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Background: Preeclampsia (PE), a major obstetric disorder marked by
dysfunction in both placental and maternal vascular systems, continues to
pose critical challenges in global maternal healthcare. This multisystem
pregnancy complication contributes significantly to adverse perinatal
outcomes and remains a leading cause of pregnancy-related morbidity
worldwide. However, the available treatment options at present remain
restricted. Our investigation employs an integrative bioinformatics approach to
elucidate critical molecular signatures linked to the interplay between
immunological dysregulation and oxidative stress mechanisms in PE
pathogenesis.

Methods: In this study, we sourced the dataset from the GEO database with the
aim of pinpointing differentially expressed genes (DEGs) between PE samples and
control samples. Genes associated with oxidative stress were procured from the
Genecards database. Next, we employed a comprehensive approach. This
involved integrating WGCNA, GO and KEGG pathway analyses, constructing
PPI networks, applying machine learning algorithms, performing gene GSEA,
and conducting immune infiltration analysis to identify the key hub genes related
to oxidative stress. Diagnostic potential of candidate biomarkers was
quantitatively assessed through ROC curve modeling. Additionally, we
constructed a miRNA - gene regulatory network for the identified diagnostic
genes and predicted potential candidate drugs. In the final step, we validated the
significant hub gene using independent external datasets, the hypoxia model of
the HTR-8/SVneo cell line, and human placental tissue samples.

Results: At last, leptin (LEP) was identified as a core gene through screening and
was found to be upregulated. The results of quantitative real-time polymerase
chain reaction (qRT -PCR) and immunohistochemistry validation were consistent
with those obtained from the datasets. KEGG analysis revealed that LEP was
significantly enriched in “allograft rejection,” “antigen processing,” “ECM receptor
interaction” and “graft versus host disease.” GO analysis revealed that LEP was
involved in biological processes such as “antigen processing and presentation,”
“peptide antigen assembly with MHC protein complex,” “complex of collagen
trimers,” “MHC class II protein complex” and “mitochondrial protein containing
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complex.” Moreover, immune cell analysis indicated that T follicular helper cells,
plasmacytoid dendritic cells, neutrophils, and activated dendritic cells were
positively correlated with LEP expression, whereas γδT cells, eosinophils, and
central memory CD4+ T cells showed a negative correlation. These findings
suggest that LEP influences the immune microenvironment of PE through its
interaction with arious immune cells. In addition, 28 miRNAs and 15 drugs were
predicted to target LEP. Finally, the overexpression of LEP was verified using
independent external datasets, the hypoxia model of the HTR-8/SVneo cell line,
and human placental tissue.

Conclusion: Through an integrated analytical framework employing WGCNA
coupled with three distinct machine learning-driven phenotypic classification
models, we discovered a pivotal regulatory gene. This gene has the potential to
act as a novel diagnostic biomarker for PE. Moreover, it can be considered as a
promising target for drug development related to PE. Notably, it shows a strong
correlation with the immune microenvironment, suggesting its crucial role in the
complex pathophysiological processes underlying PE.
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1 Introduction

Preeclampsia (PE) is a pregnancy-specific, multisystemic
disorder characterized by clinical manifestations such as new-
onset hypertension and proteinuria after 20 weeks of gestation. It
stands as a significant contributor to maternal and fetal mortality
rates (Mol et al., 2016). The incidence of PE varies based on
geographic location, season, nutritional factors, and racial/ethnic
backgrounds; however, it impacts approximately 3%–5% of women
globally (Mol et al., 2016). Maternal complications associated with
PE encompass eclampsia, renal failure, and hemolysis, elevated liver
enzymes, and low platelet count (HELLP) syndrome. The
pathophysiological mechanisms of PE encompass endothelial
damage, systemic arteriolar spasm, reduced systemic perfusion,
and multiorgan dysfunction, which collectively pose a significant
threat to the health of both mothers and infants (San Juan-Reyes
et al., 2020; Ziganshina et al., 2020).Currently, the only effective
treatment is the termination of pregnancy (Tannetta and Sargent,
2013). Unfortunately, the exact etiology and pathogenesis remain
unelucidated. However, placental dysfunction, characterized by
inadequate trophoblast invasion of spiral arterioles, is thought to
play a central role. This dysfunction may be triggered by an
imbalance between the production and deactivation of reactive
oxygen species (ROS) in the placenta (Mol et al., 2016; Roberts
et al., 1989; Rana et al., 2019; Brown et al., 2018).

Oxidative stress plays a significant pathogenic role in PE, with
numerous oxidative stress markers showing diagnostic potential
(Agrawal et al., 2018). A substantial body of evidence underscores
the crucial involvement of immune responses and oxidative stress in
the development of PE (Meng et al., 2021; Afrose et al., 2022; Deer
et al., 2021a). The integration of immune infiltration, oxidative
stress, and bioinformatics approaches provides new insights into
the diagnosis and treatment of PE. Furthermore, two external
datasets were utilized to validate the identified gene. Ultimately,
the gene was validated through quantitative real-time polymerase
chain reaction (qRT -PCR) and immunohistochemistry. The
findings of this study might offer new perspectives on the role of

oxidative stress in placental pathology and could also facilitate the
identification of potential biomarkers and therapeutic targets,
providing a novel approach to the clinical diagnosis and
treatment of PE. The study route is illustrated in Figure 1.

2 Materials and methods

Human PE datasets were extracted from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) in July
2023. Three PE datasets were retrieved: GSE10588 (GPL2986),
consisting of 17 cases of PE and 26 control cases; GSE74341
(GPL16699), containing 12 PE cases and 10 control cases for
validation; and another validation set GSE98224 (GPL6244))
containing 30 PE cases and 18 control samples. Furthermore,
1142 oxidative stress-related genes were extracted from the
Genecards database. Pertinent details information is displayed in Table 1.

2.1 Identification of differentially expressed
genes (DEGs)

After normalizing the data, the “limma” R package (version
3.44.3) was used to perform differential expression analysis. The
filter criteria were set at |Log2FC|>0.5 and padj<0.05 (Ritchie et al.,
2015). The expression heat map of DEGs was generated by
employing the “Pheatmap” R package (version 4.1.0) (Ritchie
et al., 2015).

Subsequently, differentially expressed genes related to oxidative
stress (DEOSGs) were identified by intersecting the DEGs with the
1142 oxidative stress-related genes.

2.2 WGCNA

Weighted gene co-expression network analysis (WGCNA) is an
algorithm that can screen candidate biomarkers and the co-expressed
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gene modules with high correlation coefficients (Langfelder and
Horvath, 2008). In this study, the “WGCNA” package (version
4.0.3) was used to identify key module and hub genes associated
with PE using the GSE10588 dataset. To construct the network, the
co-expression relationship was calculated by Pearson’s correlation
coefficient. The optimal soft-thresholding factor (β) was chosen to
strengthen strong correlations among the DEGs while penalizing the
impact of weak correlations. The adjacency matrix was then converted
into a Topological Overlap Matrix (TOM). Using the TOM-based
dissimilarity measure, genes with similar expression patterns were
grouped into distinct modules through hierarchical clustering. A
module with a strong correlation to PE was identified based on gene
significance and its correlation with clinical subtypes. The genes from
this module were subsequently utilized for further analysis.

Eventually, the genes from DEOSGs and key modules were
intersected.

2.3 Construction of the PPI network and
functional enrichment analysis

Gene Ontology (GO) analyse serves as a comprehensive
repository of computable knowledge concerning the functions of
genes and gene products (The Gene Ontology Consortium, 2019).
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyse is a
widely utilized database for pathway enrichment analysis (Kanehisa
and Goto, 2000). GO and KEGG analyses were executed using
Metascape (http://metascape.org).

In addition, the GeneMANIA (http://genemania.org/search/)
online database was utilized to construct a gene interaction
network and analyze the functions of the identified genes. The
protein-protein interaction networks (PPI) network was built to
examine the interactions between protein-coding genes using the
GeneMANIA tool.

FIGURE 1
The flow chart of this study.

TABLE 1 Summary of the datasets included in this study and their features.

Dataset Database Platform Sample

GSE10588 GEO GPL2986 17 cases of PE and 26 controls

GSE74341 GEO GPL16699 12 cases of PE and 10 controls

Oxidative stress-related genes Genecard Genecard Obtaining oxidative stress-related genes from Genecard

GSE98224 GEO GPL6244 30 cases of PE and 18 controls
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2.4 Screening hub genes by machine
learning and ROC curve analysis

To identify key biomarkers, we employed several machine
learning methods. Least Absolute Shrinkage and Selection
Operator (LASSO) logistic regression analysis is a data mining
technique that uses an L1 penalty to eliminate less important
variables. This approach helps in selecting significant variables
for classification models (Zhang et al., 2021). Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) analysis is a
supervised machine-learning approach that progressively
removes less informative features to identify the most crucial
genes (Lin et al., 2017). Random Forest (RF) is a suitable
methodology that operates without constraints on variable
conditions and evaluates the importance of each gene by
assessing how well it contributes to the model’s predictive
accuracy across multiple decision trees. It is another machine
learning method that works well for prediction tasks with
continuous variables, offering high accuracy, sensitivity, and
specificity (Ellis et al., 2014). These algorithms complement
each other by offering different perspectives on feature
selection. While LASSO provides penalization to eliminate
irrelevant features, Random Forest evaluates feature
importance in terms of model accuracy, and SVM-RFE
systematically eliminates less relevant features. By using these
three methods in parallel, we aimed to increase the robustness of
the selected biomarkers and ensure that the identified biomarkers
are consistently relevant across different algorithmic approaches.
LASSO regression and RF analysis were conducted using the
“glmnet” (Zhang et al., 2019) (version 3.3.3) and “randomForest”
(Alderden et al., 2018) (version 3.0.2) R packages. The
intersection of the key genes identified by the three algorithms
was used for further analysis.

Furthermore, receiver operating characteristic (ROC) curves
and the area under the curve (AUC) were employed to assess the
diagnostic efficacy. Ultimately, the gene was recognized as a hub
gene through both methods combined.

2.5 GSEA of biological functions and
pathways of diagnostic markers

Gene Set Enrichment Analysis (GSEA) is a computational
method to analyze gene sets and identify biological functions and
signaling pathways (Subramanian et al., 2005). Samples were
categorized into high- and low-expression groups based on the
gene expression of each diagnostic marker. A GSEA was then
conducted to investigate the related biological functions and
pathways, with P < 0.05 set as the significance threshold.

2.6 Assessment of the immune landscape

To quantify the immune response, we used single-sample
GSEA (ssGSEA) to analyze 28 immune-related gene sets. The
gene set encompassing 28 immune cell types was derived from a
previously published article (Charoentong et al., 2017). Using
ssGSEA, a comparison was performed on differential immune

cell infiltration patterns and evaluate functional variations in
immunoregulatory pathways between cohorts dichotomized by
transcript abundance thresholds. The “GSVA” R package was
used for this analysis, with P < 0.05 indicating statistical
significance.

2.7 Prediction of potential drugs and
construction of diagnostic gene-
miRNA network

We utilized the DGIdb (https://www.dgidb.org), a Drug-Gene
interaction database (Cotto et al., 2018), to identify potentially
druggable targets based on the biomarkers for PE. The gene-drug
network was visualized using Cytoscape software (version 3.9.0).

To computationally identify miRNA-mRNA interactions of
diagnostic significance, we performed multi-platform target
prediction analyses integrating miRanda (http://www.microrna.
org/), miRDB (http://mirdb.org/),and TargetScan (http://www.
targetscan.org/vert_72/). Consensus predictions derived from
tripartite database intersection were subsequently modeled as
regulatory networks using Cytoscape (v3.9.0), a graph theory-
based visualization platform for biomolecular interaction mapping.

2.8 Validation of independent
external datasets

To validate the findings, the expression of key hub genes was
verified in external datasets, GSE74341 and GSE98224.

2.9 qRT -PCR assays for gene expression in
cell lines

The HTR8/SVneo (CRL-3271; ATCC) cell line was cultured in
RPMI-1640 medium (Glibco) supplemented with 5% fetal bovine
serum (Glibco) and maintained with antibiotics (100 U/mL
penicillin and 100 μg/mL streptomycin). Cells were then
incubated at 37°C in 5% CO2 for a duration of 24 h. For
experiments involving hypoxia, cells were cultured under serum-
free conditions at 37°C in a humidified 3-gas incubator containing
1% O2 and 5% CO2. This experimental condition was selected based
on prior research (Koklanaris et al., 2006; Graham et al., 1998), and
was aimed at simulating the conditions of PE for a period of 24 h.

Total RNA was extracted utilizing TRIzol reagent (Thermo
Fisher Scientific). Complementary DNA (cDNA) was synthesized
through reverse transcription using Prime-Script RTase (Takara).
Gene expression was normalized to actin and analyzed using the
2−ΔΔCt method. Primer sequences employed for qRT -PCR
amplification are mentioned below:

ACTIN
Forward: 5′- TCCGCCCCGCGAGCACAGAG-3′
Reverse: 5′- TCATCATCCATGGTGAGCTGGCGGC -3′,
LEP
Forward: 5′- TCCTCACCAGTATGCCTTCC -3′
Reverse: 5′- TCTGTGGAGTAGCCTGAAGG-3′
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2.10 IHC

The immunohistochemical (IHC) analysis in this study was
conducted using placental samples from four PE patients and four

healthy controls from Fujian Provincial Maternity and Child
Healthcare Hospital to validate our bioinformatics results. The
study was reviewed and approved by the Ethics Committee of
Fujian Provincial Maternity and Child Healthcare Hospital

FIGURE 2
Clustered heatmap of PE-related DEGs expression levels.
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(2024KY070-02). Fresh placental samples were immediately fixed in
4% paraformaldehyde (PFA, Sigma-Aldrich) at 4°C for 24 h and
subsequently embedded in paraffin matrix. Thin sections (4 μm)
mounted on charged slides underwent standard deparaffinization
procedures followed by antigen unmasking via microwave-assisted
retrieval in EDTA buffer (pH 8.0). After hydrogen peroxide-
mediated peroxidase inactivation and 10% normal goat serum
blocking, sections were probed with leptin-specific rabbit
polyclonal antibody (ABclonal, 1:200 dilution) through 4°C
overnight incubation. Subsequently, the sections were incubated
with the secondary antibody at room temperature for 1.5 h, followed
by incubation with 3,3′-diaminobenzidine at room temperature for
20 min. The stained sections were visualized using an optical
microscope (Leica), and quantitative analysis of the samples was
carried out with the assistance of ImageJ software (version 1.52).

3 Results

3.1 DEGs in the placenta samples

Gene expression data in the placental tissues of individuals with
non-PE and PE were retrieved from the GSE10588 dataset in the
GEO databases. The integrated dataset consists of 17 PE samples and

26 control samples. A total of 335 DEGs were identified utilizing the
Limma method. The heatmap of DEGs is shown in Figure 2.

3.2 Identification of co-expression modules
utilizing WGCNA

The gene expression profiles of the PE samples obtained from
the GSE10588 dataset were analyzed using the WGCNA technique.
This analysis involved constructing a gene co-expression network
and identifying co-expression network and identifying co-
expression modules using the WGCNA package in R. The
dataset comprising 26 normal samples and 17 PE samples, which
underwent clustering. Samples exhibiting evident aberrations were
excluded based on a predefined threshold, as depicted in Figure 3A.
Furthermore, a soft threshold of β = 4 (scale-free R2 = 0.9) was
employed to construct a scale-free network, ensuring high
connectivity (Figure 3B). Next, four modules were developed
based on a gene clustering tree and a dynamic hybrid cutting
algorithm (with a minimum of 100 genes per module)
(Figure 3C). The module with the highest correlation with PE
was brown, r = 0.77, P = 2e-09 (Figure 3D). The significance of
the genes in the brown module with the PE genes was cor = 0.67, P =
6.5e-56 (Figure 3E).

FIGURE 3
Construction of weighted gene co-expression networks. (A) Sample clustering and detection of outliers. (B) In the process of choosing the soft-
threshold power, two aspects were analyzed: the scale-free fit index (displayed on the left) and the mean connectivity (presented on the right). (C)
Clustering of co-expression modules was conducted. Each branch in the graph corresponds to a single gene. Genes grouped into the identical module
were designated with the same color. (D) Correlations between the modules and normal placenta as well as preeclampsia placenta. (E) The
relevance of members in the brown module and preeclampsia.
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3.3 Functional enrichment analysis and
PPI network

17 overlapping genes were identified by intersecting the critical
module genes and DEOSGs utilizing a Venn diagram (Figure 4A). GO
and pathway analyses were then performed to explore the biological
functions of these overlapping genes using Metascape. The overlapping
genes were primarily involved with positive regulation of protein kinase
activity, positive regulation of MAPK cascade, organic hydroxy
compound metabolic process, response to inorganic substance,
transition metal ion transport, and various other biological processes
(Figure 4B). Figure 4C revealed the relationships between theGO terms.
The PPI network visually depicted the interactions among these 17 hub
genes that involved in the development of PE (Figure 4D).

3.4 Selection of feature genes and GSEA
analysis of potential biomarkers

In this study, three machine-learning algorithms were utilized to
identify feature genes: SVM-RFE (Figure 5A); LASSO regression

analysis, which selected five genes based on statistically significant
univariable analyses (Figures 5B, C); and the RF algorithm, which
ranked genes based on their importance (Figures 5D, E). The Venn
diagram displayed the overlap of the three approaches, resulting in
the identification of a single gene, namely leptin (LEP)(Figure 5F).
Subsequently, a logistic regression model was developed using this
candidate gene. The outcomes showcased the superior diagnostic
performance of the predictive model, with an AUC of 0.95 in the
training set (Figure 5G). These findings suggest that LEP may serve
as a promising biomarker for PE.

Signaling pathways related to the characteristic genes were
analyzed using GSEA. KEGG analysis revealed that LEP was
significantly enriched in pathways such as “allograft rejection,”
“antigen processing,” “asthma,” “autoimmune thyroid disease,”
“ECM receptor interaction,” and “graft versus host disease”
(Figure 5H). GO analysis identified key biological processes
including “antigen processing and presentation,” “peptide antigen
assembly with MHC protein complex,” “complex of collagen
trimers,” “MHC class II protein complex,” “MHC protein
complex,” and “mitochondrial protein-containing
complex” (Figure 5I).

FIGURE 4
Functional enrichment analysis of key module genes merged with DEOSGs. (A) Venn diagram of key module genes versus DEOSGs. (B) Bar plot of
DEOSGs functional enrichment terms. (C)Network relationship plots among all terms. (D) The PPI network of 17 genes constructed by GeneMANIA. The
20 most frequently changed neighboring genes are shown.
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3.5 Evaluation and analysis of immune cell
infiltration using ssGSEA and potential drug
prediction

To further investigate immune infiltration differences between
individuals with PE and healthy controls, we performed ssGSEA.
Figure 6A illustrates the distribution of 28 immune cell types in the
GSE10588 dataset. Notably, PE samples exhibited significantly
higher infiltration levels of several immune cell types, including
activated dendritic cells, CD56dim natural killer cells, γδT cell,
regulatory T cells, T follicular helper cells, type 1 T helper cells,
type 2 T helper cells, and effector memory CD4+ T cells, compared to

healthy controls. This suggests that these immune cell types play a
central role in PE development (Figure 6B). Furthermore, a positive
correlation was observed between LEP expression and T follicular
helper cells, plasmacytoid dendritic cells, neutrophils, and activated
dendritic cells, while γδT cells, eosinophils, and central memory
CD4+ T cells exhibited a negative correlation with LEP (Figure 6C).

To identify potential therapeutic drugs for PE, we searched the
DGIdb database and identified 15 potential drugs that target LEP.
Cytoscape was employed to visualize the drug-gene interaction
networks for enhanced clarity and comprehensibility (Figure 6D).
However, the underlyingmechanism linking these potential drugs to
LEP remain unclear. Subsequently, a search of the miRDB, miRanda,

FIGURE 5
Screening hub genes by machine learning and GSEA analysis of potential biomarkers. (A) SVM-RFE algorithm. (B, C) LASSO regression algorithm. (D,
E) RF algorithm. (F) Venn diagrams for three algorithms. (G) Hub gene in the GSE10588 dataset were analyzed using ROC curves. (H) GO analysis results
for LEP. (I) KEGG analysis results for LEP.
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and TargetScan databases identified 28 miRNAs that may target
LEP. The networks depicting these interactions were visualized
using Cytoscape (Figure 6E).

3.6 Validation of independent external
datasets and experimental

Two independent external datasets (GSE74341 and GSE98224)
were utilized to validate the analytical results. The findings revealed
that LEP expression was significantly upregulated in placental
tissues of PE patients (Figures 7A, B).

To validate the bioinformatics results, immunohistochemistry
was used to assess the levels of LEP protein in preeclamptic placenta
samples (Figure 7C). The results indicated that LEP protein
expression was upregulated in preeclamptic placenta samples
compared to the control group (Figure 7D).

To further explore the expression of LEP in PE, a hypoxia model
was established utilizing the HTR-8/SVneo cell line. Subsequently,

LEP expression within this model was evaluated using qRT-PCR.
The findings demonstrated a significant upregulation of LEP mRNA
expression under hypoxic conditions (Figure 7E).

4 Discussion

PE represents a multifaceted clinical syndrome that is exclusive
to human pregnancy and plays a major role in causing morbidity
and mortality among pregnant women and their neonates (Roberts
et al., 1989). Despite its significance, the exact pathogenesis of PE
remains incompletely understood, resulting from intricate
interactions of various factors. PE can be triggered by a number
of conditions such as systemic inflammation, placental dysfunction,
hypoxia, immunological dysregulation, and oxidative stress (Jung
et al., 2022; George and Granger, 2011).Oxidative stress molecular
markers play a critical role in the pathogenesis of PE. During early
pregnancy, abnormal invasion of trophoblasts into the maternal
uterine spiral arteries leads to oxidative stress, enhancing the

FIGURE 6
Immune infiltration analysis and potential drug prediction. (A) Heatmap showed the composition of 28 kinds of immune cells in each sample. (B)
Comparison regarding the proportion of 28 kinds of immune cells between PE and normal groups visualized by the vioplot. (C) Heatmap of the
correlations between the biomarkers and infiltrating immune cells. (D)Hub gene–potential drug network; the red node represents the hub gene, and the
violet node represents the potential drug. (E) Interaction between candidate genes and miRNA (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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production of oxygen-free radicals in the placental environment
(Karaşin and Çift, 2020; van Rijn et al., 2008). Certain studies have
also revealed that immune response disruptions have a remarkable
impact on the development of this obstetrical syndrome (Miller
et al., 2022; Santana-Garrido et al., 2022; Lang et al., 2022; Deer et al.,
2021b). Furthermore, advances in informatics technologies now
allow the identification of diagnostic markers associated with
both immune responses and oxidative stress in the context of PE.

WGCNA is a widely used method for bioinformatics analysis. In
this study, We WGCNA algorithm to build a gene co-expression
network, subsequently leveraging hierarchical clustering for
delineating functional modules enriched with tightly
interconnected genes. Analysis of the WGCNA results revealed
that genes in the brown module exhibited the highest correlation
with PE development. After that, a Venn diagram was used to
disclose 17 genes that overlapped among the gene sets under study.

FIGURE 7
Validation of hub gene. (A) The hub gene in GSE74341 showed significant differences, with p value <0.05. (B) The hub gene in GSE98224 showed
significant differences, with p value <0.05. (C) Immunohistochemical staining of placental tissue. (D) Histograms of immunohistochemical staining
results. (E) Validation of LEP expression in the HTR-8/SVneo cell line by qRT-PCR analysis of LEP expression under normal oxygen concentration and
hypoxia, CON: normal oxygen concentration for 24 h, hypoxia: hypoxia condition for 24 h (**, p < 0.01; ***, p < 0.001). Scale bars = 100 μm.
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GO functional analysis illustrated that these genes were involved in
processes such as the positive regulation of organic hydroxy
compound metabolic process, protein kinase activity, and MAPK
cascade positive regulation. Similarly, KEGG analysis demonstrated
that these genes were primarily associated with the positive
regulation of protein kinase activity, organic hydroxy compound
metabolism, positive regulation of MAPK cascade, response to
inorganic substance, transition metal ion transport, and several
other biological processes. Subsequently, machine-learning
techniques, including LASSO, RF, and SVM-RFE, were employed
to identify key disease-related genes. Furthermore, ROC curves and
AUC values were utilized to assess diagnostic potential of these
markers. Ultimately, a potential diagnostic marker for PE, namely,
LEP, was identified.

Currently, identifying effective early prediction methods for PE
remains a significant challenge. A cohort study conducted in the
United States found that the maternal LEP/ceramide (cer) ratio in
early pregnancy serves as a superior non-invasive serum biomarker
for predicting PE, compared to the sFlt/PlGF ratio (Huang et al.,
2021). This suggests that LEP may be more helpful than sFlt/PlGF in
predicting PE.LEP is a protein-coding gene released by white
adipocytes into the bloodstream, where it plays a crucial role in
maintaining energy balance.LEP possesses various endocrine
functions and isimplicated in the regulation of immune and
inflammatoryresponses, hematopoiesis, angiogenesis,
reproduction, anthe promotion of angiogenesis (Pérez-Pérez
et al., 2018; Fasshauer and Blüher, 2015; Nieuwenhuis et al.,
2020; Childs et al., 2021).LEP acts on variety of immune cells,
influencing their development and function, and plays a key role
as an immune modulator in the body. Most immune cells express
LEP receptors and respond to LEP. In particular, LEP is essential for
the development, function, and metabolism of T cells. Research
indicates that LEP is critical for the early development of T cells, but
is not required for CD8+ T cells (Kim et al., 2010). It has been
demonstrated that leptin receptor signaling in T cells enhances cell
survival, differentiation, cytokine production, and proliferation
differentiatio (Fujita et al., 2002; Saucillo et al., 2014; Lord et al.,
1998; Gerriets et al., 2016). Furthermore, LEP promotes B cell
homeostasis by inhibiting apoptosis and promoting cell cycle
progression (Lam et al., 2010). In vitro studies have
demonstrated that LEP can activate B cells, inducing a pro-
inflammatory phenotype (Frasca et al., 2020; Agrawal et al.,
2011).LEP also binds specifically to LEP receptors on
macrophages, promoting their phagocytic activity (Mancuso
et al., 2018). Similar to T cells, LEP activation in monocytes
induces the expression of an inflammatory phenotype (Jaedicke
et al., 2013). LEP has been shown to promote the anti-apoptotic
effects of dendritic cells and enhance their maturation (Mattioli
et al., 2005;Moraes-Vieira et al., 2014). Studies also indicate that LEP
can inhibit neutrophil apoptosis and act as a chemoattractant for
neutrophils (Bruno et al., 2005; Ubags et al., 2014; Naylor et al.,
2014). In addition, LEP attracts eosinophils and basophils in a
manner similar to its effect on neutrophils (Suzukawa et al.,
2011; Kato et al., 2011). Furthermore, LEP plays a critical role in
the development of natural killer (NK) cells (Tian et al., 2002).
Currently, no studies have reported LEP-induced oxidative stress
activation in existing PE animal models. However, LEP has been
shown to increase ROS levels in vascular smooth muscle cells and

promote cell proliferation through the activating of thethe NF-κB
pathway (Schroeter et al., 2012; Li et al., 2005). In the placenta of PE
patients, an increase in ROS levels can be observed, potentially due
to the activation of the NF-κB pathway in trophoblast cells, leading
to enhanced ROS production (Wang et al., 2021). Excessively high
LEP levels may disrupt glucose and lipid metabolism, leading to the
excessive release of lipid peroxides and ROS, which increases the risk
of PE (Kutlu et al., 2005). This may help explain our findings. The
inflammatory microenvironment in PE patients promotes the
infiltration of dendritic cells. However, the increased proportion
of conventional dendritic cells and their over-maturation in PE
patients may contribute to the increased production of pro-
inflammatory cytokines and maternal damage (Zhang et al.,
2017; Darmochwal-Kolarz et al., 2003). This finding aligns with
our results. Decidual NK (dNK) cells actively mediate two pivotal
processes in early gestation: facilitating trophoblast migration and
orchestrating structural transformation of spiral arteries, potentially
contributing to the development of PE (Kalkunte et al., 2009).This
process may be driven by the secretion of vascular endothelial
growth factor (VEGF) and placental growth factor placental
growth factor (PlGF) by dNK cells, which stimulate spiral artery
remodeling (Kalkunte et al., 2009; Gibson et al., 2015). Our results
indicate a higher proportion of CD56dim NK cells in preeclamptic
women, whereas no significant difference was observed in the
proportion of CD56bright NK cells between the PE and control
groups. T cells are classified into αβ T cells and γδ T cells based
on differences in their T cell receptors. Currently, the role of γδ
T cells in the pathogenesis of PE remains unclear.; however, animal
studies have shown a significant elevation in γδ T cells in the
placenta of PE model mice, with γδ T cell-deficient mice
exhibiting improved PE symptoms (Chatterjee et al., 2017). This
finding is consistent with our results. During pregnancy, type 1 T
helper cell (Th1) immunity exerts pro-inflammatory effects, while
type 2 T helper cell (Th2) immunity has anti-inflammatory effects.
The balance between Th1 and Th2 immune responses is crucial for a
healthy pregnancy. However, in PE patients, the Th1/Th2 ratio in
peripheral blood is increased (El-Kabarity and Naguib, 2011). A
deficiency of decidual regulatory T cells (Treg cells) is associated
with poor spiral artery remodeling and insufficient trophoblast
invasion, both of which exacerbate the symptoms of PE (Harmon
et al., 2016).

LEP plays a critical role in placental development and function,
influencing processes such as invasion, protein synthesis, cell
proliferation, and apoptosis in placental cells (Pérez-Pérez et al.,
2018; D’Ippolito et al., 2012; Schanton et al., 2018). Multiple studies
have underscored LEP’s involvement in the pathophysiology of PE
(Pérez-Pérez et al., 2018; Dos Santos et al., 2015; Hauguel-de
Mouzon et al., 2006; Gutaj et al., 2020). Notably, PE patients
exhibit elevated serum LEP levels compared to individuals
without the condition, and elevated levels of this protein have
also been reported in the placentas of PE patients. (Song et al.,
2016; Kalinderis et al., 2015; Taylor et al., 2015). Multiple
investigations have detected both LEP mRNA and protein
expression in the placentas of PE patients (Taylor et al., 2015;
Mise et al., 1998; Nishizawa et al., 2007), findings consistent with
the results of the present study.

On the one hand, the elevated LEP levels may reflect a
compensatory response to placental underperfusion, aiming to
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support neovascularization (Eleuterio et al., 2014; Lepercq et al.,
2003). On the other hand, LEP is known to play a role in immune
regulation, and disruptions in immune homeostasis may lead to
alterations in maternal LEP expression in PE. However, further
comprehensive research is needed to fully elucidate the
dysregulation of LEP in the context of PE and its broader impact
on maternal physiology.

PE is a complex systemic condition, with increasing evidence
highlighting the immune system’s pivotal role in its development
(Lu and Hu, 2019). Thus, to further investigate this, an analysis of
immune infiltration was conducted to compare the immune cell
profiles between normal and PE samples. The results revealed a
remarkable increase in the infiltration of eight immune cell types in
PE samples compared to normal samples. These immune cell types
included activated dendritic cells, type 1 T helper cells,CD56dim

natural killer cells, γδT cells, macrophages, regulatory T cells, T
follicular helper cells, type 2 T helper cells, and effector memory
CD4+ T cells.

These findings indicate that LEP may serve as a promising
diagnostic and therapeutic marker for PE, potentially exerting a
significant role in its pathogenesis. Nevertheless, the study lacks
longitudinal data, which could be valuable in understanding the
temporal changes in LEP expression and its correlation with disease
severity and outcomes; validating the prognostic and therapeutic
implications of this model will require a larger sample size,
longitudinal data, and comprehensive clinical data from multiple
medical center in future research. The potential therapeutic drugs
targeting LEP in PE remains to be confirmed, and future research
should focus on conducting fundamental studies or clinical trials to
validate the feasibility of LEP-targeting drugs in the treatment of PE.
Additionally, as this study relies on publicly available data, further
experimental investigations are needed to elucidate the biological
functions of LEP.

5 Conclusion

In summary, through integrated bioinformatics analyses and
experimental verification, we identified LEP as a key biomarker
associated with immune infiltration and oxidative stress in PE.
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