AUTHOR=DeWeese Kelly , Molano Gary , Calhoun Sara , Lipzen Anna , Jenkins Jerry , Williams Melissa , Plott Christopher , Talag Jayson , Grimwood Jane , Jannink Jean-Luc , Grigoriev Igor V. , Schmutz Jeremy , Yarish Charles , Nuzhdin Sergey , Lindell Scott TITLE=Scaffolded and annotated nuclear and organelle genomes of the North American brown alga Saccharina latissima JOURNAL=Frontiers in Genetics VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2025.1494480 DOI=10.3389/fgene.2025.1494480 ISSN=1664-8021 ABSTRACT=Increasing the genomic resources of emerging aquaculture crop targets can expedite breeding processes as seen in molecular breeding advances in agriculture. High quality annotated reference genomes are essential to implement this relatively new molecular breeding scheme and benefit research areas such as population genetics, gene discovery, and gene mechanics by providing a tool for standard comparison. The brown macroalga Saccharina latissima (sugar kelp) is an ecologically and economically important kelp that is found in both the northern Pacific and Atlantic Oceans. Cultivation of Saccharina latissima for human consumption has increased significantly this century in both North America and Europe, and its single blade morphology allows for dense seeding practices used in the cultivation of its Asian sister species, Saccharina japonica. While Saccharina latissima has potential as a human food crop, insufficient information from genetic resources has limited molecular breeding in sugar kelp aquaculture. We present scaffolded and annotated Saccharina latissima nuclear and organelle genomes from a female gametophyte collected from Black Ledge, Groton, Connecticut. This Saccharina latissima genome compares well with other published kelp genomes and contains 218 scaffolds with a scaffold N50 of 1.35 Mb, a GC content of 49.84%, and 25,012 predicted genes. We also validated this genome by comparing the synteny and completeness of this Saccharina latissima genome to other kelp genomes. Our team has successfully performed initial genomic selection trials with sugar kelp using a draft version of this genome. This Saccharina latissima genome expands the genetic toolkit for the economically and ecologically important sugar kelp and will be a fundamental resource for future foundational science, breeding, and conservation efforts.