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Purpose: Metabolic reprogramming plays a crucial role in multiple malignant
features of pancreatic cancer (PC). However, few studies have comprehensively
examined metabolic features of PC and provided guidance for their treatment.

Methods: This study tried to identify metabolism-associated hub genes based on
metabolic phenotypic levels through weighted gene co-expression network
analysis, and constructed a risk model for PC, then verified its accuracy and
explored the potential mechanisms.

Results: We screened out five metabolic hub and prognostic genes (DLX3,
HMGA2, SPRR1B, MYEOV, and FAM111B) and constructed a novel metabolism-
associated gene signature to predict the prognosis of PC. The model was verified
efficacy and demonstrated with good performance through analysis of Kaplan-
Meier plotter, receiver operating characteristic curves, comparing with reported
models, application in predicting drug sensitivity and constructing a nomogram
model. Correlation analysis revealed a close association between the levels of risk
score and DNA damage response (DDR, correlation coefficient: 0.41, P < 0.001).
Enrichment analysis indicated that risk scores were derived from multiple
metabolic or proliferative pathways, providing further evidence that
metabolism may mediate DDR to affect PC survival.

Conclusion: Through bioinformatics analysis, we identified five prognostic
relevant differentially expressed genes highlighting the role of metabolism-
associated factors in pancreatic cancer, which reveals a strong correlation
ship with DDR, offering new insights into treatment strategies that combine
metabolism with DDR.
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1 Introduction

Pancreatic cancer (PC) is one of the most lethal malignancies, accounting for 4.8% of all
cancer-related deaths globally (Bray et al., 2024). Furthermore, the incidence and mortality
rate of PC are increasing simultaneously. PC is predicted to become the second leading
cause of cancer-related deaths worldwide by 2030 (Rahib et al., 2014). The standard
treatment regimens for PC mainly include surgery, chemotherapy, radiotherapy. Despite
recent advancements in these approaches, the prognosis for PC remains poor. This poor
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prognosis can be attributed to its aggressive nature, which leads to
late-stage diagnosis, early metastases, and therapy resistance (Singhi
et al., 2019). Therefore, gaining a comprehensive understanding of
the aggressive features is crucial for investigating effective
therapies in PC.

The invasiveness of PC is primarily determined by biological
features such as extensive dense desmoplasia, hypoperfusion, and
immune suppression (Hruban et al., 2019). Accumulating evidence
suggests that metabolic alterations play a vital role in these
malignant features and have emerged as a key hallmark of
cancer. Malignant cells can alter their material and energy
metabolism patterns to meet the requirements for survival and
rapid proliferation (Hönigova et al., 2022); this process is known
as metabolic reprogramming. The main metabolic pathways
currently being studied include “Warburg effect”, “Glutamine
addiction” and lipid metabolism (Chang et al., 2022; Xu et al.,
2020; Man et al., 2020). The tricarboxylic acid (TCA) cycle and
nucleic acid metabolism are intermediate and ultimate processes
that link different metabolic patterns. Metabolic pathways
determine cellular plasticity of changing and adapting to different
microenvironments (Uddin et al., 2024). DNA damage repair
(DDR) serves as maintaining genome integrity and is closely
associated with metabolism (Li et al., 2022). Targeting nucleotide
or amino acid metabolism can enhance the sensitivities of anti-
tumor therapy by restricting DDR response (Falcone et al., 2022;
Helleday and Rudd, 2022; Fu et al., 2019). A range of metabolic
inhibitors has been developed and demonstrated promising anti-
tumor potential in preclinical studies. For instance, the glycolysis
inhibitor Lonidamine and the amino acid transporter inhibitor JHP
203 can synergistically enhance the therapeutic effect when
combined with chemotherapy and radiotherapy, respectively
(Tufail et al., 2024). However, challenges such as metabolic
plasticity and the need for combination therapies persist,
highlighting the urgency for continued research in this
dynamic field.

However, the metabolism of PC is complex and interacts.
Bioinformatics research provides an efficient means of
interpreting clinical outcomes from metabolic mechanisms. A
study attempted to demonstrate the complex plasticity
mechanism of PC through a comprehensive analysis of
genomics, transcriptomics, and proteomics, demonstrating the
complex plasticity mechanism of PC, provides a case for us
(Cancer Genome Atlas Research NetworkCancer Ge nome Atlas
Research Network, 2017). Recently, several studies have
reported the construction of metabolism-related models for
PC, including from hypoxia, immunity, neuroendocrine,
lactate, or lipid metabolism, suggested a link between
metabolism and survival (Ma et al., 2021; Ye et al., 2021;

Huang et al., 2023; Zhang et al., 2023; Yang et al., 2024; Peng
et al., 2024). However, the methods used to screen genes for
constructing these models only considered molecular-level
factors and did not incorporate individual metabolic
functional phenotypes.

This study aimed to apply weighted gene coexpression network
analysis (WGCNA) to identify metabolism-associated hub genes
and construct a metabolic risk model for PC and explore its potential
mechanisms. Our study findings will enhance our understanding of
the metabolic features of PC and facilitate the exploration of new
therapeutic strategies combining with metabolism.

2 Materials and methods

2.1 Data collection and processing

The training and investigation dataset was obtained from the
Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov). Two additional datasets were obtained from the
Gene Expression Omnibus (GEO; GSE62452) (https://www.
ncbi.nlm.nih.gov/gds/) and International Cancer Genome
Consortium (ICGC; https://icgc.org/) databases that served as
external validation sets (Figure 1). All three datasets are publicly
available and accessible online. The reasons for selecting these
datasets for study were that they originated from PC patients,
encompassed survival and transcriptional information, and
boasted a sufficient sample size. After downloading the data,
the following three steps were performed during the initial data
processing: Patients with missing or zero overall survival (OS)
were excluded, the transcriptome data from TCGA and ICGC
databases were unified as log2 (x+1), and gene IDs were converted
to gene symbols.

2.2 Scoring metabolism, DDR, and immune
infiltration features

To assess the activity of different phenotypes, co-expressed
genes were initially selected both in TCGA and GEO. To
eliminate non-significant genes, DEGs between tumor and
non-tumor tissues were then screened using the “limma”
package in GEO, with a false discovery rate (FDR) < 0.05 as
the cutoff. The intersection gene dataset, both in co-expressed
genes and DEGs, was taken for subsequent analysis. The activities
of different metabolic pathways and DDR for each sample were
scored using the single-sample gene set enrichment of the R
package GSVA in TCGA, utilizing the expression data of the
intersection gene dataset. The metabolic signature gene set,
which includes seven metabolic pathways (lipid, carbohydrate,
amino acid, integrated energy, nucleotide, vitamin cofactor, and
TCA), was previously reported (Sung and Cheong, 2021). In
total, 276 DDR gene sets were obtained from previous studies and
used for the knowledge-based curation of DDR pathways (Li
et al., 2022). Immune infiltration analysis included the immune
cell profiling (ICI) and estimate algorithm with the intersection
gene dataset. ICI involved 22 types of immune cells using the
“CIBERSORT” package, while the estimate algorithm included

Abbreviations: PC, pancreatic cancer; TCA, tricarboxylic acid cycle; DDR,
DNA damage repair; DEG, differential expression genes; WGCNA, weighted
gene co-expression network analysis; LASSO, least absolute shrinkage and
selection operator; TCGA, the cancer genome atlas; GEO, gene expression
omnibus; ICGC, international cancer genome consortium; OS, overall
survival; IGDS, intersection genes data set; ICI, immune cell profiling; KM,
Kaplan-Meier; ROC, receiver operating characteristic; AUC, area under the
curve; GSEA, gene set enrichment analysis; FDR, false discovery rate; GO,
gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; IC50, half
maximal inhibitory concentration.

Frontiers in Genetics frontiersin.org02

Song et al. 10.3389/fgene.2025.1487046

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://icgc.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1487046


four types of scoring for immune, stromal, estimate, and tumor
purity using the “ESTIMATE” package (Liu et al., 2022).

2.3 Identification of hub genes associated
with metabolic phenotypic features
using WGCNA

WGCNA was used to identify potential hub genes that share
similar functions by constructing a co-expression network analysis
and mining modules (Su et al., 2021). We appliedWGCNA to define
gene modules associated with metabolic phenotypic features derived
from the intersection gene dataset in TCGA. Specifically, samples
with outliers were removed first, and the function power estimate
was used to define the optimal soft threshold. The subsequent steps
and parameters of WGCNA included constructing correlation
networks, setting the maximun number of gene modules to 30,

and calculating the dissimilarity of the module eigengenes. The
similarity cutoff was set to 0.75, and the modules with the top three
high correlation coefficients were considered most relevant to
metabolic features. These modules were merged for downstream
analysis (Xiao et al., 2022).

2.4 Construction and performance analysis
of prognostic risk model

For the training set, we used patient data from TCGA, whereas the
validation sets consisted of data from GEO and ICGC. Univariate Cox
regression using the “survival” package was employed to preliminarily
filter the genes linked to the prognosis from the aforementioned
metabolism-associated hub genes, with a p-value <0.001.
Subsequently, LASSO regression with the “glmnet” package was
used to address overfitting among the survival-related hub genes.

FIGURE 1
Flowchart depicting the whole study. (A) Screen for differentially expressed genes in pancreatic cancer based on GEO cohort and select a gene set
that is co-expressed with TCGA; (B) Identify ametabolism-associated hub genes throughWGCNA and construct a prognostic risk model; (C) Validate the
model’s performance, explore underlying mechanisms, and further evaluate its application based on drug sensitivity analysis and clinical
nomogram model.
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Multivariate Cox stepwise regression was applied using the “survival”
package to construct the prognostic model with the highest
discriminatory ability for predicting OS. The equation for the risk
score, which predicts prognosis based onmetabolic hub genes, is shown
in Figure 3A. The acquired formula for calculating the risk score was as
follows: Risk score = (expression of DLX3 × 0.114) + (expression of

HMGA2 × 0.144) + (expression of SPRR1B × 0.071) + (expression of
MYEOV × 0.104) + (expression of FAM111B × 0.173).

Each patient was assigned a risk score and then categorized
into high- and low-risk groups based on the median value
independently within each cohort. To validate the accuracy of
the model, survival curves were generated using the

FIGURE 2
Identification of hub predictive genes associated with metabolic features using WGCNA. (A) Analysis of scale independence and mean connectivity
for the soft thresholding powers; (B) Cluster dendrogram; (C) Clustering of module eigengenes; (D) Correlation of the gene module with metabolic
phenotypic features (The data in the module represents the correlation coefficient and statistical value between each gene set and metabolic pathway);
(E) Confidence intervals of log lambda; (F) Partial likelihood deviance of log Lambda.
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Kaplan–Meier (KM) method for the two groups separately in
three cohorts. Additionally, the receiver operating characteristic
(ROC) curve and area under the curve (AUC) values were
calculated using the “survival ROC” package to evaluate the
time-dependent predictive ability of the model. Furthermore,

we compared our model with nine reported models from the
literature in terms of their ability to predict 1-year survival, using
ROC and AUC analysis (Ma et al., 2021; Ye et al., 2021; Huang
et al., 2023; Zhang et al., 2023; Ren et al., 2021; Liu et al., 2021;
Yan et al., 2020; Yan et al., 2022; Zhou et al., 2019).

FIGURE 3
Construction and validation of a metabolism-associated prognostic risk model. (A) Risk score for the model; (B–D) Survival curves analysis of three
cohorts; (E–G) ROC curve and evaluated AUC values for three cohorts; (H) Comparison of our model with four other models demonstrating superior
predictive efficacy.
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2.5 Characteristics between the two
risk groups

We compared the differences between the two groups in terms
of available characteristics, including age, stage, tumor site,
therapies, alcohol history, and the expression of the five
indicative genes in TCGA. The comparison results were
presented using boxplots or heatmaps generated by the “ggpubr”
and “Complex Heatmap” packages.

2.6 Correlation analysis between risk score
and phenotypic features

To explore the underlying mechanism of the risk score, we
analyzed the association between risk scores and phenotypic
features, including metabolism, DDR, and immune infiltration.
This analysis involved comparing the differences in seven
metabolic pathways, 22 immune cell infiltrations, and four types
of estimates between the two different risk groups. Additionally, we
analyzed the correlation between significantly different phenotypic
features. The results were visualized using violin charts, beeswarm
plots, or correlation heatmaps generated by the “ggplot2,”
“ggbeeswarm,” and “corrplot” packages.

2.7 Gene set enrichment analysis

To further investigate the implied mechanisms of the risk
score, gene set enrichment analysis (GSEA) was performed on
DEGs between two risk groups. The DEGs were initially screened
using the “DESeq2” package, with a |log2FC| > 1 and an adjusted
FDR <0.05 as the cutoffs. The direction of regulation (up or
down) for the DEGs was plotted using the “ggplot2” package.
DEGs with an adjusted FDR <0.05 were then used for GSEA.
Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis, and GSEA
were performed using the “Clusterprofiler” package with
reference to “org.Hs.eg.db” (Carlson M, 2019. org.Hs.eg.db:
Genome wide annotation for Human. R package version
3.8.2.). An adjusted p-value <0.05 was selected as the cutoff
criteria for considering significant results in GO terms, KEGG
pathway, and GSEA.

2.8 Drug sensitivity analysis and validation

The drug sensitivity of patients was predicted using the half-
maximal inhibitory (IC50) calculated with the “pRRophetic”
package. We selected several recommended or associated
drugs for drug sensitivity analysis based on the clinical
guidelines of PC. The difference between the two groups was
assessed and displayed using columnar beeswarm plots created
with the “ggbeeswarm” and “customLayout” packages.
Additionally, we downloaded data on patient response to
gemcitabine in TCGA using the “TCGAbiolinks” package, as
reported by Nicolle, and validated it between the two groups
(Nicolle et al., 2021).

2.9 Construction of a clinical nomogram

To demonstrate the practical application, a clinical nomogram
model combining the risk score and clinical parameters was
constructed using the “survival” and “RMS” packages. Owing to
the large number of missing values for clinical parameters in TCGA,
only variables (age, stage, radiotherapy, and pharmatherapy) with a
sufficient number of samples and high relevance to survival were
included. The nomogram was used to evaluate the 1-, 2-, and 3-year
survival rates of patients in TCGA. Calibration curves and the
C-index were used to assess the consistency between the
predicted and actual survival rates.

2.10 Statistical analysis

Statistical analysis was performed using GraphPad Prism
(version 9.0.0 for Windows) and R software (version 4.2.1 for
Windows). In GraphPad Prism, t-tests or Wilcoxon signed-rank
tests were used to compare measured differences between groups,
and the chi-square test was used to analyze associations between
categorical variables. Other statistical analyses were primarily
conducted using R software, as described earlier, including
scoring each feature, identifying DEGs and hub genes, GSEA,
calculating drug sensitivity, and constructing the nomogram. The
correlation coefficient between phenotypic features was evaluated
using Pearson’s correlation. Statistical significance was set
at P < 0.05.

3 Results

3.1 Identification of metabolism-associated
hub genes in PC

We obtained transcriptome and clinical data from 178 PC
patients (via TCGA) in this study for constructing models and
exploring mechanisms. Furthermore, we obtained an additional
159 PC cases (69 in GSE62452 and 90 in ICGC-PAAD-US) for
validating the risk model. To screen DEGs in GSE62452, we
collected 61 non-tumor tissues from PC patients. We identified
10,031 genes that existed in both TCGA and GSE62452, and
6,747 genes were screened as DEGs in GSE62452. For further
analysis, we obtained 5,872 genes as the intersection gene dataset,
and their transcriptome data were used to score metabolism,
DDR, and ICI activities for each patient.

The function power analysis showed that a soft threshold of
14 was optimal for ensuring a scale-free network in the WGCNA
(Figure 2A). By merging similarity modules and applying a cut-line,
we identified a total of 13 modules, with each module assigned a
color using the dynamic tree cut method (Figure 2C). The
coexpression network was visualized in a network heatmap plot
(Figure 2B). Each color module represented a gene set with closely
associated expressions. The gray module represented genes that
were not assigned to any other cluster. The other 12 modules were
plotted in a heatmap to evaluate the association between each
module and different metabolic pathways (Figure 2D). Based on
the criteria (|Cor| > 0.65), yellow, black, and green-yellow modules,
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which collectively included 536 genes, were selected for
further analysis.

3.2 Construction and validation of a
metabolism-associated prognostic
risk model

To filter genes with predictive value, we performed univariate Cox
regression analysis and identified 362 genes among the metabolic hub
genes (p < 0.001). Based on the 1000-fold cross-validation results of
LASSO regression analysis, the optimal efficacy was achieved when ten
variables were selected as the target markers (Figures 2E,F).
Furthermore, through multivariate Cox regression analysis, we

identified five genes derived from the LASSO regression analysis
that could independently construct a gene signature to predict the
prognosis of PC as described in 2.4.

Patients were divided into two groups based on the median risk
score for validation. The KM curve showed that the high-risk group had
significantly worse OS than the low-risk group (Figure 3B), which was
further verified in external validation sets fromGEO and ICGC (Figures
3C,D). The ROC curves and AUC values of the three datasets
demonstrated the predictive ability of the risk score from a time-
dependent perspective (Figures 3E–G). In TCGA, the AUCs for 1-,
2-, and 3-year were 0.75, 0.74, and 0.80, respectively, indicating good
predictive performance for PC. When compared with other reported
models, ourmodel exhibited a better ROC curve andAUCvalue, and the
top five models are displayed in Figure 3H (Supplementary Figure S1).

TABLE 1 Clinical information of the two groups in TCGA.

Characteristic Clinical information in TCGA cohort P value

High-risk group (n = 89) Low-risk group (n = 89) Overall (n = 178)

Age (years)

Mean (SD) 63.49 (11.34) 65.61 (10.30) 64.55 (10.88) 0.1974

Median [Min, Max] 64 [41,85] 66 [35,88] 65 [35,88]

Gender

Male 48 (54%) 50 (56%) 98 (555) 0.7631

Female 41 (46%) 39 (44%) 80 (45%)

Vital status

Alived 29 (33%) 56 (63%) 85 (48%) <0.0001
Dead 60 (67%) 33 (37%) 93 (52%)

Pathological type

Infiltrating duct carcinoma 78 (88%) 64 (72%) 142 (80%) 0.0314

Adenocarcinoma 8 (9%) 13 (15%) 21 (12%)

Neuroendocrine carcinoma 3 (3%) 8 (9%) 11 (6%)

Mixed or others 0 (0%) 4 (4%) 4 (2%)

Stage

I 7 (8%) 14 (16%) 21 (12%) 0.3757

II 77 (87%) 69 (78%) 146 (82%)

III or IV 4 (4%) 4 (4%) 8 (4%)

Unknown 1 (1%) 2 (2%) 3 (2%)

Tumor site

Head of PC 65 (73%) 64 (72%) 129 (72%) 0.5290

Body of PC 5 (6%) 10 (11%) 15 (8%)

Tail of PC 8 (9%) 7 (8%) 15 (8%)

Pancreas 11 (12%) 8 (9%) 19 (11%)

Pharmaceutical Therapy

Yes 67 (75%) 63 (71%) 130 (73%) 0.6456

No 17 (19%) 22 (25%) 39 (22%)

Unknown 5 (6%) 4 (4%) 9 (5%)

Radiation Therapy

Yes 21 (24%) 27 (30%) 48 (27%) 0.5561

No 60 (67%) 56 (63%) 116 (65%)

Unknown 8 (9%) 6 (7%) 14 (8%)

Alcohol history

Yes 55 (62%) 46 (52%) 101 (57%) 0.2235

No 27 (30%) 38 (43%) 65 (37%)

Unknown 7 (8%) 5 (6%) 12 (7%)
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3.3 Clinical and pathological characteristics
of two groups

The distribution of clinical and pathological information
between the two groups is presented in Table 1. The analysis

results showed that, except for vital status and pathological types,
no significant distribution differences were observed in other
characteristics. The expression levels of the five indicator genes in
the high-risk group were higher than those in the low-risk group,
which may explain the potential mechanisms of OS (Figure 4A).

FIGURE 4
Differences in clinical and phenotypic features between the two groups. (A) Heatmap of clinical features and gene expression; (B) Differences in
estimate scores; (C) Differences in seven metabolic pathways and DDR; (D) Differences in 22 immune cell infiltrations; (E) Correlation coefficients
between significant phenotypic features; (F) Heatmap of the correlations. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.4 Correlation between risk score and
phenotypic features

The risk score showed strong associations withmetabolism,DDR, and
estimate scores but weak correlations with 22 immune cells, as revealed by

the differential analysis (Figures 4B–D). The high-risk group demonstrates
lower scores of stromal, immune, and estimate, while the tumor purity
score is higher. In terms ofmetabolism, the high-risk group exhibits higher
scores for TCA, DDR and metabolism of lipid, carbohydrate, amino acid,
nucleotide, vitamin, but a lower score for integrated energymetabolism. To

FIGURE 5
Gene set enrichment analysis (GSEA) between two risk groups. (A) Volcano plot of DEGs; (B) Connection between genes and pathways; (C) GSEA
results; (D) GO analysis of DEGs; (E) KEGG analysis; (F,G) GSEA of upregulated and downregulated pathways.
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further investigate the implied mechanism of the risk score, correlation
analysis revealed that the risk score had the strongest correlationwithDDR
rating scores (correlation coefficient: 0.41, P < 0.001), followed by
nucleotide, carbohydrate, immune, TCA, and vitamin scores (Figures
4E,F). In terms of the relationship between phenotypic features, DDR
showed a strong correlation with lipid, carbohydrate, amino acid,
nucleotide, and TCA metabolism, particularly with the latter two
features. In contrast, the immune score displayed a weak correlation
with metabolism and DDR. For the internal analysis of metabolism
pathways, the correlation coefficient between nucleotide and TCA was
0.72, and both were closely related to lipid, carbohydrate, and amino acid
metabolism. The correlation between different factors showed a positive
correlation, except for energy metabolism. This reflects that patients
identified as high-risk by our model may be more closely related to
changes in the DDR pathway, which requires the support of metabolic
pathways such as nucleotide and TCA.

3.5 GSEA reveals the mechanism of risk
derived from multiple metabolic or
proliferative pathways

In total, 10,720 DEGs were re-identified as potential factors that
could contribute to the survival differences between the two different

risk groups. Among them, 705 DEGs were upregulated and
2,660 DEGs were downregulated in the high-risk group
compared with those in the low-risk group (Figure 5A). GO
analysis of the DEGs indicated that these genes were highly
enriched in biological processes such as nucleocytoplasmic
transport or replication, cellular components including
mitochondria, and molecular functions related to regulating
metabolism or ATP-dependent activities, as shown in Table 2
(Figure 5D). KEGG analysis and GSEA results showed that DEGs
were enriched in several pathways closely related to metabolism and
proliferation (Figures 5B,C,E). Nine pathways may explain the
factors associated with the risk score and their effect on survival;
among these pathways, five were upregulated and four were
downregulated (Figures 5F,G).

3.6 Drug sensitivity analysis and validation

IC50 values reflect the sensitivity of patients to drugs, with lower
values of IC50 indicating greater sensitivity. Gemcitabine and 5-
fluorouracil were the only pharmaceuticals included in the drug
sensitivity analysis that were also recommended in the PC
guidelines. Additionally, the IC50 values of cisplatin, olaparib,
and paclitaxel were analyzed considering that oxaliplatin and

TABLE 2 GO analysis results of the DEGs.

Ontology ID Description GeneRatio p.Adjust Count

Biological Process GO:0140014 mitotic nuclear division 208/6734 6.47E-22 208

GO:0006260 DNA replication 182/6734 3.79E-19 182

GO:0016072 rRNA metabolic process 165/6734 1.72E-15 165

GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic process 248/6734 5.46E-15 248

GO:0051054 positive regulation of DNA metabolic process 169/6734 4.43E-11 169

GO:0006913 nucleocytoplasmic transport 180/6734 1.54E-10 180

GO:2001020 regulation of response to DNA damage stimulus 172/6734 1.96E-10 172

Cellular Component GO:0005759 mitochondrial matrix 240/7017 1.74E-09 240

GO:0098798 mitochondrial protein-containing complex 154/7017 5.41E-08 154

GO:0034399 nuclear periphery 86/7017 9.16E-08 86

GO:0032993 protein-DNA complex 122/7017 1.29E-07 122

GO:0010494 cytoplasmic stress granule 55/7017 4.07E-07 55

GO:0005761 mitochondrial ribosome 56/7017 1.98E-06 56

GO:0005811 lipid droplet 57/7017 0.00016 57

Molecular Function GO:0016887 ATP hydrolysis activity 199/6853 7.17E-12 199

GO:0008094 ATP-dependent activity, acting on DNA 73/6853 1.54E-05 73

GO:0140662 ATP-dependent protein folding chaperone 30/6853 0.000166 30

GO:0008378 galactosyltransferase activity 23/6853 0.001299 23

GO:0016758 hexosyltransferase activity 100/6853 0.001474 100

GO:0003688 DNA replication origin binding 14/6853 0.001685 14

GO:0140297 DNA-binding transcription factor binding 217/6853 0.00237 217
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albumin paclitaxel were recommended in the PC guidelines.
Furthermore, the predictive IC50 values of these five
pharmaceuticals to assess the predictive value of the risk score
between the two groups. The results showed that, except for
paclitaxel, the IC50 values of other pharmaceuticals in the high-

risk group were significantly higher than those in the low-risk group
(Figure 6A). In the analysis of the actual response to gemcitabine, a
trend emerged suggesting that patients with lower risk scores and a
higher proportion in the low-risk group exhibited better responses
(Figures 6B,C).

FIGURE 6
Predicting drug sensitivity and constructing a nomogram model. (A) Comparison of IC50 values between the high- and low-risk group; (B,C)
Analysis of actual response to gemcitabine; (D)Nomogrammodel integrating the risk score and valuable clinical parameters; (E)Univariate Cox analysis of
the risk score and included genes; (F) Calibration curves for 1, 2, and 3 years of the nomogram. ***P < 0.001.
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3.7 Application of risk score in a clinical
nomogram model

To further validate the accuracy and usability of the risk score, a
nomogram was constructed using the risk score and several clinical
parameters. The total points obtained from the nomogram were
used to evaluate the 1-, 2-, and 3-year OS rates in PC (Figure 6D).
The nomogram displayed that younger age, administration of
pharmaceutical therapy, and low-risk scores were all protective
prognostic factors; these tendencies were consistent with
expectations. The previous administration of radiotherapy and
the later stage of the disease also showed a partial protective
tendency. However, the sample size in some cohorts was
insufficient to achieve statistical significance. A forest plot was
used to display the predictive value of the five hub genes with
hazard ratios in PC (Figure 6E). We further analyzed levels of five
genes in other cancers with TCGAplot, most of them upregulated
(Supplementary Figures S2A–E) (Liao and Wang, 2023). The
protein expression of them on the Human Protein Atlas database
may also upregulated in PC (DLX3 and SPRR1B pending analysis)
(Supplementary Figures S2F,H). To verify the accuracy of the model,
calibration curves were performed (Figure 6F), and the C-index was
found to be 0.778 (0.729–0.828), indicating that the nomogram has
good capability for predicting the OS rate of PC patients.

4 Discussion

Metabolic reprogramming plays a crucial role in the
mechanisms for underlying many malignant behaviors of PC
(Hao et al., 2021). Understanding its characteristics and
exploring potential targets are of great significance for improving
treatment efficacy. Numerous studies have demonstrated that
targeting specific metabolic pathways can exert anticancer effects
(Zu et al., 2022). However, the regulation process of metabolic
reprogramming is complex, and few studies have comprehensively
considered multiple metabolic pathways simultaneously. Therefore,
we aimed to construct and validate a metabolism-associated
prognostic risk model based on the level of metabolic phenotype,
and explore its potential mechanisms.

Constructing a prognostic model is a common approach in
bioinformatics analysis based on transcriptome data. In previous
studies, directly intersected with phenotype-associated gene sets was
a conventional step in constructing phenotype-related prognostic
models. Metabolism has been a focus in similar studies. However,
the gene sets used to constructmodels based on specific phenotypes that
were often derived from previous studies. Our study adopted a method
that screens hub genes based on metabolic phenotype scorings through
using WGCNA. This approach recognizes that functional phenotypes
of patients are often the result of combined actions of sets of genes. The
performance of our model was well validated using KM and ROC
curves in external datasets and exhibited good feasibility in a nomogram
model. Moreover, our model demonstrated superior predictive ability
for 1-year survival compared with that of the nine reported PC models.
Our study findings revealed a closer relationship between risk score,
metabolism, and DDR levels than between immunological or clinical
features. This can be reasonably explained by the role of metabolism in
mediating multiple phenotypes of PC that affect survival, particularly

through DDR. As summarized in previous reviews, metabolites of lipid,
carbon, and amino acids serve as the primary sources for nucleic acid
metabolism and interact through the TCA pathway, collectively
establishing the basis for DDR (Hönigova et al., 2022; Jurkovicova
et al., 2022). The analysis results of GO, KEGG, and GSEA indicated
that the risk score may originate from multiple metabolic or
proliferative pathways, reaffirming the significance of metabolic
processes in various malignancies of PC.

Five genes (DLX3, HMGA2, SPRR1B, MYEOV, and FAM111B)
were included in this model. In the survival analysis of these five genes,
each of themwas significant as a risk factor in univariate Cox regression,
whereas only HMGA2 was significant in multivariate Cox regression.
Multivariate Cox analysis demonstrated that a robust prognostic risk
model could be constructed using these integrated five genes. Except for
DLX3, cumulative evidence has indicated that these genes participate in
the malignant process of PC and are accepted for constructing similar
models. As reported previously, HMGA2 sever as an upstream protein
that alters chromatin structure and regulates gene expression,
participating in various tumorigenic process (Huang et al., 2018;
Hashemi et al., 2023). A necroptosis-related signature was
constructed with HMGA2, indicating the predictive value of
HMGA2 in PC (Chen et al., 2022). FAM111B and MYEOV have
been incorporated into a necroptosis-related prognostic model for PC
(Wu et al., 2022). Preliminary single-gene bioinformatics studies have
indicated that FAM111B and MYEOV are highly expressed and closely
associated with poor prognosis in PC (Gong et al., 2022; Tang et al.,
2020). The enrichment results of FAM111B were related to cell cycle
signaling and DDR pathways, while MYEOV was related to several
glycolysis-related pathways. Emerging evidence indicates that
overexpression of MYEOV increases the expression of metabolism-
related enzyme genes through the c-Myc and mTORC1 pathways
(Tange et al., 2023). SPRR1B has been validated in lung
adenocarcinoma and included in a PC model (Zhang et al., 2021; Liu
et al., 2019). A pan-cancer analysis revealed that SPRR1B was a
significant biomarker of cancer stemness that used for predicting
immunotherapy response (Zhang et al., 2022). The homeobox
transcription regulator DLX3 is known for regulating skin epidermal
homeostasis, and its loss induces squamous cell carcinoma of the skin
(Bhattacharya et al., 2018; Palazzo et al., 2016). Themutation ofDLX3 on
autosome leads to tricho-dento-osseous syndrome (Dong et al., 2023). In
our study, we found that DLX3 was a risk factor for PC, not a protective
factor as observed in squamous cell carcinoma of the skin. Further
studies are needed to determine whether this paradox can be attributed
to the pathological characteristics of adenocarcinoma with abundant
stroma in PC.

To our knowledge, this is the first study to screen metabolism-
associated hub genes based on metabolic phenotype scoring and
construct a prognostic model. Nonetheless, our study has some
limitations. First, our data were from obtained online databases
TCGA, GEO, and ICGA, but analysis data used for exploring
phenotypic features, drug sensitivity, and nomogram model was
only from TCGA. Second, real prospective clinical cohorts and basic
investigations are needed for further validation. Lastly, the specific
molecular mechanisms explaining the crosstalk between risk score,
metabolism, and DDR are still poorly understood.

In conclusion, we constructed and validated a metabolism-
associated prognostic model based on the levels of seven
metabolic phenotypes in PC. The findings suggest that the
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mechanism of risk scores is primarily related to DDR and the
metabolism of nucleotides, carbohydrates, and TCA. The close
relation between metabolism and DDR may indicate that
metabolic reprogramming provides abundant substances for
DDR, promoting malignant behaviors. This offers new insight
into the combined treatment strategies of PC.
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SUPPLEMENTARY FIGURE S1
Comparison of ten models in TCGA dataset using ROC and AUC analysis. (A)
Ourmodel demonstrates superior predictive efficacy in PC; (B)Metabolism-
related model reported by Huang et al.; (C) KRAS-associated metabolic
model reported by Ma et al.; (D) Lipid metabolism-related model reported by
Ye et al.; (E) Neuroendocrine regulation- and metabolism-related model
reported by Zhang et al.; (F) Stem cell-related model reported by Ren et al.;
(G) Immune-related model reported by Liu et al.; (H) Pyroptosis-related
model reported by Yan et al.; (I) Four-gene model reported by Yan et al.; (J)
Four-gene model reported by Zhou et al.

SUPPLEMENTARY FIGURE S2
The transcription levels of five genes in pan cancers (A–E) and protein
expression of HMGA2 (F), MYEOV (G), and FAM111B (H) in cancer and
paracancer tissue (A color version of this figure is available in the online
journal.). *P <0.05, **P < 0.01, ***P <0.001, ****P < 0.0001, ns, no statistically
significant.
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