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A method for accurately classifying donkey breeds has been developed by
integrating single nucleotide polymorphism (SNPs) data with machine learning
algorithms. The approach includes preprocessing donkey genomic sequencing
data, addressing data imbalance with the Synthetic Minority Over-sampling
Technique (SMOTE), and utilizing an improved Leave-One-Out Cross-
Validation (LOOCV) for dataset partitioning. Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Random Forest (RF) models were
constructed and evaluated. The results demonstrated that different
chromosomes significantly influence classifier performance. For instance,
chromosome Chr2 showed the highest classification accuracy with KNN,
while chromosome Chr19 performed best with SVM and RF models. After
enhancing data quality and addressing imbalances, classification performance
improved substantially, with accuracy, precision, recall, and F1 score showing
increases of up to 15% in certain models, particularly on key chromosomes. This
method offers an effective solution for donkey breed classification and provides
technical support for the conservation and development of donkey genetic
resources.
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1 Introduction

Donkeys, as an integral part of livestock resources, play a significant role in global
biodiversity conservation (Huang et al., 2023). However, with societal advancements, the
breeding and utilization of donkeys have sharply declined, leading to a severe threat to the
genetic resources of donkey populations, with many breeds now endangered (Seyiti and
Kelimu, 2021). The development and conservation of donkey genetic resources face
significant challenges (Wang et al., 2022). To address these challenges, it is imperative
to explore efficient and accurate methods for classifying donkey breeds, to select superior
breeds for breeding and identify endangered breeds for protection (Wang et al., 2020).

Traditional methods for identifying donkey breeds primarily rely on biological
experiments and morphological characteristics. However, these methods are time-
consuming, labor-intensive, and prone to environmental and conditional influences,
leading to lower classification accuracy (Franco-Duarte et al., 2019; Hosseini et al., 2019).

Single Nucleotide Polymorphisms (SNPs) refer to variations at a single nucleotide
position in the genome, representing the most common form of genetic variation in the
human genome. The study of SNPs dates back to the late 1990s when scientists first
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recognized the widespread presence of these variations among
individuals and their potential in associating genes with traits
(Lander, 1996).

SNPs typically occur in populations at a certain frequency, and
their widespread distribution across the genome makes them ideal
genetic markers (Waterston et al., 2002). With the advent of high-
throughput sequencing technologies, the detection of SNPs has
become more efficient and cost-effective, significantly advancing
SNP-related research. These technologies have enabled researchers
to identify millions of SNPs and apply them to various research
purposes, including disease association studies, population genetics,
evolutionary biology, and breeding research in agricultural sciences
(Mccarthy et al., 2004).

In genomic research, the classification of SNPs has become a
focal area of study. Traditionally, SNPs classification has relied on
biological experiments and morphological characteristics. However,
with the development of bioinformatics, machine learning
techniques have been widely applied to SNPs classification tasks.
Modern SNPs classification methods typically combine high-
dimensional SNPs data with various machine learning algorithms
to identify genetic variations associated with specific phenotypes,
diseases, or drug responses (Qi, 2012).

The advantages of SNPs classification include its ability to
process vast amounts of genomic data and automatically identify
potentially useful information through computational models,
thereby improving research efficiency and accuracy. Additionally,
SNP classification helps reveal complex relationships between genes
and traits, which has important applications in disease prediction,
personalized medicine, and breeding in crops and livestock (Schiavo
et al., 2020; Silva et al., 2022).

However, SNPs classification also faces several challenges. First,
the high dimensionality and complexity of SNPs data make it
difficult for traditional data processing methods to be effectively
applied. Second, linkage disequilibrium (LD) between SNPs, where
certain SNPs tend to be inherited together, can form LD blocks in
specific genomic regions, potentially affecting the accuracy of
classification models (Altmüller et al., 2001). Furthermore, due to
data quality issues and insufficient sample sizes, SNPs classification
may also encounter errors and inaccuracies in practical applications
(Whalen et al., 2022).

In recent years, with the development of bioinformatics, the
integration of single nucleotide polymorphism (SNPs) data and
machine learning has provided a new and efficient approach for
classifying donkey breeds (Ho et al., 2019). SNPs, as a third-
generation molecular marker technology, significantly impact the
expression of traits across different breeds, making them ideal
genetic markers for studying phenotypes and diseases (Lander,
1996; Srivastava et al., 2023). Concurrently, machine learning
algorithms, known for their efficacy in handling and analyzing
high-dimensional data, have been widely applied to the
processing of SNPs data (Thottakkara et al., 2016). As research
in this area has progressed, the feasibility and effectiveness of
combining machine learning with SNPs for classification have
been increasingly validated (Ban et al., 2010).

However, traditional SNPs classification methods based on
machine learning often rely on large amounts of accurate sample
data (Ho et al., 2019). Due to practical limitations and cost factors,
obtaining large sample sizes is often challenging (Macgregor et al.,

2008). Additionally, during donkey crossbreeding, the expression of
certain SNPs may be less pronounced, and the data processing phase
may introduce significant errors, making classification in practical
applications difficult (Shen et al., 2021). Therefore, developing a
method to quickly filter out errors in small sample data is crucial
(Silva et al., 2022). Such a method would not only enhance
classification accuracy but also reduce model bias caused by data
quality issues, thereby providing more reliable technical support for
accurate donkey breed classification (Schiavo et al., 2020).

To address these challenges, this study proposes a novel
approach that integrates SNPs markers, Synthetic Minority Over-
sampling Technique (SMOTE), machine learning algorithms, and
an improved Leave-One-Out Cross-Validation (LOOCV) method
for the precise classification of donkey breeds. The study utilized
unlabelled SNPs data from nine different donkey breeds, applied the
improved LOOCV technique for dataset partitioning, and balanced
the dataset using SMOTE, aiming to resolve various issues and
challenges exposed during data processing. In selecting classification
algorithms, the study employed three machine learning models
commonly used in genetic data analysis: Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). The
results demonstrate that the proposed workflow performs
exceptionally well in classifying and predicting donkey breeds,
particularly in addressing challenges related to small sample sizes,
data errors, and data imbalance. By combining SNPs markers,
SMOTE, machine learning algorithms, and an improved LOOCV
method, this workflow shows significant advantages in the precise
classification of donkey breeds, offering reliable technical support
for the rapid identification and conservation of these breeds.

2 Methods

2.1 Machine learning algorithms

To achieve accurate prediction of donkey breeds, this study
employs three classical machine learning methods widely used in
genomic data analysis and classification: Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF).
These methods have proven effective in the processing and
classification of SNP data (Qi, 2012; Silva et al., 2022).

Support Vector Machine (SVM) is a widely used supervised
learning model whose core idea is to construct an optimal
hyperplane for classification, maximizing the margin between
different classes. SVM performs well in handling high-
dimensional data, particularly by using kernel functions (such
as polynomial and radial basis functions) to map data into a
higher-dimensional feature space, making originally non-linearly
separable data linearly separable in this space. This characteristic
makes SVM especially advantageous in processing complex SNPs
data (Cortes and Vapnik, 1995). In recent years, SVM has been
widely applied in SNPs classification studies. For instance, Ban
et al. (2010) used SVM combined with SNPs data to successfully
identify gene combinations associated with type 2 diabetes,
demonstrating SVM’s strong capabilities in processing high-
dimensional genomic data (Ban et al., 2010). Huang et al.
(2018) used SVM in their study to successfully identify SNPs
combinations associated with cancer susceptibility, further
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proving SVM’s effectiveness and robustness in high-dimensional
genomic data processing (Huang et al., 2018).

K-Nearest Neighbors (KNN) is a commonly used lazy learning
algorithm, where classification decisions are based on the distance
between a sample point and all samples in the training set. KNN
finds the K nearest neighbors and determines the sample’s
classification based on the majority vote of these neighbors. The
simplicity and intuitiveness of the KNN algorithm make it
particularly suitable for small-scale datasets, especially in SNPs
data with local structure, where KNN can effectively identify and
classify tag SNPs (Yang et al., 2010; Russ, 2023).

Random Forest (RF) is an ensemble learning method that
classifies by constructing multiple decision trees based on
random subsets. The advantage of RF lies in its excellent
generalization performance and resistance to overfitting,
particularly when processing high-dimensional data and large
datasets (Qi, 2012). Additionally, RF has a built-in feature
importance evaluation mechanism that can identify the most
critical SNPs in classification tasks (Bertolini et al., 2018;
Venkat, 2018).

These three machine learning methods—SVM, KNN, and
RF—offer complementary strengths in addressing the challenges
associated with SNP-based classification tasks, such as handling
high-dimensional data, identifying local structures, and improving
generalization performance. By employing these methods in this
study, we aim to evaluate their effectiveness in the context of small-
sample SNP datasets for donkey breed classification. This
comprehensive comparison provides critical insights into the
suitability of different algorithms for genomic data analysis and
serves as a foundation for developing robust classification
frameworks tailored to the unique challenges of SNP datasets in
conservation genomics.

2.2 Synthetic minority over-sampling
technique (SMOTE)

In small sample classification research, handling imbalanced
datasets is a key challenge. The Synthetic Minority Over-sampling
Technique (SMOTE) is a commonly used method that addresses
this issue by generating artificial data points to increase the number
of minority class samples, thereby improving the balance of the
dataset and enhancing the model’s ability to recognize minority
classes (Chawla et al., 2002).

The basic operations of SMOTE involve randomly selecting a
sample from the minority class, calculating the distance between this
sample and its K nearest neighbors, randomly selecting N samples
from these neighbors, and performing random linear interpolation
on these samples to generate new minority class samples. Finally,
these synthetic samples are combined with the original dataset to
form a new, balanced training set. Because this method primarily
relies on nearest neighbor calculations and linear interpolation, it
can be efficiently applied even in small sample datasets (Blagus and
Lusa, 2013).

In the context of SNPs classification, the small sample problem is
particularly significant. Due to the high dimensionality and
complexity of genomic data, small sample classification often
faces challenges such as insufficient sample sizes, class imbalance,

and varying data quality. SMOTE technology can alleviate these
problems by generating diverse and representative synthetic
samples, thereby enhancing the generalization ability and
accuracy of classification models (Whalen et al., 2022). In SNPs
classification tasks, the use of SMOTE and other over-sampling
techniques can significantly improve classifier performance. For
example, Bertolini et al. (2018) applied SMOTE to handle
imbalanced data in SNPs classification for cattle breeds, using a
random forest model for classification. The results showed that this
method effectively improved the classification accuracy of minority
SNPs (Bertolini et al., 2018). Similarly, Silva et al. (2022) used
SMOTE in their research, combined with machine learning
algorithms, to enhance the accuracy of SNPs classification under
small sample conditions (Silva et al., 2022).

Overall, SMOTE improves the balance of datasets by generating
synthetic data, thereby effectively enhancing the classifier’s ability to
recognize minority classes in small sample classification. Particularly
in SNPs classification, SMOTE technology generates more
representative synthetic samples by considering the local
structure of the data, significantly improving the overall
performance of classifiers.

This study employed the SMOTE to handle imbalanced datasets
in small sample classification tasks. In this study, the parameters for
SMOTE were set as follows: the value of k_neighbors was set to 1,
meaning that the nearest sample among theminority class neighbors
was selected to generate new synthetic samples. The final number of
samples in each class was expanded to 100, ensuring balance across
classes during the over-sampling process. The generated synthetic
samples were then combined with the original dataset to form a new
balanced training set. These parameter settings allowed us to
preserve the characteristics of the original data while minimizing
the risk of overfitting caused by over-sampling.

2.3 Cross-validation techniques

Cross-validation is a widely used technique in machine learning
to evaluate the performance and generalization ability of models. It
works by partitioning the dataset into multiple subsets, with some
used for training and others for validation. By repeating this process
across different subsets, cross-validation helps to reduce the risk of
overfitting and provides a more reliable estimate of model
performance (Kohavi, 1995). Common cross-validation methods
include k-fold cross-validation, stratified k-fold cross-validation,
and leave-one-out cross-validation (LOOCV).

The primary advantage of cross-validation lies in its ability to
provide robust estimates of a model’s predictive performance across
unseen data, making it an essential step in model selection and
hyperparameter tuning. In k-fold cross-validation, for instance, the
dataset is divided into k equally sized folds. Each fold is used once as
the validation set, while the remaining k−1 folds are used for
training. This process is repeated k times, and the results are
averaged to provide a final performance metric (James et al.,
2013). Stratified k-fold cross-validation further improves this
approach by ensuring that the proportion of samples from
different classes in each fold is consistent with the overall dataset,
which is particularly important for imbalanced datasets (Wong and
Yeh, 2019).
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Cross-validation techniques play a critical role in genomic
studies, especially those involving SNPs data, due to the high
dimensionality and complexity of the datasets. SNPs datasets
often contain thousands of features but relatively few samples,
creating challenges such as overfitting and data sparsity. Cross-
validation helps address these challenges by enabling rigorous model
evaluation and selection without the need for additional data
collection, which is often costly and time-consuming (Wang
et al., 2022).

In SNP classification studies, Leave-One-Out Cross-Validation
(LOOCV) has been extensively applied because it allows for the
precise assessment of predictive models even with small sample
sizes. For instance, LOOCV has been used to evaluate machine
learning models in identifying disease-associated SNPs, predicting
phenotypic traits, and distinguishing between different breeds in
livestock genetics (Schiavo et al., 2020; Silva et al., 2022).
Additionally, it helps researchers identify overfitting issues by
ensuring that each sample is tested independently, which is
crucial for validating models that process high-dimensional
genomic data.

In this study, we utilize LOOCV, the specialized form of cross-
validation where each sample in the dataset is used once as the
validation set while the remaining samples form the training set.
LOOCV is especially useful for small sample sizes, as it maximizes
the use of available data for both training and validation. While
computationally expensive, LOOCV is often regarded as the gold
standard for performance evaluation in small datasets because it
provides the most exhaustive use of data and reduces bias in
performance estimates (Astrologo et al., 2023).

The use of LOOCV in this study aligns with the specific
requirements of SNP datasets for donkey breed classification.
Given the small sample size and high dimensionality of SNP
data, LOOCV provides a thorough evaluation framework to test
the generalization ability of models and avoid overfitting. By
integrating LOOCV with machine learning algorithms and data
balancing methods, this study aims to develop a reliable framework
for accurate classification of donkey breeds, contributing to genomic
research and conservation efforts.

2.4 Performance evaluation

The performance of models is typically evaluated using a series
of metrics, including Accuracy, Precision, Recall, and F1 Score.
These metrics, derived from the confusion matrix, provide a
comprehensive assessment of a model’s performance across
different dimensions.

Accuracy: Represents the proportion of correctly predicted
samples to the total number of samples, measuring the overall
correctness of the model.

Accuracy � TP + TN

TP + FP + FN + TN

Precision: Represents the proportion of true positive predictions
among all samples predicted as positive, used to measure themodel’s
prediction accuracy.

Precision � TP

TP + FP

Recall: Represents the proportion of true positive samples
successfully predicted as positive, used to measure the model’s
ability to identify positive cases.

Recall � TP

TP + FN

F1 Score: Is the harmonic mean of Precision and Recall,
providing a balanced measure of both accuracy and completeness.

F1 Score � 2 ×
Precision × Recall
Precision + Recall

Where Total Positive (P) represents the number of actual
positive samples, and Total Negative (N) represents the number
of actual negative samples. The four main terms in the confusion
matrix are explained as follows:

True Positive (TP): The number of samples correctly predicted
as a specific donkey breed.

True Negative (TN): The number of samples correctly predicted
as not belonging to a specific donkey breed.

False Positive (FP): The number of samples incorrectly predicted
as a specific donkey breed.

False Negative (FN): The number of samples incorrectly
predicted as not belonging to a specific donkey breed.

2.5 Experimental design

The experimental design of this study is outlined in Table 1.
Data preprocessing is a crucial first step in any machine learning
task. In this stage, the collected donkey genomic sequencing data is
subjected to cluster analysis and partitioning to lay the foundation
for subsequent work. Cluster analysis helps reveal SNPs within the
data at the population level and divides the data into subsets with
similar characteristics, thereby aiding the machine learning
algorithms in better understanding and processing the data. The
data is then further organized and divided according to
chromosomes, providing more structured input for the
classification tasks. This ensures that during the processing of
each genome, different chromosomal information is
distinguished, thereby enhancing the accuracy and reliability of
the classification models.

Following data partitioning, the LOOCV method is used to
divide the preprocessed data into training and testing sets. To
address the imbalance in the dataset, the Synthetic Minority
Over-sampling Technique (SMOTE) is introduced. SMOTE
generates synthetic minority class samples, balancing the dataset
and improving the model’s ability to recognize minority classes.

The third step involves building the machine learning
classification models. In this step, appropriate machine learning
algorithms (SVM, KNN, and RF) are selected, and the training set is
fed into the models for training. The most suitable model is chosen
based on the nature of the task and the characteristics of the data,
with continuous training and tuning to achieve optimal
classification performance.
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Finally, the performance of the established models is evaluated
using the test set and various evaluation metrics. This includes using
accuracy, precision, recall, and F1 score to assess the model’s
performance on the test set. These metrics provide a
comprehensive evaluation of the model’s predictive ability and
determine whether the model has achieved the desired results.
Based on the evaluation outcomes, necessary adjustments and
improvements are made to further enhance the classification
accuracy and stability of the models.

2.5.1 Data preprocessing
This study analyzed sequencing data from nine distinct donkey

breeds, comprising a total of 37 samples. The sample distribution
among breeds is as follows: Pinyang donkey (4 samples), Guangling
donkey (4 samples), Hetian donkey (4 samples), Jami donkey
(5 samples), Kulun donkey (4 samples), Qingyang donkey
(4 samples), Turfan donkey (5 samples), Xinjiang donkey
(4 samples), and Yunnan donkey (3 samples). The sequencing
was conducted using the high-throughput Illumina HiSeq
4000 technology, with sequencing depths ranging from 7x to 50x
(PRJNA431818) (Wang et al., 2020).

After obtaining the raw donkey genomic data, cluster analysis
was conducted to extract SNPs. By using standard donkey genome

data as a reference and combining it with several mainstream
bioinformatics software tools, the raw genomic data was
processed to generate the SNPs dataset. The workflow of the
cluster analysis is illustrated in Figure 1.

Initially, the FASTQC software was used for preliminary quality
control of the raw donkey sequencing data, removing low-quality
segments to ensure the overall data quality, thus improving its
reliability (Andrews, 2010). Subsequently, BWA software was
employed to align the quality-controlled data with the standard
donkey genome, and SAMTOOLS was used to extract sequences
that aligned with the reference genome (Li, 2013).

Next, GATK’s MarkDuplicates module was utilized to remove
duplicate sequences, followed by the HaplotypeCaller module to
generate intermediate files necessary for subsequent analysis
(McKenna et al., 2010). These intermediate files were then
merged using GATK’s CombineGVCFs module in preparation
for the next step. The GenotypeGVCFs module in GATK was
used to generate raw SNPs files, which were further filtered and
extracted using BCFTOOLS and GATK according to optimal
standard conditions.

Finally, PLINK software was employed to apply quality control
filtering to the SNPs based on optimal standard conditions, and to
remove SNPs with linkage disequilibrium. After using PLINK to

TABLE 1 Algorithm workflow.

Algorithm:
Construction and Evaluation of Classification Models Based on SNPs Data

Input:
Data File Set DDD: Each file contains features and class labels of samples.
Classifier Set CCC: A set of different classification algorithms (SVM, KNN, RF).

Output:
Classification performance evaluation results for each data file using different classifiers.

Process
Initialize Results = []
For each data file d in D:
Preprocess d (cluster analysis, organize by chromosomes)
Initialize FileResults = (Wong and Yeh, 2019)
Partition data using LOOCV
Apply SMOTE to handle class imbalance
For each classifier clf in C:
Initialize Accuracies, All_y_true, All_y_pred
For each sample i:
Train clf on the training set after SMOTE
Predict labels for the test set
Store y_test and y_pred

Calculate avg_accuracy, precision, recall, F1 score
Save evaluation metrics to FileResults

Store FileResults in Results
Export Results

FIGURE 1
Cluster analysis workflow.
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remove linkage disequilibrium, the data volume was significantly
reduced, ultimately generating a file recording the SNPs data
(Purcell et al., 2007).

In summary, the raw donkey sequencing data was first processed
using FASTQC for quality control, removing low-quality segments
to ensure reliable data. Next, BWA software was used to align the
data with the reference donkey genome, followed by the extraction
of aligned sequences using SAMTOOLS. To eliminate duplicates,
GATK’s MarkDuplicates module was applied, and intermediate files
were created using the HaplotypeCaller module. These were then
merged and processed using GATK’s CombineGVCFs and
GenotypeGVCFs modules to generate raw SNPs data. The SNPs
were filtered and further processed with BCFTOOLS and GATK
according to standard conditions. Finally, PLINK software was used
to apply quality control filtering to remove SNPs with linkage
disequilibrium, resulting in a cleaned dataset, which was then
saved as a CSV file for further analysis.

In the SNPs dataset derived from the cluster analysis, the SNPs
detected across all breeds were uniformly compared. This
comparison involved the reference genome’s corresponding bases
and the research subjects’ corresponding bases, such as [A/G . . .

G/C, G/T]. During comparison, 0/0 and 1/1 denote homozygous
sites and homozygous mutations, while 0/1 represents heterozygous
mutations. To integrate with machine learning algorithms, 0/0, 0/1,
and 1/1 were encoded as 0, 1, and 2, respectively.

The “curse of dimensionality” in SNPs data presents challenges
for machine learning, increasing the time cost of training and
predicting classification models. During the exploration, this
study attempted to test the method of splitting SNPs data by
chromosomes (Altman and Krzywinski, 2018; Venkat, 2018).
Given that donkeys have 30 pairs of autosomes and one pair of
sex chromosomes, and considering the high interference of sex
chromosomes, the study focused on the 30 autosomes. This
partitioning resulted in 30 separate datasets, significantly
reducing the dimensionality of the SNPs data. Each dataset was
used independently to train the classification models, and the
classification accuracy of each chromosome was recorded. When
new data requires prediction, only the chromosome data with higher
classification accuracy is used to predict its category. This
improvement significantly enhanced the algorithm’s efficiency.
After partitioning the data by chromosomes, each dataset was
saved separately and stored in. csv format. When reading the
data, all SNPs were treated as feature vectors (X) and all classes
as labels (y).

2.5.2 Data partitioning and processing
Due to the insufficient and uneven distribution of sample

numbers, coupled with the vastness of animal genome data, class
imbalance was exacerbated, posing a significant challenge to
constructing machine learning classification models. This
imbalance can cause the classification model to favor the classes
with larger sample sizes, severely affecting the accuracy of donkey
breed prediction and reducing the model’s reliability. To address the
issue of insufficient sample numbers, this study employed the
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla
et al., 2002), which balances the dataset by synthesizing some
artificial data points. Previous studies have demonstrated the
feasibility of applying SMOTE to biological genomic data. For

instance, Reel et al. (2021) mentioned in a review of machine
learning and biological data that the SMOTE method can be
used to overcome imbalance issues (Reel et al., 2021). Whalen
et al. (2022) noted that few real-world datasets are completely
balanced, and SMOTE is well-suited for addressing extreme
imbalances in genomic data (Whalen et al., 2022).

When applying SMOTE, this study adjusted SMOTE’s
parameters by setting k_neighbors to 1, so that each minority
class sample was only combined with its nearest neighbor sample
to generate new synthetic samples, thereby reducing the complexity
of generating synthetic samples and making the generated samples
more reflective of the original data. Each class sample was expanded
to 100 samples, ensuring that each class was balanced during the
expansion process, thus addressing the imbalance in sample data.
Subsequently, the dataset was standardized to ensure that each
feature contributed equally during the analysis or modeling process.

2.5.3 Machine learning model construction
After data processing, three algorithms—Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), and Random
Forest (RF)—were directly applied using the Scikit-learn library
in Python. After tuning the parameters of these algorithms, the
prepared training data was input into the models for training.
Table 2 lists the parameters used in the models.

For the SVM model, the parameter C represents the penalty
parameter, controlling the degree of punishment for classification
errors. A larger C value indicates stricter punishment, which can
lead to a more complex model that may be prone to overfitting. The
Kernel parameter specifies the type of kernel function, with the
Radial Basis Function (RBF) kernel selected here, as it is well-suited
for nonlinear problems. The Gamma parameter controls the
coefficient of the kernel function, with “auto” set to automatically
select it, defaulting to the inverse of the number of features. The
decision_function_shape parameter determines the strategy for
multi-class classification problems, with the One-Vs-Rest strategy
employed here. The random_state parameter is set to ensure the
reproducibility of the results.

For the KNN algorithm, after tuning the parameters, it was
found that accuracy differences were minimal, so the default system
configuration was used, with the number of neighbors Kset to
5 by default.

In the RF algorithm, random_state is also set to ensure the
reproducibility of results. The n_jobs parameter is configured to
utilize all available CPU cores for parallel processing, thereby
accelerating the model’s training speed. The Bootstrap parameter
enables bootstrapping, which involves sampling with replacement
from the dataset to construct trees, helping to increase the model’s
generalization ability. The oob_score (out-of-bag score) is used to
estimate the model’s generalization ability effectively, particularly
when data is limited, as the OOB evaluation can save data that
would otherwise be required for validation.

2.5.4 Model performance evaluation
After training the classification models, they were evaluated

using the test data. Performance metrics such as Accuracy,
Precision, Recall, and F1 Score were calculated using the data
from the confusion matrix to assess the effectiveness of
the models.
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3 Results

Table 3 presents the performance evaluation results of the three
best-performing classification algorithms on three specific
chromosomes. These results further validate the differences in
algorithm performance across different chromosomes and
provide critical insights for identifying and optimizing the most
suitable classifiers for specific SNPs datasets. This evaluation not
only aids in understanding the effectiveness of different algorithms
in various genomic regions but also offers guidance for subsequent
model improvement and practical application.

The data summarized above shows the performance of three
different classifiers—Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Random Forest (RF)—on different
chromosomes. The results indicate significant variations in
performance across different chromosomes. Specifically, the KNN
classifier performed best on chromosome Chr2, achieving an
accuracy of 66.66%, a precision of 76.11%, a recall of 66.66%,
and an F1-score of 63.83%. The SVM classifier performed
moderately on chromosome Chr19, with an accuracy of 51.85%,
a precision of 51.91%, a recall of 51.85%, and an F1-score of 46.98%.
The RF classifier showed the poorest performance on chromosome
Chr19, with an accuracy of only 48.14%, a precision of 40.18%, a
recall of 48.14%, and an F1-score of 43.51%. These performance
metrics provide valuable references for selecting the most suitable
classifier for specific datasets and tasks.

However, the overall accuracy of the nine-class classification
task is relatively low. Despite using the Leave-One-Out Cross-
Validation (LOOCV) technique to test all samples, the SNPs data
on certain chromosomes performed poorly across all three
classifiers, contributing almost nothing to the classification task.
Therefore, it is recommended to remove these low-quality data in
subsequent training to improve the overall performance of the
model. This also demonstrates that the method has a certain
level of quality control capability.

Several factors may explain these results. Firstly, although the
SNP data derived from cluster analysis underwent quality control,

the sequencing depth of the data used in this study was relatively
low, whichmay have affected the overall quality of the SNP data and,
consequently, the accuracy of the classifiers. Secondly, some samples
may have come from hybrid offspring, leading to a reduction in
classification accuracy. Finally, errors in data preprocessing,
particularly in the interaction between different bioinformatics
software, may have also contributed to the decreased
classification accuracy.

As shown in Table 4, after evaluating data quality, certain
underperforming samples were removed, as they consistently
exhibited poor classification performance across all classifiers and
contributed minimally to the classification task. Removing these
low-quality data significantly improved the overall accuracy of the
classifiers. For example, the accuracy of the worst-performing RF
classifier on chromosome Chr6 increased from 48.14% to 75%,
precision from 40.18% to 79%, recall from 48.14% to 75%, and F1-
score from 43.51% to 75%. The KNN classifier on chromosome
Chr14 achieved an accuracy of 85%, a precision of 89.33%, a recall of
85%, and an F1-score of 84.25%. The best-performing SVM classifier
on chromosome Chr7 further improved its accuracy to 90%, with a
precision of 92%, a recall of 90%, and an F1-score of 88.89%. As low-
quality data were removed and the dataset was optimized, the
accuracy of the classifiers showed a gradual improvement.

These results indicate that in SNPs classification tasks,
appropriate data preprocessing and quality control can
significantly enhance the performance of classifiers, ensuring
more accurate classification results. This is of great importance
for genomic data analysis and practical applications.

4 Discussion

This study explored the precise classification of donkey breeds
by combining SNPs data with machine learning algorithms. The
core components of the research included data preprocessing, the
use of an improved Leave-One-Out Cross-Validation technique,
SMOTE to handle data imbalance, and the construction of

TABLE 2 Model parameters and descriptions.

Model Parameter Description

Support Vector Machine (SVM) C = 10.0 C: Penalty parameter value, controlling the trade-off between achieving a low
error on the training data and minimizing model complexity.

kernel = “rbf” Kernel: Specifies the type of kernel function to be used; ‘rbf’ refers to the
Radial Basis Function, ideal for non-linear problems.

gamma = “auto” Gamma: Coefficient for the kernel function, with “auto” selecting it based on
the inverse of the number of features.

decision_function_shape = ’ovr’ Decision Function Shape: Strategy for handling multi-class classification
problems, using the One-Vs-Rest (OvR) method.

K-Nearest Neighbors (KNN) Default Configuration Default parameters are used as tuning showed minimal impact on accuracy.

Random Forest (RF) n_jobs = −1 n_jobs: Utilizes all available CPU cores for parallel processing, speeding up
the training process.

bootstrap = True Bootstrap: Enables sampling with replacement from the dataset to construct
trees, enhancing the model’s generalization ability.

oob_score = True OOB Score: Uses out-of-bag samples to evaluate the model’s performance,
particularly useful when data is limited.
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classification models using Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Random Forest (RF). These
models were then thoroughly evaluated for their performance in
classifying donkey breeds.

The results indicate that different chromosomal data
significantly influenced the performance of each classifier. For
instance, chromosome Chr19 showed favorable performance with
both the Random Forest and Support Vector Machine (SVM)
models, while K-Nearest Neighbors (KNN) excelled with
chromosome Chr2. Further analysis revealed that after removing
low-quality data, the SVM model performed best with chromosome
Chr6, KNN with chromosome Chr14, and Random Forest with
chromosome Chr7. These findings suggest that certain specific
chromosomes may play a critical role in the classification of
donkey breeds.

Integrating previous research, the role of chromosomal
differences and DNA methylation patterns in species-specific
traits may be reflected in these results (Chen et al., 2024).
Specifically, genetic variations and DNA methylation regions
(such as HypoMRs and HyperMRs) on certain chromosomes
could affect gene expression, thereby influencing the phenotypic
traits of specific breeds. For instance, hypomethylation or
hypermethylation in certain chromosomal regions may be closely
related to genetic variations in traits such as reproductive capacity,
body size, or other physical characteristics. Therefore, the observed
differences in classifier performance across chromosomes could be
driven by these chromosomal-specific genetic differences and gene
regulatory patterns.

From a technical perspective, the performance differences in
classifiers may also be influenced by the quality of the data and the
representativeness of the data for each chromosome (Dutrow et al.,
2022). Certain chromosomes may harbor more informative genetic
markers, which better differentiate between donkey breeds. After the
removal of low-quality data, certain chromosomes may provide more
distinctive genetic features, enabling the SVM, KNN, and Random
Forest models to perform more effectively on those chromosomes.

In conclusion, the identification of chromosomal-specific
performance reflects not only the complexity of genetics but also
underscores the need for more detailed biological explanations.
Specifically, understanding how specific regions on chromosomes

influence breed classification will benefit from an integrated analysis
of genomic data and phenotypic information. Such an approach
could provide valuable insights into the underlying genetic
mechanisms at play.

However, despite the initial progress made, challenges and
limitations remain in the classification of donkey genomic data.
Firstly, the relatively low sequencing depth of the donkey genome
data directly affected the quality of the SNPs, thereby impacting the
accuracy of the classifiers. Low sequencing depth may lead to
insufficient capture of some SNPs, increasing the likelihood of
errors in the classification model.

In addition, the limited sample size (37 samples across nine
breeds) represents a significant limitation of this study. The small
sample size reduces the generalizability of the results, as classifiers
may overfit to specific patterns within the dataset rather than
capturing broader trends across donkey breeds. This limitation is
further exacerbated by the imbalanced distribution of samples
among breeds, with certain breeds represented by as few as three
samples, making it difficult to establish reliable breed-specific
patterns. Moreover, the possibility of some samples coming from
hybrid breeds adds further complexity to the classification task. The
genetic diversity in hybrid samples creates additional challenges for
the models to accurately distinguish between different breeds,
potentially resulting in unstable classification results.

In terms of data processing, the use of different bioinformatics
tools and software may introduce biases, affecting the consistency
and reliability of classification results. Specific preprocessing steps,
parameter settings, and methodological choices in this study may
have significantly influenced the final results, further increasing the
complexity of the analysis. Future efforts should aim to address these
limitations by obtaining larger, more balanced datasets with higher
sequencing depth and by refining preprocessing protocols to ensure
greater consistency across analyses.

Future research should focus on improving data quality by
obtaining donkey genome data with higher sequencing depth,
which will enhance the reliability of SNPs data and reduce errors
caused by data noise. Additionally, expanding the sample size,
especially covering more donkey breeds, will help improve the
generalization ability of the classifiers and better handle the
challenges posed by hybrid samples.

TABLE 3 Performance evaluation of nine-class classification.

Classifier Chromosome Accuracy Precision Recall F1-score

KNN Chr2 66.66% 76.11% 66.66% 63.83%

SVM Chr19 51.85% 51.91% 51.85% 46.98%

RF Chr19 48.14% 40.18% 48.14% 43.51%

TABLE 4 Performance evaluation of five-class classification.

Classifier Chromosome Accuracy Precision Recall F1-score

RF Chr6 75.00% 79.00% 75.00% 75.00%

KNN Chr14 85.00% 89.33% 85.00% 84.25%

SVM Chr7 90.00% 92.00% 90.00% 88.89%
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Moreover, although this study employed three classical machine
learning algorithms—SVM, KNN, and RF—future research could
explore more advanced techniques, such as deep learning models or
more complex ensemble learning methods, to further enhance
classification accuracy and model robustness. Deep learning
methods, such as Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs), may provide new insights
into capturing the complex patterns in SNPs data and improve
classification outcomes.

There should also be an emphasis on applying feature selection
and data cleansing techniques to ensure that critical genetic markers
are accurately captured during high-dimensional data processing,
thereby improving model interpretability and predictive
performance. Furthermore, integrating other genetic markers or
phenotypic data with SNPs data could provide a more
comprehensive perspective for donkey breed classification.

Overall, this study provides a preliminary framework for donkey
breed classification, but further optimization and validation are
needed for practical application. With higher quality data, more
advanced algorithms, and comprehensive multi-source data
integration, donkey breed classification technology will continue
to improve, providing more reliable support for the conservation
and utilization of donkey genetic resources. This work not only
holds significance for the development of donkey breeds but also
contributes to broader genomic research and global biodiversity
conservation efforts.
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