sepsis samples based on ssGSEA analysis, with colour intensity
representing infiltration levels. (C) Box plot summarizing the overall distribution of 28 immune cell types identified by ssGSEA analysis. (D) Box plots
comparing the proportions of immune cells between normal and sepsis groups. (E) Box plots of immune cell proportions based on Xcell analysis

highlighting differences between normal and sepsis samples. (F) Box plots of immune cell proportions based on QuanTiseq analysis show significant

variations across the two groups. (G) Box plots of immune cell proportions based on MCP-counter analysis show significant variations across the

immunosuppression associated with the disease (Lang and
Matute-Bello, 2009). This phenomenon has been observed in

two groups.
both human patients and animal sepsis models (Hotchkiss et al

and their associated antigenic peptides in DCs, thereby governing
the efficiency of antigen presentation from DCs to T cells (Blander,
2023). Additionally, lymphocyte apoptosis has been recognized as a i
in sepsis pathogenesis, contributing to  2005). The development and function of lymphocytes are critically
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(A) Consensus clustering matrix when k = 2. (B) Consensus CDF curves when k = 2 to 9. (C) Relative alterations in CDF delta area curves. (D) The heat

map shows ssGSEA scores for 28 immune cell subpopulations across the two subtypes. (E) Box plots comparing the infiltration levels of immune cell
fractions between the two identified immune subtypes. (F) Split violin plots reveal the expression of 8 hub-GARGs between subtypes. Statistical
significance: *P < 0.05, **P < 0.01, ***P < 0.001 and ns indicates no significance.

reliant on secreted proteins transported through ER to Golgi  attributes, have been shown in mouse sepsis models to be
vesicular pathways (Yeerken et al.,, 2024). Experiments using the  essential for enhancing cytokine production, reducing bacterial
mouse cecum ligation and perforation (CLP) model have loads, and improving survival via type I interferon signalling
demonstrated diminished responses in naive and memory CD4"  (Kelly-Scumpia et al, 2011). A reduction in immunoreactive
T and CD8" T cells in sepsis survivors, increasing their vulnerability ~ B cells has been associated with a heightened risk of secondary
to new or recurrent infections (Serbanescu et al.,, 2016; Sjaastad et al,,  infections post-sepsis (Delano and Ward, 2016). Golgi dysfunction
2020). B-cells, with their diverse functional and phenotypic  contributes to dysregulated inflammatory responses and
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scores are used to predict the likelihood of sepsis.

immunosuppression, potentially aggravating sepsis pathology.
Thus, the Golgi represents an important for
understanding sepsis mechanisms and a potential target for

avenue

therapeutic intervention.

In our study, we identified potential diagnostic markers for
sepsis among Golgi-related genes and validated these findings using
the GSE23678 dataset. The key genes distinguishing sepsis from
healthy conditions include B3GNT5, FUT11, ST3GAL5, MAN1Cl,
C1GALTI1Cl, and GALNT14. B3GNTS5 is pivotal in the biosynthesis
of lactosylceramide sphingolipids and regulates embryonic antigens
with lacto-series carbohydrate structures, suggesting its role as a
(Kim and Koo, 2019). Its
glycosylation-mediated ~ protein
stabilization, has been implicated in promoting tumorigenesis in
breast cancer (Miao et al., 2022). The Fucosyltransferase (FUT)
family, with FUT11 as a member, is involved in transferring fucose

in various tumours
facilitating

biomarker
overexpression,

to glycoconjugates (Hwang et al., 2020), playing a significant role in
tumorigenesis and progression. FUT11, specifically, is a Golgi-
resident enzyme catalyzing the transfer of fucose to glycan

Frontiers in Genetics 15

entities, with implications for cancer and inflammation
(Moriwaki and Miyoshi, 2010). FUTI11, identified as a HIF-1-
regulated gene in Staphylococcus aureus infections, may play a
role in the host’s immune response (Beerlage et al, 2013).
ST3GALS5, involved in sphingolipid GM3 synthesis, affects cell
proliferation, differentiation, and integrin-mediated adhesion (Liu
et al,, 2022). MAN1CI, associated with cell viability and apoptosis,
affects N-glycosylation and endoplasmic reticulum stress by
regulating glycoprotein precursor processing (Li et al, 2018).
MANICI is involved in cellular immunity during chronic
infections, and upregulation of its expression manipulates
pathogens to evade immune recognition, inhibiting effective
immune responses and clearance of pathogens (Hu et al., 2016).
CIGALTIC1, a molecular chaperone in the endoplasmic
reticulum, has been linked to tumorigenesis in several cancers
(Shen et 2020). GALNTI14
influencing cancer cell proliferation, migration, and metastasis,

al, initiates  O-glycosylation,

with its expression levels and SNP genotypes predictive of cancer
outcomes (Lin and Yeh, 2020). B3GNT5, FUT11, ST3GALS5,
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significance.

MANI1CI1, CIGALT1CI, and GALNT14 are glycosyltransferases,
representing a critical class ofenzymes involved in the
glycosylation process (Lau et al., 2007). Glycosylation plays a
pivotal role in sepsis by modulating the immune and
inflammatory responses through bacteria-induced alterations in
glycan structures. Conserved changes in the serum glycome during
sepsis have been implicated as key mechanisms driving immune
responses and pathological processes induced by bacterial
infection, and these changes are closely associated with specific
glycosylated proteins (Heindel et al, 2022). These findings
highlight the potential of these genes as biomarkers for sepsis
diagnosis and therapeutic intervention.

This study has several limitations. First, the data were
derived from a publicly available database with a relatively
small and insufficiently diverse sample size, potentially
limiting the model’s
generalizability to broader populations. While
datasets supported the reliability of the findings, the absence
of validation using real clinical samples may impact the
diagnostic markers’ performance in practical applications.
Additionally, the identified key genes and immune infiltration
patterns have yet to be further validated through molecular
experiments, and their functional roles in sepsis pathogenesis
require more in-depth investigation. Lastly, the model’s
challenges for clinical

introducing selection bias and

external

technical ~complexity presents
implementation, and its feasibility in real-world settings
remains unverified. Future research should incorporate larger
and more diverse clinical samples, conduct experimental
validation, and address these limitations to enhance the
credibility and translational potential of the results.

5 Conclusion

In summary, our research represents the inaugural systematic
exploration of GARGsfor the diagnosis of sepsis. Utilizing
bioinformatics analysis methods, we constructed a WGCNA-

Frontiers in Genetics

based co-expression network to identify Golgi-related hub genes
within the context of sepsis. These findings potentially contribute to
advancements in sepsis diagnostics and offer insights into the
molecular mechanisms of genes associated with sepsis risk.
Moreover, our study proposes new directions and targets for
therapeutic intervention in sepsis, aiming to enhance treatment
strategies and patient outcomes.
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