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Identifying the genetic determinants of host defence against infectious
pathogens is central to enhancing disease resilience and therapeutic efficacy
in livestock. Here, we investigated immune response heritability to important
infectious diseases affecting smallholder dairy cattle using variance component
analysis. We also conducted genome-wide association studies (GWAS) to identify
genetic variants that may help understand the underlying biology of these health
traits. By assessing 668,911 single-nucleotide polymorphisms (SNPs) genotyped
in 2,045 crossbred cattle sampled from six regions of Tanzania, we identified high
levels of interregional admixture and European introgression, whichmay increase
infectious disease susceptibility relative to indigenous breeds. Heritability
estimates were low to moderate, ranging from 0.03 (SE ± 0.06) to 0.44 (SE ±
0.07), depending on the health trait. GWAS results revealed several loci associated
with seropositivity to the viral diseases Rift Valley fever and bovine viral diarrhoea,
the protozoan parasites Neospora caninum and Toxoplasma gondii, and the
bacterial pathogens Brucella sp, Leptospira hardjo, and Coxiella burnetii. The
identified quantitative trait loci mapped to genes involved in immune defence,
tumour suppression, neurological processes, and cell exocytosis. We propose
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that our results provide a basis for future understanding of the cellular pathways
contributing to general and taxon-specific infection responses, and for advancing
selective breeding and therapeutic target design.
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1 Introduction

The smallholder dairy cattle sector in Tanzania makes an
important contribution to the country’s gross domestic product
and is a source of food, income, and employment for Tanzanian
households (Swai and Karimuribo, 2011a; Swai and Karimuribo,
2011b; Katjiuongua and Nelgen, 2014). Despite control efforts,
animal diseases remain a significant constraint to productivity
and profitability in the sector, with an estimated mortality of up
to 14% across herds (Swai et al., 2010; Alonso et al., 2015). Cattle
pathogens causing abortion (e.g., Rift Valley fever virus (RVFV),
bovine viral diarrhoea virus (BVDV) and Neospora caninum), and/
or zoonoses (e.g., Brucella abortus, Leptospira hardjo, Coxiella
burnetii, and Toxoplasma gondii) contribute greatly to economic
losses, threaten human public health, and are currently circulating at
considerable levels across regions of Tanzania (Bwatota et al., 2022;
Mengele et al., 2023; Motto et al., 2023; Lankester et al., 2024).

The defence processes (resilience) by which organisms limit
pathogen loads (resistance) or the damage caused by given pathogen
loads (tolerance) are crucial for the epidemiology of infectious diseases
(Råberg et al., 2007; Horns and Hood, 2012; Knap and Doeschl-Wilson,
2020). Changes in the host’s immunological and pathogenesis
mechanisms can particularly reduce transmission, and therefore the
prevalence, by blocking infections or eliminating pathogens (Ayres and
Schneider, 2008; Medzhitov et al., 2012). Natural host genetic variability
(e.g., α-thalassaemia, sickle-cell haemoglobin, and G6PDH deficiency)
has been shown to protect against deadly Plasmodium falciparum
infection (Flint et al., 1986; Lelliott et al., 2015; Archer et al., 2018;
Kwok et al., 2021). Several genetic variants and genes (e.g., HLA and
IFNAR2 genes) linked to host pathophysiological processes have been
associated with SARS-CoV-2 susceptibility and COVID-19 severity
(Ovsyannikova et al., 2020; Velavan et al., 2021). Recently, a
CRISPR-/Cas9-mediated knockout that alters the BVDV binding
domain of the CD46 gene showed reduced susceptibility in a cloned
calf (Workman et al., 2021; Workman et al., 2023). Therefore,
understanding the genetic basis of disease resilience could
complement current control strategies and reduce the burden of
endemic or emerging infectious diseases (Knap and Doeschl-Wilson,
2020; Hulst et al., 2021).

Given the limited resources and feasibility of deploying disease
control options (e.g., vaccination, biosecurity, and contact tracing),
health improvement in smallholder dairy cattle via genomic
selection (GS) could complement conventional disease control
efforts in Tanzania and other low- and middle-income countries
(LMICs). For instance, genetic improvement and quantitative trait
locus (QTL) identification, mainly for production traits such as milk
yield, are already being implemented in smallholder crossbred cattle
populations in India (Al Kalaldeh et al., 2021; Al Kalaldeh et al.,
2023). GS implementation in smallholder systems such as those in

India and East Africa is challenging, but progress has been made in
building breeding infrastructure, routine phenotype recording,
affordable genotyping, analytical tools, and human capacity
(Mrode et al., 2019; Marshall et al., 2019; Ibeagha-Awemu et al.,
2019; Mrode et al., 2021; Brown et al., 2016). This work has allowed a
better understanding of the genetic architecture of tolerance/
resistance to important diseases in African livestock populations
[e.g., East Coast fever in cattle and indigenous chicken infectious
diseases (Banos et al., 2020; Wragg et al., 2022)].

Host antibody responses due to recent infection or previous
exposure are heritable, and the genetic factors influencing these traits
have been explored for several human infectious pathogens (Rubicz
et al., 2011; Rubicz et al., 2015; Mangino et al., 2017). The heritability of
antibody responses to infectious diseases has also been described in
several livestock species. For example, Liu et al. (2014) reported
heritability estimates of 0.36 (±0.075) and 0.35 (±0.077), respectively,
for antibody responses to Newcastle disease and avian influenza virus in
poultry. Heritability estimates of 0.10 (±0.05) for antibody responses to
Mycobacterium avium subsp. paratuberculosis, which causes diarrhoea
and decreases milk yield, were reported in Danish dairy cattle
(Mortensen et al., 2004). Moderate heritability estimates of 0.32
(±0.09) for immune competence after vaccination against
Clostridium tetani in Angus beef calves suggest an opportunity for
immune competency improvement via genetic selection (Hine et al.,
2019). Antibody responses to bovine herpesvirus-1 (BoHV-1), which
causes latent infectious bovine rhinotracheitis (IBR), had heritability
estimates ranging from 0.12 (±0.05) to 0.14 (±0.04) in Irish cattle (Ring
et al., 2019). Therefore, including health-related traits (e.g., humoral
immune response) in breeding programmes would be beneficial as a
long-term tool to reduce the disease burden in livestock.

Understanding the underlying biology of health traits can be
achieved by identifying QTL regions associated with disease
resistance. Incorporating relevant associated SNPs into custom-
designed SNP chip arrays allows higher accuracy in genomic
selection breeding programmes, narrows candidate genes for gene
expression or editing, and helps develop diagnostic tools and
therapeutic agents. Resistance to Mycobacterium bovis has been
attributed to several regions in the Bos taurus genome, such as the
loci containing the PTPRT and MYO3B genes (Bermingham et al.,
2014). Tolerance to the protozoan parasite Theileria parva (East
Coast fever—ECF) in cattle has been linked to a locus spanning a
paralogue of the FAF1 gene. In field trials, 100% of animals with a
tolerance allele survived T. parva infection, although this SNP
variant explained approximately 31.9% of the total phenotypic
variance (Wragg et al., 2022). The knowledge and identification
of putative candidate genes have allowed the editing of bovine
genomes to express resistance to pathogens such as M. bovis or
BVDV (Workman et al., 2021; Workman et al., 2023; Wu et al.,
2015). In complex trait studies, such as immune response traits,
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several genes may contribute small effects in parallel, and therefore,
the identification of these underlying mechanisms may be
challenging at any given time during the immune response
process (e.g., activation of the innate and acquired immune
response) (Siwek et al., 2015; Gratten and Visscher, 2016;
Solovieff et al., 2013; Leach et al., 2010).

The current study quantifies variation in antibody responses to
zoonotic and reproductive infectious diseases and estimates their
genetic parameters in highly admixed smallholder dairy cattle
populations in Tanzania. We investigated the presence or
absence of population structure in our data, computed estimates
of heritability for the traits under study, and conducted GWAS using
a 668,911 SNP chip array in 2,045 crossbred smallholder dairy cattle.
The underlying genetic architecture revealed using GWAS allows
the identification of potential QTL regions of importance in
livestock health and breed improvement programmes. We discuss
possible cellular pathways contributing to general and taxon-specific
infection responses and the underlying biology of health traits.

2 Results

2.1 Genotyping and serological traits of
Tanzanian smallholder cattle

A total of 2,045 crossbred cattle were sampled from six regions that
are important for dairy production in Tanzania (Figure 1A) and tested
for antibodies to seven pathogens. The animals were initially genotyped
with a mid-density (100K) array, and then, the genotypes were imputed

to a high-density (~600K) array (seeMethods). Thirty-four animals were
removed as they failed the quality control (QC) measures from the
imputation pipeline due to high levels of missing SNPs. A further
34 animals with high levels of relatedness (>0.25) to another animal
based on the KING-robust estimator were removed (that is, one animal
from each relatedness comparison pair was removed) (Manichaikul
et al., 2010). The call rate (<90%) and minor allele frequency (<0.01)
thresholds removed 17,132 of the imputed SNPs. A total of
668,911 SNPs remained after imputation and QC measures for
subsequent analyses (see S1 Table for SNP marker density per
chromosome). The final dataset contained 1,977 cattle, of which
25.2% were seropositive for BVDV, 19.1% for N. caninum, 13.2% for
Leptospira hardjo, 9.3% for RVFV, 5.9% for T. gondii, 3.9% for Coxiella
burnetii, and 2.4% for B. abortus (Figure 1B).

2.2 Population structure and ancestry

We investigated the population stratification and structure
among the selected crossbred Tanzanian cattle (TZA) and their
genomic context by incorporating purebred data as a reference, after
which we performed principal component analysis (PCA) and
admixture analysis. The reference cattle population included
99 European cattle (ET) from Holstein and Jersey breeds,
59 African taurine (AT) composed of N’Dama and Muturu, and
65 Asian zebu (AZ) from Gir and Nelore populations (Wragg et al.,
2022) (Figure 2A).

First, we visualised the first two principal components (PCs)
from the PCA analysis, in which we could identify our reference

FIGURE 1
Seroprevalence of reproductive and zoonotic diseases in smallholder dairy cattle in Tanzania. (A) Geographic location of the six regions sampled in
Tanzania: Arusha, Kilimanjaro, Tanga, Iringa, Mbeya, and Njombe. (B) Seroprevalence to seven pathogens among smallholder dairy cattle is variable, with
the highest seropositivity to BVDV, neosporosis, and leptospirosis. Source map: www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-
elevation-global-multi-resolution-terrain-elevation.
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purebreds. The first and second PCs explained 47.2% and 10.9% of
the total genomic variation, respectively (Supplementary Figure S1).
We identified five clusters in the PCA scatterplot, where the
Tanzanian samples were grouped across ET, where the Holstein
and Jersey samples were separated into two clusters, and where the
AZ samples from the Gir and Nelore breeds were clustered together.
The AT samples, which included the N’Dama and Muturu breeds,
were further separated from the rest of the population by
the PC2 axis.

We used supervised admixture analysis to estimate the
proportion of predefined ancestral populations in our Tanzanian
samples (Figure 2C).WithK = 2 predefined ancestral populations, B.
taurus and Bos indicus ancestry is evident at variable levels in
Tanzanian cattle. The estimated global ancestry proportions of B.
taurus and B. indicus were 86% and 14% on average, respectively,
across all Tanzanian samples. The proportions of African and
European taurine ancestry diverged in our Tanzanian cattle when
assuming K = 3 fixed ancestral populations. Across all sampled
regions in Tanzania, animals had on average high levels of European
taurine ancestry, followed by Asian zebu, and, at the lowest level,

African taurine ancestry (Figure 2B). Unsupervised admixture
analysis revealed similar patterns of ancestries at K = 2 and K =
3 (Supplementary Figure S2), and more than seven clusters
(accounting for six reference populations and our Tanzanian
population) were likely present in our dataset, as suggested by
the cross-validation plot (Supplementary Figure S3).

2.3 Heritability estimates of the
serological responses

The seroprevalences in the cattle population under study were
low, ranging from 2% for B. abortus to 25% for BVDV.We observed
low-to-moderate heritability estimates of the serological responses
to the seven pathogens likely to cause abortion in our cattle study.
The heritability estimates (Equations 1–3), when assuming a
continuous trait (0/1) and using the observed scale (h20,1), ranged
from 0.03 (SE ± 0.06) for Q-fever to 0.44 (SE ± 0.07) for BVDV.
However, when we linked the observed estimates (0/1) to the
underlying scale (h2

u) [calculated with the formula shown by

FIGURE 2
Population structure and global ancestry estimates among smallholder dairy cattle farms in Tanzania, Africa. (A) Scatterplot showing Tanzanian cattle
samples (grey dots) within reference populations (European taurine (ET): Holstein and Jersey, African taurine (AT): N’Dama and Muturu, Asian zebu (AZ):
Gir and Nelore). (B) Pie charts showing ET, AT, and AZ ancestry of Tanzanian cattle in the six sampled regions. (C) Supervised admixture analysis of the
population using ADMIXTURE software.
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Dempster and Lerner in 1950 (Dempster and Lerner, 1950; Falconer,
1989)], the estimates were moderate to high at 0.14 and 0.93 for
Q-fever and B. abortus, respectively (Table 1).

2.4 Mapping SNP markers associated with
serological response traits

Our GWAS results (Figure 3) identified a total of 53 SNP
markers with p-values below the suggestive significance threshold
(p< 1.49 x 10−6), and three of these SNP markers crossed the
genome-wide significance threshold (p< 7.47 x 10−8) across all
serological responses to infectious pathogens (Table 2). Thirty
SNP markers were mapped to several annotated genes in the B.
taurus genome (ARS-UCD1.2).

Seven SNP markers had p-values below the suggestive
significance threshold for BVDV and were mapped to
unannotated regions on chromosomes 9, 12, 18, and 26
(Figure 3A). Five SNP markers had p-values below the suggestive
significance threshold for the N. caninum serological response, with
one located within the TNFSF8 gene on chromosome 8, a second
SNP located within the ZFPM2 gene, and a further three SNPs
located within unannotated regions on chromosomes 14 and 29
(Figure 3B). Another seven SNPs with p-values below the suggestive
significance threshold were identified for the Leptospira hardjo
serological response, of which three SNPs were located within the
NEK5 gene and one within the SLC25A15 gene, while three SNPs
were located within the unannotated regions on chromosomes 3, 9,
and 10 (Figure 3C). One SNP marker with p-values below the
significance threshold for the RVFV serological response was located
within the IER3IP1 gene (Figure 3D). We also identified 12 SNPs
with a p-value below the suggestive significance threshold for the T.
gondii serological response that were located within the GRM3 (one
SNP), BST1 (six SNPs), IFT81 (one SNP), CTNND2 (one SNP), and
NPAS3 (one SNP) genes on chromosomes 4, 6, 17, 20, and 21,
respectively (Figure 3E). One SNP marker with a p-value below the
genome-wide significance threshold (p = 3.41 × 10−08) for the
Coxiella burnetii serological response was located within the
BTBD7 gene on chromosome 21. GWAS results also revealed
three SNPs with p-values below the suggestive threshold level for
the C. burnetii serological response, which mapped to the ATP1B1,
SMURF2, and NTM genes on chromosomes 16, 19, and 29,
respectively (Figure 3F). We also identified 15 SNPs with

p-values below the suggestive significance threshold for the B.
abortus serological response, of which two SNPs had p-values
below the genome-wide significance threshold (p = 4.30 × 10−08),
with one mapping to the PLCB1 gene on chromosome 13 and
another (p = 3.42 × 10−08) mapping to an unannotated region on
chromosome 18. The remaining SNPs were in the following genes:
one mapping to PDE1C on chromosome 4, three to EXOC1 on
chromosome 6, one to CRKL and one to AIFM3 on chromosome 17,
one located within SYNPR on chromosome 22, and one within OAT
on chromosome 26. The remaining SNPs were mapped to
unannotated regions (Figure 3G). QQ plots for each of the seven
GWAS are presented in Supplementary Figures S4–10.

To gain further insight into the genetic architecture of these
traits, we calculated the proportion of the additive genetic variance
explained by the most significant SNPs. The genotype SNP effects
were fitted in a linear mixed model to estimate their additive and
dominance effects. These effects were used to calculate the allele
substitution and the additive variance explained by the SNP.
Summary statistics of the SNPs showing the strongest
associations are described in detail in Supplementary Table S2. In
summary, the proportion of additive variance explained by a given
SNP ranged from 0.21% to 1.76%. The allele substitution effects
varied from −0.30 to 0.06, and the dominance effects ranged
from −0.15 to 0.17. The only two SNPs (rs137229140 and
rs42429616) with non-significant additive effects had been
mapped to the ZFPM2 and GRM3 genes in the N. caninum and
T. gondii GWAS, respectively.

3 Discussion

In this study, we present findings from hard-to-measure
phenotypes collected from smallholder dairy cattle herds in the
six regions of Tanzania, which were mainly admixed with a high
proportion of European taurine ancestry. Our study revealed low-to-
high heritability estimates for antibody responses that varied with
the pathogens assayed, but were highest for BVDV, Leptospira
hardjo, and N. caninum exposures. GWAS identified several SNP
markers with statistically significant associations with the studied
traits. The identified loci mapped to B. taurus genomic regions,
which included annotated genes involved in cell exocytosis pathways
and immune response. Our GWAS results are novel and will add to
the knowledge of genomic regions associated with cattle immune

TABLE 1 Estimated heritability for serological response to six important reproductive and zoonotic infectious diseases in Tanzanian smallholder dairy cattle.

Serological response trait p h2
0,1 SE h2u

BVDV 0.25 0.44 0.07 0.81

Neospora caninum 0.19 0.19 0.07 0.40

Leptospira hardjo 0.13 0.29 0.07 0.74

RVFV 0.09 0.06 0.06 0.18

Toxoplasma gondii 0.06 0.23 0.07 0.92

Coxiella burnetii 0.04 0.03 0.06 0.14

Brucella abortus 0.02 0.11 0.06 0.93

For all serological response traits, the seroprevalence (p), heritability on the observed scale (h20,1) with standard errors (SE), and heritability on the underlying scale (h2u) are provided.
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FIGURE 3
Genome-wide associations for serological response to seven infectious diseases in Tanzanian cattle. Manhattan plots show the SNP markers with
the log-10 p-values above 7.13 (continuous line) and 5.83 (dashed line) thresholds. The adjacent 500 SNPs to those significant ones were colour-coded to
represent each of the six reproductive/zoonotic diseases: BVDV (A), Neospora caninum (B), Leptospira hardjo (C), RVFV (D), Toxoplasma gondii (E),
Coxiella burnetii (F), and Brucella abortus (G).
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TABLE 2 Single-nucleotide polymorphism (SNP) markers in linkage disequilibrium for seven diseases in the Tanzanian smallholder cattle population.

rsID Chr Ps p-value Gene/Ensembl ID

BVDV

rs110334415 9 10,632,814 1.41 × 10−6 ENSBTAG00000048046

rs136686361 9 10,634,082 1.41 × 10−6 ENSBTAG00000056317

rs135177308 12 85,896,180 3.12 × 10−7 ENSBTAG00000050193

rs42674898 18 40,128,640 6.15 × 10−7 —

rs41614018 18 40,137,391 9.66 × 10−7 —

rs134589233 18 40,139,594 1.18 × 10−6 —

rs42731467 26 29,327,785 1.13 × 10−7 —

Neospora caninum

rs43566009 8 104,087,995 8.37 × 10−7 TNFSF8 ENSBTAG00000025782

rs43680152 11 50,640,785 8.02 × 10−7 —

rs137229140 14 59,076,463 1.11 × 10−6 ZFPM2 ENSBTAG00000001649

rs43059701 29 21,703,572 3.16 × 10−7 ENSBTAG00000067594

rs43059696 29 21,705,332 1.04 × 10−6 ENSBTAG00000067594

Leptospira hardjo

rs110303769 3 9,566,267 1.14 × 10−6 ENSBTAG00000065386

rs135862468 9 82,621,571 1.48 × 10−6 —

rs137638789 10 47,042,618 1.10 × 10−7 —

rs109573926 12 21,437,462 2.49 × 10−7 NEK5 ENSBTAG00000019134

rs134233665 12 21,438,169 4.38 × 10−7 NEK5 ENSBTAG00000019134

rs132978619 12 21,541,541 1.20 × 10−6 NEK5 ENSBTAG00000019134

rs110000799 12 21,787,162 8.69 × 10−7 SLC25A15 ENSBTAG00000011647

RVFV

rs109147766 24 46,881,767 1.37 × 10−6 IER3IP1 ENSBTAG00000032961

Toxoplasma gondii

rs42429616 4 33,738,197 3.02 × 10−7 GRM3 ENSBTAG00000018989

rs42732294 6 110,890,410 1.41 × 10−6 BST1 ENSBTAG00000006156

rs109950452 6 110,891,679 6.66 × 10−7 BST1 ENSBTAG00000006156

rs136210696 6 110,892,348 5.85 × 10−7 BST1 ENSBTAG00000006156

rs133473328 6 110,892,915 3.30 × 10−7 BST1 ENSBTAG00000006156

rs109159791 6 110,894,364 1.74 × 10−7 BST1 ENSBTAG00000006156

rs109667545 6 110,896,924 1.86 × 10−7 BST1 ENSBTAG00000006156

rs110528913 10 63,156,501 7.52 × 10−7 -

rs41729510 14 37,379,089 2.23 × 10−7 ENSBTAG00000032944

rs137128785 17 54,099,612 1.39 × 10−6 IFT81
ENSBTAG00000020584

rs109307025 20 62,277,233 4.84 × 10−7 CTNND2 ENSBTAG00000017222

rs43031181 21 43,506,933 9.57 × 10−7 NPAS3
ENSBTAG00000004462

(Continued on following page)
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responses to infectious diseases. Some of the information presented
in this study has the potential to enhance our current biological
understanding of these traits along with the breeding of cattle for
disease resistance.

The history of the domestication of African cattle breeds is
complex and marked by multiple admixture events between local
African taurine breeds, indicine zebu, and more recently, European
(e.g., Jersey, Ayrshire, and Friesian) breeds, resulting in highly
diverse populations (Kim et al., 2020). As shown in our
population structure and admixture analysis (Figure 2), these
Tanzanian smallholder dairy cattle were crosses of European and
indicine breeds, comparable to other East African smallholder cattle
populations (Mrode et al., 2021; Aliloo et al., 2018), but with higher
levels of European introgression. The high percentage of European
taurine, followed by indicine zebu, and less African taurine ancestry

pattern obtained in the admixture analysis at K = 3 can be explained
by the sampling of a few African taurine breeds (Figure 2C). The
high proportion of B. taurus global ancestry (86%) on average in the
Tanzanian samples (K = 2) may suggest a high proportion of exotic
genes. Although our study is limited to investigating global ancestry,
we acknowledge that inferring local ancestry for these health traits
could be as insightful as it is for production traits such as milk yield
(Al Kalaldeh et al., 2023). As purebred data reared under similar
conditions were not available, we were not able to investigate genetic
differences between breeds and their effect on antibody responses,
which have been previously described as a key factor in bovine
trypanosomiasis, tuberculosis, and East Coast fever (Wragg et al.,
2022; Kim et al., 2020; Callaby et al., 2020). In this admixed
Tanzanian cattle population, however, we were able to identify
SNPs in linkage disequilibrium with causative mutations

TABLE 2 (Continued) Single-nucleotide polymorphism (SNP) markers in linkage disequilibrium for seven diseases in the Tanzanian smallholder cattle
population.

rsID Chr Ps p-value Gene/Ensembl ID

Coxiella burnetii

rs136314037 6 51,978,781 1.07 × 10−7 -

rs41579647 16 36,778,922 1.48 × 10−6 ATP1B1
ENSBTAG00000002688

rs41257677 19 48,748,403 1.13 × 10−6 SMURF2
ENSBTAG00000019853

rs134852840 21 12,971,743 1.15 × 10−7 -

rs132672447* 21 57,923,665 3.41 × 10−8 BTBD7 ENSBTAG00000046185

rs137170014 29 34,611,992 5.81 × 10−7 NTM ENSBTAG00000010032

Brucella abortus

rs110536633 4 64,608,572 1.42 × 10−6 PDE1C ENSBTAG00000002739

rs43008801 6 71,291,921 1.03 × 10−6 EXOC1 ENSBTAG00000032637

rs43008805 6 71,294,876 1.03 × 10−6 EXOC1 ENSBTAG00000032637

rs43008802 6 71,299,872 1.03 × 10−6 EXOC1 ENSBTAG00000032637

rs42880351 7 67,380,512 2.02 × 10−7 -

rs42393041* 13 1,495,362 4.30 × 10−8 PLCB1 ENSBTAG00000008338

rs109800447 17 27,294,372 2.66 × 10−7 -

rs29024118 17 72,302,909 1.09 × 10−6 CRKL
ENSBTAG00000065402

rs110892009 17 72,312,605 1.21 × 10−6 AIFM3 ENSBTAG00000038132

rs134467232* 18 24,663,289 3.42 × 10−8 -

rs133958764 22 38,045,884 7.58 × 10−7 SYNPR
ENSBTAG00000000265

rs109643280 24 31,995,276 1.26 × 10−6 -

rs109680241 24 31,996,142 1.26 × 10−6 -

rs137397899 24 32,013,683 1.26 × 10−6 -

rs132654293 26 44,066,344 1.14 × 10−6 OAT
ENSBTAG00000006928

The results include reference SNP cluster ID (rsID), chromosome (Chr) base-pair position in the genome (Ps), p-value, and Gene and Ensembl IDs if previously annotated. Asterisks (*) indicate

those SNPs above the genome-wide significance threshold.
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responsible for the antibody responses to different
infectious diseases.

In this study, the heritability for the seven serological status traits
was obtained on the observed scale and converted to the underlying
scale. For the observed scale, the binary serological phenotype was
assumed to be a continuous variable with normally distributed
residuals, and, therefore, the genetic analysis was carried out
assuming a standard linear mixed model (LMM). The heritability
on the observed scale was transformed to the underlying scale, which
assumes that the binary trait is being controlled by an unobserved
liability variable, using Robertson’s approximation given in
Dempster and Lerner (Dempster and Lerner, 1950; Falconer,
1989). This method of transforming the heritability on the
observed scale allows a simple and computationally efficient
genetic analysis approach for binary traits while still yielding
unbiased estimates of heritability on the underlying scale (Lee
et al., 2011). An alternative method to analyse the binary traits in
this study would have been to use a generalised linear mixed model
(GLMM) with a probit link function to fit the threshold model and
account for the unobserved liability variable. While the use of
GLMM would be a theoretically more correct approach, given
that it allows for better modelling of non-normal data, there are
several drawbacks hindering its efficient implementation. GLMM
implementations based on penalised quasi-likelihood have been
shown to yield biased estimates, and the Laplace approximation
and the quadrature methods are less affected by this bias, but at a
considerable extra computational cost, especially in relatively
complex models (Gbur et al. 2012; Madden and Ojiambo, 2024).
GLMM implementations based on the MCMC approach [e.g.,
Hadfield (2010)] can eliminate the problem of biased estimates,
but the computational cost is even greater, therefore restricting its
usage in the analysis of relatively small datasets. Hence, our
approach of computing the heritability on the underlying scale
by transforming the heritability on the observed scale is an
appealing alternative, given that it is expected to yield reliable
genetic estimates at an acceptable computing cost, while the use
of a fast GLMM implementation may not necessarily improve the
reliability of the estimates.

The prevalence of the infectious pathogens observed in this
study population was variable, with the highest percentages for
BVDV, N. caninum, Leptospira hardjo, and RVFV. These findings
partially correspond to the most attributable livestock abortion
agents (e.g., RVFV, N. caninum, and pestiviruses) found in
aetiological surveys in Tanzania (Lankester et al., 2024; Thomas
et al., 2022). We observed low estimates of heritability on the
observed (0/1) scale when the disease prevalence was the lowest
(e.g., 2%); however, the underlying scale that links the observed
heritability estimates to the prevalence reflects the true genetic
proportion expected for these traits (Dempster and Lerner, 1950;
Falconer, 1989; Ojavee et al., 2022) had we used a GLMM
appropriate for binary traits.

We identified 53 SNPs with a strong association with serological
responses across pathogens—some of which mapped to annotated
genes in the B. taurus genome (Table 2). The seven SNPs associated
with the BVDV serological response mapped to unannotated
regions (Figure 3A). BVDV is a highly contagious pathogen with
a complex epidemiology that affects dairy cattle herds worldwide by
causing persistent infection, poor reproductive performance, and

significant economic losses (Scharnböck et al., 2018; Walz et al.,
2020). Several BVDV control options exist (e.g., vaccination,
biosecurity, and removal of persistently infected animals)
(Moennig and Becher, 2018), but they are rarely implemented
and/or maintained in LMICs (Richter et al., 2019; Zirra-
Shallangwa et al., 2022). With the advances in genome editing,
however, it has been possible to breed the first calf with reduced
BVDV susceptibility by altering the CD46 gene. BVDV binds to two
peptide domains in CD46 to infect cells, and therefore, an altered
CD46 molecule appears to limit the viral load in the blood
(viraemia) in an edited calf (Workman et al., 2021; Workman
et al., 2023). In the RVFV GWAS, one SNP above the suggestive
significant threshold mapped to the IER3IP1 gene, mutations of
which cause a neurodevelopmental disorder in humans, and it was
recently demonstrated to play a fundamental role in B-cell
development in mice (Zhong et al., 2023).

The apicomplexan parasites in this study, T. gondii and N.
caninum, are known for causing reproductive problems in cattle
and/or have a high zoonotic potential (T. gondii) (Reichel et al.,
2013). In our T. gondii serological response GWAS results, we
found that 10 of the 12 associated SNPs were located in the
annotated genes, GRM3, BST1, IFT81, CTNND2, and NPAS3
(Table 2). The GRM3 gene encodes proteins that regulate
neurotransmitters (e.g., glutamate) and gene mutations have
been directly linked to neurological conditions such as
schizophrenia (Egan et al., 2004). In addition, GRM3 has also
been shown to suppress colon cancer and glioblastoma growth
(Yi et al., 2017; Wirsching et al., 2021). The BST1 gene encodes a
molecule that facilitates pre-B-cell growth, and it has been
involved in autoimmune and neurological diseases in humans
(Kaisho et al., 1994; Yokoyama, 2023). The CTNND2 gene has
been previously identified in GWAS results from Nelore cattle,
where it may be important for growth, meat quality, and milk
production (Machado et al., 2022). The rest of the annotated
genes are involved in ciliogenesis/spermatogenesis (IFT8) and
neurogenesis/schizophrenia disorder (NPAS3) (Michaelson
et al., 2017; Qu et al., 2020; van Scheltinga et al., 2010).
Investigations into the relationship between toxoplasmosis and
the genes involved in neurological processes have only recently
been reported (Milne et al., 2020). Several studies have indicated
that T. gondii infection increases the risk of neurological diseases
such as schizophrenia (Carter, 2011; Xiao et al., 2018; Li et al.,
2018; Wang et al., 2019). This risk may be somewhat explained by
the potential of T. gondii to deregulate neurotransmitters, such as
glutamate, which is synthesised by astrocytes that are heavily
affected during T. gondii infection (David et al., 2016). Therefore,
it is not entirely unlikely that several of these variants within the
GRM3, BST1, and NPAS3 genes may be associated with the host
response to T. gondii infection, as revealed by our GWAS results.

In the case of N. caninum, we identified five SNPs—one
mapped to the TNFSF8 gene, a second within the
ZFPM2 gene, and three SNPs located in unannotated regions
(Figure 3B). The tumour necrosis factor superfamily (TNFSF)
genes encode proteins and molecules responsible for host
immune defence and tumour suppression (Sonar and Lal,
2015; Ward-Kavanagh et al., 2016). TNFSF8 gene expression
plays an important role in the defence of immune cells (e.g.,
CD4 T cells) against Mycobacterium tuberculosis and hepatitis C
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virus infection (Sallin et al., 2018; Fu et al., 2021). The zinc finger
proteins (ZFPM2) are responsible for encoding GATA
transcription factors (zinc finger DNA-binding proteins) that
control the development of erythrocytes and immune cells such
as CD4 T cells (Gao et al., 2015; Lentjes et al., 2016). Although the
link between GATA transcription factors and N. caninum
immune response is unknown, they appear to play an
important role in the local immune response to Pseudomonas
aeruginosa (Shapira et al., 2006).

Several of the SNPs with a significant association with bacterial
pathogens (L. hardjo, C. burnetii, and B. abortus) were mapped to
the NEK5, SLC25A15, ATP1B1, SMURF2, BTBD7, NMT, PDE1C,
EXOC1, PLCB1, CRKL, AIFM3, SYNPR, or OAT genes. In this B.
abortus GWAS result, three SNPs were located within the
EXOC1 gene, which is part of a complex of proteins that
regulate cell exocytosis pathways. The EXOC1-encoded protein is
part of an 8-molecule complex that binds the cell plasma membrane
to endosomal compartments. Several bacterial organisms, such as
Listeria monocytogenes, Staphylococcus aureus, and B. abortus use
different exocytic pathways to infect host cells (Ireton et al., 2018;
Ireton et al., 2023). After B. abortus is phagocytosed by mainly
macrophages or dendritic cells, it initially interacts with early
endosomes to enter the cell and subsequently replicate within the
endoplasmic reticulum (Celli, 2015). Therefore, genetic variations in
the EXOC1 region may determine whether B. abortus infection will
occur or not in host cells. Although the C. burnetii serological
response association with the NTM gene is unclear, the NTM gene
has been identified in association with B. abortus infection in wild
boar and displaced abomasum disorder in Holstein cattle (Freebern
et al., 2020; Fabbri et al., 2022). The association between SNPs
located within the BTBD7 and PLCB1 genes and serological
response to bacterial pathogens is not clear; however, the
BTBD7 gene has been associated with indicators of heat stress in
Holstein cattle and is involved in other biological processes such as
development and tumour progression (Luo et al., 2022; Liu et al.,
2023). The NEK5 and SLC25A15 genes encode proteins involved in
mitochondrial function, cell-cycle progression, metabolism and
tumourigenesis, but have no clear role in the immune response
to bacterial infection (Melo Hanchuk et al., 2015; Chen et al., 2022).
In vitro human gene expression experiments have shown that the
ATPase Na+/K+ transporting subunit β 1 (ATP1B1) protein limits
DNA and RNA virus expression and replication by promoting IFN
and pro-inflammatory cytokine activation (Cao et al., 2021).
Although the SMAD-specific E3 ubiquitin protein ligase 2
(SMURF2) has a primary role in TGF-β signalling pathways (e.g.,
embryogenesis, and cellular homeostasis), it has recently been
shown to affect antiviral signalling pathways (e.g., type 1 IFN
signalling and binding of filovirus VP40 matrix proteins) (Pan
et al., 2014; Shepley-McTaggart et al., 2021). The PDE1C, CRKL,
AIFM3, SYNPR, and OAT genes are involved in developmental and
metabolic functions; however, their role in the immune response to
bacterial pathogens has not yet been studied.

The SNPs identified as having a strong association with antibody
responses to infectious diseases explained a small proportion
(0.21%–1.76%) of the additive genetic variance, which is not
surprising for complex traits where many genes may be involved
in their regulation. However, we were reassured to observe that these
SNPs had a significant additive genetic effect, which would allow

them to be passed on to the next generation. Importantly, the
additive genetic effects in two SNPs that mapped to the
ZFPM2 and GRM3 genes were not significant, indicating that
dominance effects may be present and play a more important
role at this locus. The proportion of genetic variance explained
by a given SNP was small, but it is still relevant information that may
prove useful in genomic selection and/or gene expression studies to
identify genes involved in the antibody response to
infectious diseases.

Studying these complex traits with 2,045 sampled animals may
be limiting our GWAS, but increasing data collection in livestock
systems is often expensive given that health traits are not routinely
recorded for breeding purposes. In addition, it is important to note
that gathering health trait data from small-scale dairy farms in low-
income countries without appropriate cold chain facilities is time-
consuming and costly. GWAS results from smallholder systems
investigating health traits are scarce, and most studies focus on
production performance traits using 4,000–5,000 animals (Al
Kalaldeh et al., 2021; Al Kalaldeh et al., 2023; Mrode et al.,
2021). Alternately, large-scale commercial cattle GWAS results
on production performance traits include between 20,000 and
200,000 animals (Dominguez-Castaño et al., 2024; Jiang et al.,
2019). Several GWAS on health traits in commercial cattle
populations in developed countries, where phenotypic and
genotypic records and financial resources are more likely to be
available, could include between 600 and nearly 30,000 animals. To
address limited data, flexible Bayesian frameworks have been
proposed in crossbred cattle in similar systems while mainly
studying production traits such as milk yield (Costilla et al.,
2023; Moser et al., 2015). Nevertheless, there is no clear evidence
of Bayesian models outperforming GBLUP methods for genomic
selection in commercial breeding value evaluation schemes or for
health traits in comparable smallholder cattle populations, and
GBLUP evaluations are widely accepted in commercial breeding
evaluation settings (Mrode et al., 2019; Mrode et al., 2021; Brown
et al., 2016).

Despite these limitations, our research provides novel genetic
estimates on health that have not yet been reported in smallholder
livestock production systems and identifies specific genetic
variations linked to the antibody responses to various diseases in
admixed African cattle populations. Our findings pinpoint putative
regions on the cattle genome that may play a role in immune defence
and disease susceptibility. These areas warrant further exploration,
such as verification of our findings in other larger similar
populations and conducting in vitro experiments to study the
gene expression or the use of genome editing, as demonstrated in
the case of the BVDV-edited calf.

4 Materials and methods

4.1 Sample collection and study area

Genotypes for the cattle were obtained from the African Dairy
Genetics Gains (ADGG) project (https://www.ilri.org/research/
projects/african-dairy-genetic-gains), which consisted of
2,045 crossbred Tanzanian cows and bulls sampled from their
larger database. ADGG has managed a performance (e.g., milk
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yield and body weight) and genotype database for the majority of the
registered animals, mainly smallholder cattle, from Tanzania and
other low- and middle-income countries (LMICs) since 2016. This
cattle subset was selected based on the cattle with confirmed
presence in both the household and the ADGG database at the
time of collection. Households were located in 23 districts in six
regions of importance for dairy production in Tanzania (Swai and
Karimuribo, 2011a; Swai and Karimuribo, 2011b) (Figure 1).

A cross-sectional survey and sample collection were carried out
by our veterinary team, ADGG, and Tanzanian Livestock Research
Institute (TALIRI) staff from July 2019 to October 2020.
Information on households (e.g., geographic location), animals
(e.g., age, sex, and phenotypical features), and herd management
(e.g., feeding, reproduction, and health) was recorded electronically
using an open data kit (ODK) platform and curated for downstream
analysis using R and RStudio (R Core Team. and R, 2022; RStudio
Team, 2020).

Blood samples were collected from each animal by jugular
venipuncture using plain vacutainer tubes (BD vacutainer®,
Auckland, New Zealand), centrifuged, and refrigerated until
processing in regional laboratories in the study regions of
Tanzania. Serum was aliquoted in cryovial tubes and stored
at −20°C at the Nelson Mandela African Institution of Science
and Technology (NM-AIST) in Arusha, Tanzania.

The animal ethics of the study were reviewed and approved by
the International Livestock Research Institute Institutional Animal
Care and Use Committee (ILRI-IACUC2018-27), and research
approval was granted by the Tanzania Commission for Science
and Technology (COSTECH) (ref. 2019-207-NA-2019-95).

4.2 Description of the Tanzanian cattle
population

On average, cattle in this study were 5 years of age, with 97.2% of
them being female breeds. Phenotypic characterisation classified 3.8% as
having African indigenous features, whereas 96.2% were identified as
crosses between East African Shorthorn Zebu and Ayrshire, Holstein, or
Jersey breeds. Management strategies in this population were varied,
with the majority of animals placed under an intensive feeding system
and having little opportunity to graze freely in open pastures.
Reproductive management was carried out through artificial
insemination, and a small percentage of farmers reported the use of
an owned or rented bull as a mode of reproduction in the herd.

Preventative disease control measures were carried out through
vaccination, although they were not routinely implemented, with
only 15.2% of farmers reporting using mainly a foot-and-mouth
disease vaccine. A total of 23 districts were sampled, with the
number of animals in each district varying from 15 in the Iringa
Municipal Council to 261 in the Moshi Rural District Council. The
herd size, composed mainly of heifers or cows, was variable, with
only a few herds being larger than 50 mature females.

4.3 Serological health resilience traits

The serological response trait was obtained for each individual
animal through testing for the antibody responses to seven pathogens

using commercial ELISA kits of BVDV (ID Screen® BVD p80 Antibody
Competition, Innovate Diagnostics, France),N. caninum (ID Screen®N.
caninum Competition, Innovate Diagnostics, France), L. hardjo
(Leptospira interrogans subtype Hardjoprajitno and Leptospira
borgpetersenii subtype Hardjobovis; the Linnodee Leptospira Hardjo
ELISA Kit™, Linnodee Animal Care, United Kingdom), RVFV (ID
Screen® Rift Valley Fever Competition Multi-species, Innovate
Diagnostics, France), T. gondii (ID Screen® Toxoplasmosis Indirect
Multi-species, Innovate Diagnostics, France), C. burnetii (Q fever;
PrioCHECKIT™ Ruminant Q Fever Ab Plate Kit, Thermo Fisher
Scientific, United States), and B. abortus (COMPELISA 160 and 400,
APHA Scientific, United Kingdom). The manufacturer’s guidelines
were followed (see details in (Bwatota et al., 2022; Mengele et al.,
2023; Motto et al., 2023; Ryan et al., 2012). All optical density (OD)
values were transformed into a binary seropositive seronegative
classification based on the manufacturer’s recommended cut-offs.

4.4 Genotyping and imputation

Following amethod previously applied to East African crossbred
dairy cattle (Aliloo et al., 2018), we genotyped our samples using a
low-density GeneSeek Genomic Profiler Bovine 100K chip and
inferred missing genotypes using a reference cattle population
genotyped with a high-density chip. As described in Aliloo et al.
(2018), the imputation method uses a crossbred cattle population,
mainly from Kenya, Tanzania, Uganda, and Ethiopia in East Africa
[see details in Aliloo et al. (2018) Table 1] and a purebred reference
(British Friesian, Holstein, Jersey, Guernsey, Nelore, and N’Dama)
population (n = 3091), both genotyped using the Illumina
BovineHD BeadChip (Illumina, San Diego, CA). This reference
population was obtained and curated during the Dairy Genetics East
Africa (DGEA) project, which collected performance, genotype, and
household data in these East African countries, and was provided by
authors Aliloo et al. (2018) solely for imputation. In this procedure,
only autosomal SNPs (that is, mitochondrial, unmapped, duplicated
map position, and SNPs located in sex chromosomes were
removed), with a GC score >15%, a call rate >90%, and a minor
allele frequency (MAF) > 0.01, and animals with below 10% missing
genotypes were kept for the imputation pipeline. The imputation
process involved a pre-phasing stage using the Eagle
v2.4.1 positional Burrows–Wheeler transform and hidden
Markov model algorithm (Loh et al., 2016), followed by the
imputation of genotypes using the Minimac3 v2.0.1 state space
reduction algorithm (Das et al., 2016) programme. The dataset after
imputation contained 2,011 animals and 670,367 SNPs.

To explore the population structure and global ancestry of
our samples, we first merged our samples into a reference
population (Wragg et al., 2022) and applied further quality
control measures. Both datasets were converted from the TOP
to FOR format and aligned using the SNPchiM v3 programme
(Nicolazzi et al., 2015) and subsequently merged into a single
VCF file using the bcftools v1.3 suite (Li, 2011). The merged data
were converted from the VCF to BED format using the Plink
v1.90 programme (Chang et al., 2015; Purcell et al., 2007), in
which SNPs with an MAF <0.01 (--maf) and a call rate >90%
(--geno) and animals with above 10% missing calls (--mind) were
removed. Additionally, one animal from a pair was removed for a
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high degree of relatedness above 0.25 (parent–offspring and full
siblings) based on the KING-robust estimator (Manichaikul
et al., 2010), which was implemented in the Plink
v2.0 programme (Chang et al., 2015; Purcell et al., 2007).

4.5 Genomic differentiation and ancestry
estimation

We ran PCA and model-based estimation of global ancestry on
our Tanzanian dataset and a merged genotype reference dataset to
explore the population structure. Our reference population included
pure European taurine (ET, n = 99; 63 Holstein, and 36 Jersey),
African taurine (AT, n = 59; 47 N’Dama and 12 Muturu), and Asian
zebu (AZ, n = 65; 30 Gir and 25 Nelore) cattle genotyped with the
Illumina BovineHD BeadChip (Wragg et al., 2022). We also ran a
separate PCA with only the Tanzanian samples, with the first five
PCs later being used as covariates to control for the population
structure in models for genetic parameter estimates and genome-
wide association analysis.

Prior to PCA and global ancestry estimation, SNP markers in
high linkage disequilibrium (LD) were removed after applying an
r-squared threshold >0.2 with another SNP within a 200-SNP
window with sliding windows of 10 SNPs at a time. To estimate
the level of ET, AT, and AZ ancestry in our Tanzanian cattle, we
performed a supervised admixture (Alexander et al., 2009) analysis
using a 5-step expectation-maximisation (EM) algorithm. We ran a
10-fold cross-validation with 200 bootstrap resampling to calculate
standard errors while assuming K = 2 to K = 3 fixed ancestries. We
compared our supervised analysis with an unsupervised admixture
analysis with the same parameter setting but exploring K = 2 to K =
23 clusters (Supplementary Figure S2). The admixture Q matrix
represents the estimated global ancestry proportion of the
Tanzanian animals across different genetic clusters. In the Q
matrix, the rows show the individuals, and the columns show the
clusters identified in the admixture analysis. These clusters were
visualised using the R pophelper package (Francis, 2017), and the
best value of Kwas chosen based on the lowest cross-validation error
in the unsupervised analysis.

4.6 Genetic parameter estimation

First, we estimated the genetic parameters on the observed scale,
and then their heritability (h20,1) was transformed to the heritability
on the underlying scale (h2u).

The genetic analysis on the observed scale assumes the binary
trait (0/1) to be continuous with normally distributed residuals. A
single-trait LMMwas performed for each trait. The following model
was fitted:

y � Xτ + Zu + e, (1)
where y is the vector of observations (serological traits; that is, sero-
response to BVDV, N. caninum, L. hardjo, RVFV, T. gondii, C.
burnetii, or B. abortus) modelled on the observed scale (0–1),
assuming them as continuous; τ is a vector of fixed effects, u is a
vector with the additive genetic effects; X and Z are design matrices

associating observations to fixed and random effects, respectively;
and e is the vector of residual errors. The fixed effects included in the
model were sex (male and female), sample collection month
(7 months), districts (23 districts), and herd size (four
categories), and the first five PCs obtained from the markers
were fitted as covariates. The additive genetic effects were fitted
using a genomic relationship matrix (GRM) computed with the
genotype information using method 2 of VanRaden (2008). The
narrow-sense heritability (h20,1) on the observed scale is estimated as
the proportion of phenotypic variance (σ2P) explained by the additive
genetic variance (σ2A).

h20,1 �
σ2A
σ2P

. (2)

The heritability on the underlying scale (h2u) was calculated by
transforming h20,1 based on Robertson’s approximation from
Dempster and Lerner (1950) and Falconer (1989).

h2u � h20,1
p 1 − p( )

z2
, (3)

where p is the population prevalence and z2 is the ordinate of the
standardised normal curve corresponding to a probability p. This
approximation has been shown to yield unbiased heritability
estimates for liability traits (Lee et al., 2011). The model assumes
that the underlying scale is a threshold model in which the binary
trait is controlled by an unobserved continuous variable (the liability
trait), and therefore, the serological status of an individual will be
0 when their liability phenotype is lower than a given threshold and
1 when it is above the threshold (Falconer, 1965).

4.7 Genome-wide association analysis

GWAS analyses were conducted using univariate analyses for
each of the seven traits using the GEMMA software (Zhou and
Stephens, 2012), fitting the same effects included in the LMM
described in Equation 1 plus the additive effect of the SNP being
tested. The Bonferroni correction was used to account for multiple
tests. The SNP effects were declared statistically significant at the
suggestive or genome-wide level when p-values were lower than
1.4917 × 10−6 and 7.4586 × 10−8, respectively. The Manhattan plot
(Figure 3) and the QQ plots (Supplementary Figures S4–S10) are
shown on the –log10 p-value scale (the suggestive and genome-wide
significant thresholds in the –log10 p-value scale are 5.83 and 7.13,
respectively).

To get further insight into the genetic architecture of these traits,
we investigated the contribution to the overall additive genetic
variance for the top SNPs that crossed the genome-wide and
suggestive significant thresholds. We fitted an LMM model as
described in Equation 1 plus the genotype effect of the SNP in
question which, in turn, was used to calculate its additive and
dominance effects. These genetic effects were calculated as
follows: additive effect, a = (AA – BB)/2; dominance effect, d =
AB – [(AA + BB)/2]; and proportion of genetic variance due to
SNP = [2 pq (a + d (q -– p))2]/VA, where the predicted values for
each genotype class were defined as AA, AB, and BB, with p and q as
the SNP allele frequencies and VA as the total trait additive genetic
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variance when no SNP effects are included in themodel (Equation 1)
(Matika et al., 2019; Hadjipavlou et al., 2008; Matika et al., 2016).
The predicted values for each genotype class, their (co)variances,
and the standard error were obtained using ASReml.

4.8 Genome mapping of associated loci

The investigation of the putative genes located with the QTL
regions identified for the immune serological response in our
Tanzanian cattle was done using the annotated B. taurus ARS-
UCD1.3 genome in Ensembl.org (https://www.ensembl.org/Bos_
taurus/Info/Index?db=core).
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