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Objective:Mitochondrial metabolic reprogramming in macrophages is crucial in
the development and progression of inflammation. Given vitamin A’s antioxidant
properties and its therapeutic effects on inflammation, this study aims to
elucidate how vitamin A influences mitochondrial metabolic reprogramming
in inflammatory states, specifically in periodontitis, through genetic
bioinformatics and experimental methods.

Method: The study utilized the GSE16134 dataset from the Gene Expression
Omnibus (GEO) database, focusing on human periodontitis. Vitamin A-targeted
genes (ATGs) were identified and analyzed using CIBERSORT to explore their role
in inflammation. Cluster analysis revealed two phenotypes associated with ATGs,
showing differential expression of genes like COX1, IL-1β, and STAT3, and
immune activation patterns. Weighted Gene Co-expression Network Analysis
(WGCNA) identified 145 markers correlated with ATG-guided phenotypes and
inflammation. Machine learning models, combined with Gene Set Variation
Analysis (GSVA), identified five key genes (RGS1, ACAT2, KDR, TUBB2A, TDO2)
linked to periodontitis. Cell Type-Specific Enrichment Analysis (CSEA) highlighted
macrophages as critical in metabolic reprogramming, validated by external
datasets with an AUC of 0.856 in GSE10334 and 0.750 in GSE1730678.
Experimental validation showed vitamin A’s role in suppressing endoplasmic
reticulum stress and altering mitochondrial dynamics, as well as metabolic
reprogramming influencing inflammation via the STAT3 pathway in
RAW 264.7 cells.

Results: The study identified 13 differentially expressed ATGs in periodontitis,
showing strong correlations with inflammation, particularly in plasma cells,
macrophages, dendritic cells, neutrophils, and mast cells. Two ATG-guided
phenotypes were identified, differing in gene expression and immune
activation. WGCNA and machine learning models identified 145 markers and
five key genes associated with periodontitis. GSVA and CSEA analyses highlighted
the JAK-STAT pathway and macrophage involvement in metabolic
reprogramming. Experimental data confirmed vitamin A’s effects on
mitochondrial dynamics and metabolic reprogramming through the
STAT3 pathway.
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Conclusion: The study demonstrates that vitamin A’s therapeutic effect on
periodontitis is mediated through JAK-STAT pathway-guided mitochondrial
metabolic reprogramming in macrophages. It identifies two genetic and
immune-related phenotypes and five genetic identifiers associated with
periodontitis risk.
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1 Introduction

Periodontitis (PD) is a common oral disease primarily caused by
a chronic infection of the gums and surrounding tissues. It usually
begins as gingivitis, characterized by gum redness, swelling, and
bleeding. Left untreated, it can progress to periodontitis, leading to
gum recession, alveolar bone loss, and eventually, toothmobility and
loss (Slots, 2017). The main causative factors of periodontitis are
dental plaque and calculus, but genetics, smoking, and poor oral
hygiene habits can also increase the risk. Early-stage periodontitis
can be controlled through improved oral hygiene and professional
treatment, while severe cases may require surgical intervention
(Teles et al., 2022). Regular dental check-ups and cleanings are
essential for preventing periodontitis.

Periodontitis, despite being manageable through mechanical
treatments such as scaling and root planning, remains a chronic
condition with a significant risk of recurrence. This persistent threat
is closely linked to the concept of inflammation-mediated metabolic
reprogramming (Bartold and Van Dyke, 2017). When the body
encounters a prolonged inflammatory response, as observed in
periodontitis, it triggers complex biochemical pathways that lead to
alterations in cellular metabolism (O’Neill et al., 2016). These changes,
which can occur at both the local periodontal tissues and systemic levels,
create an environment conducive to the reactivation of the disease even
after clinical signs have been alleviated through treatment (Jha et al.,
2015). One key aspect of this metabolic reprogramming is the shift in
energy production within immune cells.

In response to chronic inflammation, immune cells, such as
macrophages, undergo a transition from oxidative phosphorylation
to glycolysis, a process known as the Warburg effect (Kelly and
O’Neill, 2015). This shift not only supports the immediate energy
needs required for sustaining the inflammatory response but also
results to the production of pro-inflammatory mediators that
perpetuate the inflammation. As a result, even after mechanical
removal of plaque and calculus, the inflammatory processes may
persist, leading to further tissue damage and disease recurrence
(Viola et al., 2019). Moreover, this metabolic reprogramming can
also influence the regenerative capacity of the periodontal tissues.
The altered metabolic state of fibroblasts and other resident cells
within the periodontal ligament may impair their ability to repair
and regenerate the damaged tissues effectively (Zebrowitz et al.,
2022). This compromised regenerative potential contributes to the
long-term challenges in fully resolving periodontitis.

Based on evidence-based research, vitamins have demonstrated
a potential role in reducing the risk of periodontitis and improving
its prognosis (Gutierrez Gossweiler and Martinez-Mier, 2020).
Vitamins such as vitamin C, D, and E are known to possess
antioxidant and anti-inflammatory properties, which are thought

to help mitigate the inflammatory processes involved in the
development of periodontal disease (Sulijaya et al., 2019). Recent
meta-analysis has shown that high-dose vitamin A intake is
negatively correlated with the likelihood of developing
periodontal disease, highlighting the important role of vitamin A
in preventing periodontal disease. One of the studies included
45 effect sizes from 23 observational studies, with a total of
74,488 participants (Mi et al., 2024). The results indicated that
higher levels of vitamin A intake are negatively associated with the
prevalence of periodontal disease. Despite the promising role of
vitamins in managing periodontal health (Gutierrez Gossweiler and
Martinez-Mier, 2020), there is a noticeable gap in the research
concerning the specific interaction between periodontitis and
vitamin A through inflammation and metabolic reprogramming.
While vitamins such as C and D have been more extensively studied
for their roles in antioxidant defense and immune modulation (Hu
et al., 2022), the potential involvement of vitamin A in these
processes remains underexplored in the context of periodontitis.
Vitamin A is known for its role in maintaining epithelial integrity
and modulating immune responses, yet its specific impact on the
metabolic pathways altered by chronic periodontal inflammation
has not been thoroughly investigated (Bar-El Dadon and Reifen,
2017). Recent experimental studies highlight that vitamin A could
potentially affect inflammatory processes and metabolic
reprogramming (Tejón et al., 2015). For example, α-ketoglutarate
can modulate the metabolism of T cells and macrophages, while
retinoic acid (RA) can suppress inflammatory responses and
promote the differentiation of immune cells toward an anti-
inflammatory phenotype by altering intracellular metabolic
pathways (Erkelens and Mebius, 2017). Additionally, the
metabolic products of vitamin A, such as retinoic acid, can act
on metabolic sensors like peroxisome proliferator-activated receptor
gamma (PPAR-γ), which plays a crucial role in regulating cellular
metabolism and inflammatory responses. By activating these
receptors, vitamin A can inhibit the expression of inflammatory
genes and promote metabolic reprogramming (Czarnewski et al.,
2017; Takeda et al., 2016). Furthermore, the metabolic products of
vitamin A can affect mitochondrial function by altering the
mitochondrial respiratory chain and energy metabolism
pathways, thereby modulating inflammatory responses. For
instance, retinoic acid can promote mitochondrial biogenesis and
improve mitochondrial function, leading to a reduction in the
production of reactive oxygen species (ROS) in inflammatory
cells (Mills et al., 2016; Liu et al., 2017). It is crucial to
understand how vitamin A might interact with inflammatory
mediators and metabolic pathways that are reprogrammed in
response to chronic periodontitis (Dommisch et al., 2018). Such
knowledge could provide deeper insights into developing targeted
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therapeutic strategies that incorporate vitamin A or its derivatives to
manage periodontitis more effectively. Still, these findings are
primarily speculative and require further empirical validation.

This study was dedicated to elucidating the mechanisms through
which vitamin A influences inflammation and metabolic
reprogramming in periodontal tissues, Involving exploring its role in
regulating the immune response, affecting cellular metabolism, and its
potential to enhance or suppress inflammatory pathways.
Understanding these interactions could pave the way for innovative
therapeutic approaches that integrate nutritional interventions with
traditional periodontal therapies, potentially offering a more
comprehensive management strategy for periodontitis.

2 Material and methods

2.1 Data processing

The datasets utilized in this study were sourced from the GEO
database, accessible at https://www.ncbi.nlm.nih.gov/geo/for further
details. Specifically, dataset GSE16134, based on the GPL570-
9,606 platform, was selected for analysis. This dataset comprises
310 gingival papillae samples collected from 120 subjects
undergoing periodontal surgery, of which 241 were classified as
“diseased” and 69 as “healthy.” The GSE10334 dataset, also based on
the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570-
9606) platform, includes 247 gingival papillae samples from
90 periodontitis patients, with 183 classified as “diseased” and
64 as “healthy.” This dataset was used to confirm the diagnostic
efficacy of disease related gene-based signatures. The

GSE173078 dataset was taken from the gingival tissues of
12 periodontitis patients and 12 normal individuals, based on
Illumina HiSeq 4000 (Homo sapiens, GPL20301).

For dataset GSE16134 and 10334, tissue samples were obtained
from patients diagnosed with moderate to severe periodontitis
undergoing periodontal surgery (Tonetti et al., 2018). The diagnostic
criteria were as follows: “Diseased” sites exhibited bleeding on probing
(BoP), had an interproximal probing depth (PD) of ≥4 mm, and
concomitant attachment loss (AL) of ≥3 mm. In contrast, from the
same population,“Healthy” sites displayed no BoP, had a PD of ≤4mm,
and AL of ≤2 mm. For GSE173078, the periodontitis samples were
collected from sites with PD ≥ 5 mm, CAL ≥3 mm, radiographic bone
loss beyond the coronal third of the root, and bleeding on probing
(BoP). The periodontally healthy samples were collected from sites with
PD ≤ 3 mm, no CAL, and no BoP (Kim et al., 2021). A total of
13 vitamin A targeted genes (ATGs) were extracted from the original
research on vitamin A, and further investigations were conducted based
on these genes (Ye et al., 2022).

2.2 Assessment of immune cell infiltration
and correlation analysis between ATGs and
infiltrated immune cells

The CIBERSORT algorithm (https://cibersort.stanford.edu/)
along with the LM22 signature matrix was utilized to estimate
the relative abundances of 22 immune cell types in each sample,
based on the analyzed gene expression data. CIBERSORT employs
Monte Carlo sampling to calculate an inverse fold product p-value
for each sample. Only samples with p-values below 0.05 were

FIGURE 1
Schematic diagram.
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deemed to have accurate immune cell fraction estimates. The sum of
the proportions of the 22 immune cell types in each sample equaled
1 (Newman et al., 2015).

To further investigate the relationship between ATGs and
immune cell properties related to periodontitis (PD), we analyzed
the correlation coefficients between ATG expression levels and the
relative proportions of immune cells. Spearman’s correlation
coefficient was employed, and correlations were considered
statistically significant if the p-value was below 0.05. The findings
were then visualized using the “corrplot” R package (version 0.92).

2.3 Unsupervised clustering of PD patients

Initially, 13 vitamin A ATGs were identified based on prior
studies (Tsvetkov et al., 2022). Utilizing the expression profiles of
these 13 ATGs, we conducted unsupervised clustering analysis using
the “ConsensusClusterPlus” R package (version 2.60) (Wilkerson

and Hayes, 2010). The k-means algorithm was employed with
1,000 iterations to classify periodontitis (PD) samples into
distinct clusters. A maximum number of subtypes (k = 2) was
selected, and the optimal number of clusters was determined
through a comprehensive evaluation of the cumulative
distribution function (CDF) curve, consensus matrix, and a
consistent cluster score greater than 0.9. The parameters used for
the analysis included a resampling rate of 80%, 100 resampling
iterations, and a cluster proportion of 0.8.

2.4 Gene set variation analysis
(GSVA) analysis

GSVA enrichment analysis was performed to identify
differences in enriched gene sets between distinct ATGs clusters
using the “GSVA” R package (version 2.11). The files “c2.
cp.kegg.v7.4. symbols” and “c5. go.bp.v7.5.1. symbols” were

FIGURE 2
Identification of dysregulation of vitamin A regulated targets and activation of the immune responses in PD patients. (A–C) Expression of vitamin
A-related genes (ATGs) in periodontitis tissues. Specifically, COX1, COX2, IL10, STAT3, GCLM, GCLC, G6PD, and HMOX1 were upregulated in
periodontitis, while NQO1 and CAT were significantly downregulated. (D, E) Gene interaction network of differentially expressed ATGs and synergistic
relationship. (F) Immune infiltration analysis, using the CIBERSORT algorithm, compared the proportions of 22 immune cell types between
periodontitis patients and controls. (G) specific changes in the immune system of periodontitis patients. (H) Correlation analysis revealed a negative
relationship between the polarization from M0 to M1 macrophages and the expression levels of G6PD, IL-1β, and HMOX1.
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sourced from the MSigDB database to support the GSVA analysis.
To detect differentially expressed pathways and biological functions,
the “limma” R package (version 3.52.1) was applied, comparing
GSVA scores across the various ATGs clusters. A |t value of GSVA
score| greater than 2 was considered indicative of significant
alterations.

2.5 Weighted gene co-expression network
analysis (WGCNA)

To identify co-expression modules, Weighted Gene Co-
expression Network Analysis (WGCNA) was conducted using
the “WGCNA” R package (version 1.70.3) (Langfelder and

FIGURE 3
Vitamin A-related expression patterns in periodontitis (PD) were analyzed using consensus clustering. (A, B) Consensus clustering cumulative
distribution function (CDF) curves indicate that stability was highest at k = 2, with minimal fluctuation in the consensus index range of 0.2–0.6. (C)
Comparison of CDF curves for k values between 2 and 6 highlights differences between k and k-1. (D) The consistency score for each subtype exceeded
0.9 only when k = 2. (E) The consensusmatrix heatmap shows the separation of PD patients into two distinct clusters: Cluster 1 (n = 112) and Cluster 2
(n = 198). (F) t-SNE analysis further confirms significant differences between the two clusters.
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FIGURE 4
Comparative analysis of immune cell infiltration and gene expression between Cluster 1 (C1) and Cluster 2 (C2). (A, B) The bar plots show the relative
abundance of immune cells, including B cells, T cells, NK cells, monocytes, macrophages, dendritic cells, mast cells, eosinophils, and neutrophils, with
significant differences observed between C1 and C2, particularly in CD8+ T cells, Tregs, monocytes, and neutrophils. (C, D) Heatmap illustrating
differential expression of genes like COX2, G6PD, STAT3, IL6, IL10, and others, suggesting immune pathways and Vitamin A’s potential role in
modulating the response to periodontitis.
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FIGURE 5
Exploration to the relationships between gene expression modules and clinical by Weighted Gene Co-expression Network Analysis (WGCNA). (A, B)
Cluster tree dendrogram of co-expression modules among PD/control and C1/C2 respectively. (C, D) Correlation analysis between module eigengenes
and clinical status. Each row represents a module; each column represents a clinical status among PD/control and C1/C2 respectively. (E, F)
Representative heatmap of the correlations among modules among PD/control and C1/C2 respectively.
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FIGURE 6
Differential expression and pathway analysis between C2 and C1 groups and machine learning. (A) Functional differences between clusters were
analyzed using GSVA, revealing that the KEGG_JAK_STAT_SIGNALING_PATHWAY was upregulated in the C2 group. (B) Metabolic pathway analysis
demonstrated significant differences in the C2 group in terms of fatty acid metabolism, indicating potentially higher metabolic capacity in the
C2 group. (C) Functional enrichment analysis revealed differences in biological processes and cellular components between the C1 and C2 groups.
(D, E) Residual distribution comparison of four machine learningmodels (RF, SVM, GLM, XGB) showed that the SVM and XGBmodels had lower residuals,
indicating better fit. (F) RMSE was used to assess the importance of model feature variables, identifying the top 15 important variables in the XGB model.
(G) The ROC curve showed that the RF model performed best in the test set, with an AUC of 0.856.
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Horvath, 2008). The top 25% of genes with the highest variance were
selected for subsequent WGCNA analysis to ensure robust results.
An optimal soft threshold power was chosen to construct a weighted
adjacency matrix, which was then converted into a topological
overlap matrix (TOM). Modules were identified using the TOMs
dissimilarity measure (1-TOM) with a hierarchical clustering tree
algorithm, and a minimummodule size of 100 was set. Each module
was randomly assigned a color. The module eigengene represented
the overall gene expression profile for each module. The association
between modules and disease status was evaluated using module
significance (MS), while gene significance (GS) was defined as the
correlation between individual genes and clinical phenotypes.

2.6 Construction of predictive model based
on multiple machine learning methods

To construct machine learning models based on two distinct
ATGs clusters, the “caret” R package (version 6.0.91) was employed
to develop a range of models, including a random forest model (RF),
support vector machine model (SVM), generalized linear model
(GLM), and eXtreme Gradient Boosting (XGB). The RF model, an
ensemble learning method, utilizes multiple independent decision

trees to predict classification or regression outcomes (Rigatti, 2017).
The SVM algorithm generates a hyperplane in the feature space that
maximizes the margin to separate positive and negative instances
(Gold and Sollich, 2003). The GLM, an extension of multiple linear
regression models, provides flexibility in evaluating relationships
between normally distributed dependent variables and categorical or
continuous independent variables (Nelder and Wedderburn, 1972).
The XGB model, which is based on gradient boosting, integrates
multiple boosted trees and balances between classification error and
model complexity (Chen, 2015).

In this study, distinct clusters were treated as the response
variable, while cluster-specific ATGs were selected as explanatory
variables. The PD samples were randomly divided into a training set
(70%) and a validation set (30%). Model parameters were
automatically optimized using grid search via the “caret” package,
with all models executed using default settings and assessed through
5-fold cross-validation. The “DALEX” package (version 2.4.0) was
used to interpret the four machine learning models, as well as to
visualize residual distributions and feature importance. The “pROC”
R package (version 1.18.0) was utilized to plot the area under the
receiver operating characteristic (ROC) curves. Based on these
analyses, the optimal machine learning model was identified, and
the five most important variables were considered as key predictive

FIGURE 7
Cell types identified by CSEA analysis across various tissues. (A) The major cell types encompassed epithelial cells, endothelial cells, macrophages,
monocytes, and several others across different tissues. (B) Maped top 20 general cell types and their relative abundance. (C) Organ system-specific
analysis delineating the presence of these cell types across mapped on the cellular composition and potential functional dynamics in these systems. (D)
Maped top 20 general cell types and their relative abundance in adult organ system.
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genes related to PD. To further validate the diagnostic utility of the
model, ROC curve analyses were performed using the GSE173078,
GSE10334 and GSE16134 datasets.

Additionally, a nomogram model was developed to assess the
occurrence of PD clusters using the “rms” R package (version 6.2.0).
Each predictor was assigned a specific score, with the “total score”
representing the cumulative sum of these scores. The calibration
curve and decision curve analysis (DCA) were applied to evaluate
the predictive accuracy of the nomogram model.

2.7 Molecular docking

3D-structures of ligand molecules retinol and static were
obtained from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/), and the protein STAT3 structure used in this study is PDB
ID 6NJS, downloaded from the RCSB Protein Data Bank (www.rcsb.
org/). The docking procedure was conducted using CB-
DOCK2(https://cadd.labshare.cn/cb-dock2/index.php), a
convolutional neural network-based docking tool designed to
predict the binding mode and affinity between ligands and target
proteins (Liu et al., 2022).

Initially, the 3D structure of the protein STAT3 (PDB ID 6NJS)
was processed by CB-DOCK2 to identify potential binding pockets
on the protein surface. The tool employs a convolutional neural

network to analyze the protein structure and automatically predict
possible binding sites, generating scores for each identified pocket
based on their likelihood of accommodating the ligand.

Following the identification of binding pockets, the ligand
molecules from PubChem were docked into these predicted
pockets using the AutoDock Vina algorithm integrated within
CB-DOCK2.

2.8 Molecular dynamics

AmberTools22 was used for molecular docking studies, obtained
from the official AMBER website (https://ambermd.org). The ligand
molecules were retrieved from the PubChem database, and the
target protein structure was downloaded from the RCSB Protein
Data Bank (PDB ID: 6NJS).

The docking process began by preparing the protein structure.
Hydrogen atoms were added, and missing residues were
reconstructed using LEaP, a tool from the AmberTools suite. The
protein was then parameterized using the ff14SB force field. The
ligand molecule was prepared by assigning atomic charges using the
AM1-BCC method, and parameterization was conducted using the
GAFF (General Amber Force Field).

Once the ligand and protein structures were prepared, molecular
docking was performed using the SANDER module in Amber,

FIGURE 8
Confirmation to diagnostic value of XGBmodel and molecular simulation. (A) A nomogram was constructed to evaluate the predictive efficiency of
the XGB model for estimating the risk of PD clusters in patients. (B) The calibration curve demonstrated minimal error between actual and predicted PD
cluster risks, indicating high prediction accuracy. (C) The decision curve analysis (DCA) suggested that the nomogram has high accuracy andmay serve as
a useful tool for clinical decision-making. (D) External datasets have confirmed the consistent diagnostic value of these markers. (E) CB-DOCK2
molecular docking and AMBER22 molecular dynamics simulations revealed that vitamin A can bind near the phosphorylation site of STAT3 (PDB ID:
6NJS), mimicking the effect of the inhibitor Stattic and interfering with STAT3 phosphorylation. (F) Stattic had a vina score of −4.9, showing similar binding
sites but slightly weaker binding affinity. (G–J) FurtherMMGBSA andMMPBSA analyses indicated that vitamin A had amore negative total free energy (ΔG),
reflecting stronger binding stability and higher inhibitory potential on STAT3 compared to Stattic.
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which was employed for energy minimization and conformation
sampling. The ligand was placed in the binding site of the protein
based on initial predictions bymolecular docking. A two-step energy
minimization was performed: the first with constraints on the
protein backbone, and the second without any constraints to
allow for full relaxation of the system.

The binding poses were evaluated by calculating the binding free
energies using both the Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) and Molecular Mechanics/Poisson-
Boltzmann Surface Area (MM/PBSA) methods.

2.9 CCK-8 cell viability assay

To assess the cytotoxicity of VA on RAW264.7 cells, a CCK-8
(Cell Counting Kit-8) assay was performed. RAW264.7 cells were
seeded in 96-well plates at a density of 1 × 104 cells per well and

allowed to adhere overnight. VA was dissolved in dimethyl sulfoxide
(DMSO) and added to the wells at varying concentrations. Cells
treated with DMSO alone served as a control. After 24 h of
treatment, 10 μL of CCK-8 solution was added to each well and
incubated for 2 h at 37°C. Absorbance was measured at 450 nm using
a microplate reader to evaluate cell viability. All assays were
performed in triplicate, and results are expressed as mean ± SD.

2.10 Quantitative real-time polymerase
chain reaction (qPCR)

Quantitative real-time polymerase chain reaction (qPCR) was
performed using the Applied Biosystems 7,500 Real-Time PCR
System with SYBR Green dye to detect the amplification
products. Each 20 μL reaction mixture contained 1X SYBR
Premix Ex Taq™ II (Takara), 0.3 μM forward and reverse

FIGURE 9
In vitro validation of the effect of VA on macrophages. (A) CCK-8 cell viability assay was used to observe the cytotoxicity of VA dissolved in DMSO at
different concentrations. (B–D) Expression of genes related to inflammation, ER stress, and mitochondrial dynamics in RAW264.7 treated with PBS, LPS,
and LPS + VA. (F)DCFH fluorescence staining was used to detect the ROS content in RAW264.7 under different treatments. Scale bar = 400 µm. (E)Gene
expression levels related to glycolysis were evaluated in RAW264.7 cells in state of inflammation and VA supplement treated with Stattic (G) Flou-4
fluorescence staining was used to detect the Ca2+ content in RAW264.7 under different treatments. Scale bar = 200 µm. (H) Calcein-AM loading/
CoCl2 quenching assay was used to detect the opening of mPTP in RAW264.7 under different treatments. Scale bar = 200 µm. (I)MitoSOX fluorescence
staining was used to detect mitochondrial superoxide levels in RAW264.7 cells under various treatments. Scale bar = 200 µm. All quantitative results are
expressed as mean ± SD (n = 3). (J, K) Oxygen consumption rate was measured to estimate the mitochondrial functional state of metabolism.
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primers (Takara), and 10 ng of cDNA template. Synthetic primer
sequences can be found in supplementary material (Supplementary
Table S1). All reactions were carried out in 96-well plates, and no-
template controls (NTC) were included to check for potential
contamination.

The qPCR thermal cycling conditions were as follows: initial
denaturation at 95°C for 2 min, followed by 40 cycles of denaturation
at 95°C for 15 s and annealing/extension at 60°C for 1 min. After the
completion of each reaction, a melt curve analysis was performed to
verify the specificity of the amplification. The melt curve was
obtained by gradually increasing the temperature from 60°C to
95°C while monitoring the SYBR Green fluorescence signal,
ensuring the production of a single, specific amplification product.

Quantification was based on CT values, and the relative
expression of the target genes was calculated using the ΔΔCT
method, with GAPDH as the reference gene. The experiment was
repeated three times, with technical replicates for each run to ensure
data reliability.

2.11 Detection of reactive oxygen species
(ROS) by DCFH fluorescence staining

To measure intracellular ROS levels, RAW264.7 cells were
seeded on glass coverslips in 24-well plates and treated with PBS,
LPS, or LPS + VA for 24 h. After treatment, cells were incubated with
10 μM of DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate)
for 30 min at 37°C in the dark. Following incubation, cells were
washed with PBS and fluorescence images were captured using a
fluorescence microscope. The fluorescence intensity was
proportional to the ROS content in the cells. The scale bar in the
images represents 400 µm. All experiments were performed in
triplicate, and data are expressed as mean ± SD.

2.12 Calcium content detection by Fluo-4
AM fluorescence staining

The intracellular calcium content was assessed using Fluo-4 AM
dye. RAW264.7 cells were plated on glass coverslips in 24-well plates
and treated with PBS, LPS, or LPS + VA for 24 h. After treatment,
cells were incubated with 5 μM of Fluo-4 AM for 30 min at 37°C in
the dark. After incubation, cells were washed with PBS, and
fluorescence images were obtained using a fluorescence
microscope. The scale bar represents 200 µm. Fluorescence
intensity was used to estimate intracellular calcium levels. All
experiments were performed in triplicate, with data presented
as mean ± SD.

2.13 Detection of mPTP opening by Calcein-
AM Loading/CoCl₂ quenching assay

Mitochondrial permeability transition pore (mPTP) opening
was detected using a Calcein-AM loading/CoCl₂ quenching assay.
RAW264.7 cells were seeded in 24-well plates on glass coverslips and
treated with PBS, LPS, or LPS + VA for 24 h. Cells were then
incubated with 1 μM of Calcein-AM for 30 min at 37°C, followed by

treatment with 1 mM CoCl₂ to quench the cytoplasmic calcein
fluorescence. Fluorescence images were captured using a
fluorescence microscope, and the mitochondrial calcein signal
was used to estimate mPTP opening. The scale bar represents
200 µm. All experiments were performed in triplicate, and results
are expressed as mean ± SD.

2.14 Mito-SOX fluorescence staining to
detect mitochondrial reactive oxygen
species (mROS)

To measure the level of ROS in mitochondria, RAW264.7 cells
were seeded on glass coverslips in 24-well plates and treated with
PBS, LPS, or LPS + VA for 24 h. After treatment, the cells were
incubated with 5 µMMito-SOX for 30 min at 37°C in the dark. After
incubation, the cells were washed with PBS, and fluorescence images
were captured using a fluorescence microscope. The fluorescence
intensity is proportional to the mROS content in the cells. The scale
bar in the image represents 200 µm. All experiments were performed
in triplicate and the data are presented as mean ± SD.

2.15 Mitochondrial oxidative respiratory
chain (OCR) assay

RAW264.7 macrophages were cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin at 37°C in a humidified atmosphere
containing 5% CO2. For the OCR assay, cells were seeded into
XF96 cell culture microplates at a density of 1 × 104 cells per well and
incubated overnight to allow cell adhesion. The cells were then
treated with one of the following conditions: control (PBS),
lipopolysaccharide (LPS, 1 μg/mL), LPS combined with vitamin
A (LPS + VA), STAT3 inhibitor Stattic, which specifically blocks
STAT3 activation by preventing its binding to phosphopeptides, LPS
+ Stattic, or LPS + Stattic + 20 μM VA. After 24 h of treatment, the
medium was replaced with assay medium (non-buffered DMEM),
and cells were incubated for 1 h at 37°C in a CO2-free incubator
before the OCR measurements. Basal respiration was continuously
monitored for 1 h.

3 Results

3.1 Dysregulation of vitamin A regulated
targets and activation of the immune
responses in PD patients

To rigorously investigate the biological roles of vitamin
A-regulated targets in the onset and progression of periodontitis
(PD), we conducted a systematic analysis of the expression profiles
of 31 vitamin A targeting genes (ATGs) using the GSE16134 dataset,
comparing PD patients with non-PD controls. The study’s
methodology is comprehensively outlined (Figure 1). Our
analysis identified these 13 ATGs as differentially expressed genes
associated with vitamin A. Specifically, we observed that the
expression levels of COX1, COX2, IL10, STAT3, GCLM, GCLC,
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G6PD, andHMOX1 were elevated in PD tissues, while NQO1, CAT,
and ARG1 exhibited significantly lower expression levels relative to
non-PD controls (Figures 2A–C). To further explore the
implications of these differentially expressed ATGs in PD
progression, we performed a correlation analysis. The results
revealed a synergistic interaction between the JAK-STAT
pathway component STAT3 and the metabolic regulator G6PD,
whereas an antagonistic relationship was noted between GCLC and
G6PD. Additionally, a gene relationship network diagram provided
further insights into the interconnections among these differentially
expressed ATGs (Figure 2E). These findings suggest a potential
involvement of these genes in the molecular mechanisms underlying
PD, warranting further investigation into their specific roles and
clinical relevance in PD pathology.

To objectively assess potential differences in the immune system
between PD patients and non-PD controls, an immune infiltration
analysis was conducted using the CIBERSORT algorithm to
compare the proportions of 22 infiltrated immune cell types
between the two groups (Figure 2F). The analysis indicated that
PD patients exhibited significantly higher infiltration levels of
plasma cells and neutrophils (Figure 2G), along with notably
lower infiltration levels of memory B cells and follicular helper
T cells. These findings suggest that alterations in the immune system
may play a role in the pathogenesis of PD. Additionally, the analysis
revealed a surprising pattern in macrophage populations, with PD
patients showing significantly higher levels of M0 macrophages and
lower levels of M1 macrophages. Correlation analysis further
demonstrated that the polarization of macrophages from the
M0 to M1 type was negatively correlated with the expression
levels of G6PD, IL-1β, and HMOX1 (Figure 2H). These results
imply that vitamin A targeting genes may be crucial factors in
modulating the molecular and immune infiltration characteristics
observed in PD patients, warranting further investigation into their
potential role in PD pathology.

3.2 Identification of clusters in PD, gene
modules screening and co-expression
network construction

To investigate vitamin A-related expression patterns in
periodontitis, PD samples were categorized using a consensus
clustering algorithm based on their expression profiles. Stability
was highest with a k value of 2 (k = 2), as indicated by the consensus
clustering CDF curves, which showed minimal fluctuation within a
consensus index range of 0.2–0.6 (Figures 3A, B). When comparing
CDF curves for k values from 2 to 6, the area under the curves
highlighted differences between k and k-1 (Figure 3C). Additionally,
the consistency score for each subtype exceeded 0.9 only when k = 2
(Figure 3D). Therefore, PD patients were classified into two clusters:
Cluster1 (n = 112) and Cluster2 (n = 198), supported by the
consensus matrix heatmap (Figure 3E). t-Distributed Stochastic
Neighbor Embedding (t-SNE) analysis further confirmed
significant differences between these two clusters (Figure 3F).
Distinct expression landscapes were observed between these two
patterns (Figure 4). Interestingly, the deviation between Cluster
1 and Cluster 2 aligned with the anticipated expression patterns
influenced by the presence or absence of Vitamin A stimulation, as

suggested by previous research. Cluster 1, which corresponds to the
anticipated expression pattern stimulated by Vitamin A, exhibited
lower levels of IL-1β, IL-6, IL-10, STAT3, HMOX1, GCLM and
higher levels of NQ O -1 and ARG-1. This pattern suggests a
protective role against the onset and progression of periodontitis.
Conversely, Cluster 2, which corresponds to the expression pattern
in contrast to Vitamin A stimulation, was characterized by enhanced
expressions of IL-1β, IL-6, IL-10, STAT3, HMOX1, GCLM and
suppressed expression of NQ O -1 and ARG-1 (Figures 4A, B).

Furthermore, the results of the immune infiltration analysis
revealed an altered immune microenvironment between Cluster
1 and Cluster 2. This alteration was characterized by the activation of
CD8+ T cells, regulatory T cells, monocytes, dendritic cells, mast
cells, and neutrophils, which partially align with the immune
response observed in the onset and progression of periodontitis
based on previous data (Figures 4C, D). These findings suggest that
categorizing periodontitis in terms of Vitamin A content could be
beneficial, given its potential influence on the susceptibility to the
onset and progression of periodontitis in an immunological context.

To identify key gene modules associated with PD, we applied the
Weighted Gene Co-expression Network Analysis (WGCNA)
algorithm to construct a co-expression network for normal and
PD samples. Variance analysis of gene expression in
GSE16134 allowed selection of the top 25% most variable genes
for further analysis. Co-expressed gene modules were identified with
a soft power value of 9 and a scale-free R̂2 of 0.9 (Figure 5A). Using
the dynamic cutting algorithm, 10 distinct co-expression modules
were identified, as visualized by the heatmap of the topological
overlap matrix (TOM) (Figure 5C). Analysis of module-clinical
feature correlations revealed that the blue module, consisting of
999 genes, had the strongest association with PD (Figure 5E).
Furthermore, a positive correlation was observed between the
blue module and module-related genes.

Additionally, WGCNA was used to analyze critical gene
modules related to PD clusters. The optimal soft threshold
parameters were β = 7 and R̂2 = 0.9, which facilitated the
construction of a scale-free network (Figure 5B). Eleven
significant modules were identified, and their TOMs were
depicted in the heatmap (Figure 5C). Correlation analysis
between modules and PD revealed a strong association between
the grey module (containing 1,661 genes) and PD clusters
(Figure 5E). This analysis also indicated a significant relationship
between turquoise module genes and the selected module.

3.3 Identification of cluster-specific DEGs
and functional annotation

A total of 145 cluster-specific differentially expressed genes
(DEGs) were identified by analyzing the intersections between
module-related genes of ATGs-related clusters and those related
to PD and non-PD individuals (Figure 6A). Gene Set Variation
Analysis (GSVA) was used to explore functional differences between
the clusters. The analysis revealed that the KEGG_JAK_STAT_
SIGNALING_PATHWAY has a positive t-value, indicating its
upregulation in the C2 group. The JAK-STAT signaling pathway
plays a critical role in cell proliferation, differentiation, apoptosis,
and immune regulation, suggesting that C2 may have enhanced
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activity in these processes, indicative of metabolic reprogramming in
signal transduction. Additionally, other metabolic pathways, such as
fatty acid metabolism (KEGG_FATTY_ACID_METABOLISM)
and amino acid degradation (e.g., KEGG_VALINE_LEUCINE_
AND_ISOLEUCINE_DEGRADATION), showed distinct
enrichment patterns, suggesting significant metabolic differences
between C1 and C2. These differences imply that the C2 group may
have a higher capacity for fatty acid and amino acid metabolism,
potentially linked to altered physiological or pathological
states (Figure 6B).

Functional enrichment analysis further highlighted differences in
biological processes and cellular components between C1 and C2,
particularly in areas of metabolic reprogramming and epigenetic
regulation (Figure 6C). The C2 group exhibited upregulation in lipid
metabolism-related processes, such as “GOBP_MEDIUM_CHAIN_
FATTY_ACID_CATABOLIC_PROCESS” and “GOBP_LIPID_
DIGESTION,” indicating a greater reliance on fatty acid metabolism
and lipid digestion for energy production or cellular restructuring.
Moreover, C2 showed significant upregulation in epigenetic
modification processes, including “GOBP_POSITIVE_REG
ULATION_OF_HISTONE_H3_K4_METHYLATION,” “GOBP_
HISTONE_H4_K5_ACETYLATION,” and “GOBP_HISTONE_H3_
K14_ACETYLATION,” suggesting that C2 might use these
modifications to regulate gene expression in response to different
cellular states or environmental conditions. The C2 group also
exhibited distinct expression patterns related to cellular components
such as “GOCC_GOLGI_CISTERNA_MEMBRANE” and “GOCC_
PHAGOPHORE_ASSEMBLY_SITE_MEMBRANE,” which could be
linked to alterations in secretory activities, membrane transport, or
autophagy. Enhanced regulation of developmental processes, including
“GOBP_REGULATION_OF_ENDOTHELIAL_TUBE_MORPHOGE
NESIS” and “GOBP_TRICUSPID_VALVE_MORPHOGENESIS,” in
the C2 group further suggests metabolic reprogramming linked to
specific tissue or organ development.

We conducted the CSEA (Cell-specific Enrichment Analysis) by
processing the gene expression data from periodontitis samples to
identify pathways specifically enriched in macrophages. The analysis
focused on determining the association between the JAK-STAT
pathway and mitochondrial metabolic reprogramming within these
immune cells. This approach allowed us to rigorously pinpoint the
pathways of interest, demonstrating that the JAK-STAT pathway
plays a critical role in the metabolic alterations observed in
macrophages during periodontitis (Figure 7).

Overall, the primary differences between C1 and C2 are
associated with lipid metabolism, epigenetic modifications,
cellular organelle structure, and development-related processes.
The unique metabolic reprogramming of the C2 group,
characterized by upregulation of lipid metabolism and epigenetic
regulation pathways, reflects its adaptation to meet distinct cellular
functional requirements.

3.4 Construction and assessment of
machine learning models

To identify subtype-specific genes with high diagnostic value,
four established machine learning models—Random Forest (RF),
Support Vector Machine (SVM), Generalized Linear Model (GLM),

and eXtreme Gradient Boosting (XGB)—were developed based on
the expression profiles of 909 cluster-specific DEGs in the PD
training cohort (PD samples randomly divided into a training
cohort (70%) and a validation cohort (30%) as mentioned). The
“DALEX” package was utilized to interpret these models and
visualize the residual distribution for each model in the test set.
The SVM and XGB models exhibited relatively lower residuals
(Figures 6D, E). The top 15 important feature variables of each
model were ranked according to root mean square error
(RMSE) (Figure 6F).

The discriminative performance of the four models was further
evaluated in the testing set using receiver operating characteristic
(ROC) curves based on 5-fold cross-validation. The RF model
demonstrated the highest area under the ROC curve (AUC)
(GLM, AUC = 0.662; SVM, AUC = 0.840; RF, AUC = 0.856;
XGB, AUC = 0.849) (Figure 6G). Overall, the XGB model was
shown to be the most effective in distinguishing patients with
different clusters. The top five most important variables identified
by the XGB model (RGS1, ACAT2, KDR, TUBB2A, and TDO2)
were selected for further analysis.

To assess the predictive efficiency of the XGB model, a
nomogram was constructed to estimate the risk of PD clusters in
patients (Figure 8A). The predictive accuracy of the nomogram was
evaluated using a calibration curve and decision curve analysis
(DCA). The calibration curve indicated minimal error between
the actual and predicted risk of periodontitis clusters (Figure 8B),
while the DCA suggested that the nomogram has high accuracy,
potentially serving as a useful tool for clinical decision-making
(Figure 8C). ROC-curve based on external dataset GSE10334
(Figure 8D) and GSE173078 (Figure 8D) illustrated these
markers has acceptable accuracy and may serve as a useful tool
for clinical decision-making.

3.5 Vitamin A reshapes mitochondrial
metabolic reprogramming in inflammation-
associated macrophages through the
JAK-STAT pathways

Through CB-DOCK2 molecular docking and
AMBER22 molecular dynamics simulations, it was discovered
that vitamin A can bind near the phosphorylation site of STAT3,
mimicking the effect of the inhibitor Stattic and interfering with
STAT3 phosphorylation. Vitamin A achieved a vina score of −5.6,
indicating a relatively stable binding, with key residues including
PRO603, GLY604 (PRO603 GLY604 TRP623 VAL624 GLU
625 LYS626 ASP627 ILE628 GLN633 GLN635 SER636 VAL637 G
LU638 TYR657 ILE659 MET660 ASP661 ALA662 THR663 VAL
667 SER668 PRO669 LEU670 VAL671), and TRP623 (Figure 8E). In
comparison, Stattic had a vina score of −4.9, with similar
binding sites but slightly weaker binding affinity
(PRO603 GLY604 TRP623 VAL624 GLU625 LYS626 ASP627 ILE628
ILE659 MET660 ASP661 ALA662 THR663 VAL667 SER668 PRO669
LEU670 VAL671) (Figure 8F). Further MMGBSA and MMPBSA
analyses revealed that vitamin A had a more negative total free
energy (ΔG), showing stronger binding stability and favorable
binding energy (ΔG of −36.733 kcal/mol), while Stattic had a ΔG
of −15.6318 kcal/mol, indicating relatively weaker interactions (Figures
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8G–J). Detailed MMPBSA/MMGBSA results and standard deviations
can found in supplementary material (Supplementary Tables S2–S5).
These findings suggest that vitamin A may have stronger inhibitory
potential on STAT3 at the molecular level and could interfere with its
function through stable binding near the phosphorylation site.

The impact of different concentrations of VA dissolved in
DMSO on the survival rate of macrophages (RAW264.7) was
accessed using the CCK-8 cell viability assay, preliminarily
validating the safety and toxicity of VA (Figure 9A). This step
laid the foundation for subsequent research by ensuring that VA
does not exhibit significant toxicity at appropriate concentrations.

Further investigation to the regulatory role of VA on the
inflammatory response of macrophages in the context of
periodontitis. As ER stress and mitochondrial dynamics are key
factors influencing macrophage metabolic reprogramming in
response to immune challenges, by analyzing gene expression
related to inflammatory responses, ER stress, and mitochondrial
dynamics (Figures 9B–D), We found that LPS significantly induced
inflammatory responses and induced the polarization of
macrophages toward the M1 type, while causing significant
endoplasmic reticulum stress and abnormal mitochondrial
dynamics. VA significantly regulated the expression of these
genes and inhibited the inflammatory response of macrophages.
Promote their differentiation to M2 type, improve the endoplasmic
reticulum stress state of cells, inhibit mitochondrial fission, promote
mitochondrial fusion and the stability of mitochondria-endoplasmic
reticulum complex, thereby changing the metabolic reprogramming
of macrophages. Six experimental groups were established to
estimate the presence of STAT3 is a key factor for vitamin A to
exert its protective effects (Figure 9E): the Control group, the
lipopolysaccharide (LPS) group, the LPS combined with vitamin
A group (LPS + VA), the STAT3 inhibitor group (Stattic), the LPS
combined with Stattic group (LPS + Stattic), and the LPS, Stattic,
and 20 μM vitamin A combined treatment group (LPS + Stattic +
20 μMVA). Through PCR analysis of glycolysis-related genes
(SLC2A1, SLC2A3, PKM, HK2, and ENO1) and oxidative
phosphorylation (OCR) experiments to assess mitochondrial
function, we verified the effect of vitamin A on mitochondrial
metabolic reprogramming through STAT3 regulation under
periodontitis conditions. PCR analysis showed that in the LPS-
treated group, the expression of glycolysis-related genes SLC2A1,
SLC2A3, PKM, HK2, and ENO1 was significantly upregulated,
indicating that LPS induced the activation of the glycolytic
pathway and metabolic reprogramming. In the LPS + VA group,
the expression levels of these genes significantly decreased,
approaching those of the control group, suggesting that vitamin
A effectively inhibits LPS-induced metabolic dysregulation,
indicating its protective role in maintaining metabolic
homeostasis under inflammatory conditions.

Additionally, oxidative stress is considered a major driving force
behind mitochondrial dysfunction in the periodontitis process. To
evaluate the potential role of VA in this process, the researchers
detected intracellular reactive oxygen species (ROS) levels using the
DCFH fluorescence staining method (Figure 9F). The results
showed that under LPS-induced periodontitis conditions, ROS
levels were significantly elevated, while VA treatment effectively
reduced ROS content, indicating that VA alleviates oxidative stress.
The mitigation of oxidative stress is closely related to mitochondrial

metabolic reprogramming, suggesting that VA may influence
mitochondrial function by regulating ROS production.

Calcium homeostasis is another important regulator of
mitochondrial function and cellular metabolism. Changes in
intracellular calcium levels was examined using the Fluo-4
fluorescence staining method (Figure 9G), and the results
indicated that VA plays a regulatory role in maintaining calcium
levels during LPS-induced calcium homeostasis dysregulation. This
finding further supports the potential role of VA in metabolic
reprogramming, as calcium homeostasis is critical for
mitochondrial health and metabolic function. To further assess
the protective effects of VA on mitochondrial dysfunction, we
detected the opening of the mitochondrial permeability transition
pore (mPTP) using the Calcein-AM/CoCl2 quenching assay
(Figure 9H). The results showed that LPS treatment induced
excessive mPTP opening in periodontitis macrophages, while VA
treatment significantly inhibited this process, suggesting that VA
helps maintain mitochondrial membrane integrity and prevents
mitochondrial dysfunction.

Regulation of reactive oxygen species (ROS) levels is another
crucial aspect of mitochondrial function and cellular metabolism. To
further assess the protective effects of VA on mitochondrial
dysfunction, we used MitoSOX to measure mitochondrial
superoxide generation (Figure 9I). The results showed that LPS
treatment led to a significant increase in superoxide levels in
periodontitis macrophages, while VA treatment markedly
inhibited this process, suggesting that VA helps maintain
mitochondrial redox balance and prevents mitochondrial
dysfunction. This finding further supports the potential role of
VA in metabolic reprogramming, as maintaining the balance of
superoxide levels is critical for mitochondrial health and
metabolic function.

Oxygen consumption rate (OCR) experimental results showed
that LPS treatment significantly reduced the oxygen consumption
rate of mitochondria, indicating that LPS impaired mitochondrial
function, leading to a decline in cellular energy metabolism.
However, in the LPS + VA group, OCR significantly recovered,
suggesting that vitamin A can partially reverse LPS-induced
mitochondrial damage, restoring mitochondrial oxidative
phosphorylation function to support normal cellular metabolic
demands (Figure 9J).To elucidate the role of the STAT3 signaling
pathway in this metabolic reprogramming, we introduced Stattic, a
specific STAT3 inhibitor. Stattic alone did not induce significant
metabolic changes, possibly because STAT3 was not fully activated
in the non-inflammatory environment. However, in the LPS +
Stattic group, the expression of metabolic genes and
mitochondrial function were further reduced compared to the
LPS group, indicating that STAT3 plays a protective role under
inflammatory conditions by regulating the expression of metabolic
genes to maintain mitochondrial function (Figure 9K). Crucially, in
the LPS + Stattic + 20 μMVA group, the expression levels of
metabolic genes and OCR were not significantly different from
those in the LPS + Stattic group, indicating that when the
STAT3 signaling pathway is inhibited, vitamin A cannot further
inhibit the expression of metabolic genes and mitochondrial
function. This result confirms that vitamin A regulates metabolic
reprogramming through the STAT3 pathway, and the presence of
STAT3 is a critical link for the protective effects of vitamin A.
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4 Discussion

Vitamin A is well-known for its crucial role in maintaining
epithelial integrity and modulating immune responses (Polcz and
Barbul, 2019). However, its specific effects on chronic periodontitis,
particularly through its influence on metabolic pathways, have not
been thoroughly explored. This study is among the first to elucidate
how vitamin A might impact inflammatory processes and metabolic
reprogramming in periodontal tissues (Golebski et al., 2021). By
demonstrating how vitamin A influences the JAK-STAT pathway in
macrophages, leading to mitochondrial metabolic reprogramming,
the research provides new insights into leveraging vitamin A for
more effective management of periodontitis. The findings suggest
that vitamin A could help modulate immune responses, reduce
inflammation, and potentially slow the progression of
periodontal disease.

These findings indicate that incorporating vitamin A or its
derivatives into treatment protocols could enhance the
effectiveness of existing periodontal therapies by addressing the
underlying metabolic dysregulation that contributes to chronic
inflammation. This approach could lead to more personalized
treatment strategies that consider a patient’s nutritional status
and specific metabolic needs.

This study, using bioinformatics analysis validation, identified a
strong correlation between 1,661 genes in the gray module and
periodontitis clusters in inflamed tissue samples from periodontitis
patients. Additionally, the study employed WGCNA (Weighted
Gene Co-expression Network Analysis) to construct a scale-free
network, analyzing the correlation between gene modules and
clinical traits, further confirming the importance of these genes
in periodontitis. Notably, the JAK-STAT pathway plays a central
role in regulating macrophage metabolism, and the regulatory effect
of vitamin A is likely mediated through this pathway. CSEA (Cell-
specific Enrichment Analysis) further revealed the metabolic
characteristics of macrophages in periodontitis, particularly the
differences between C1 and C2 clusters. The upregulation of lipid
metabolism and epigenetic regulation in the C2 cluster indicates
specific metabolic reprogramming in macrophages within a
particular environment, further highlighting the critical role of
vitamin A in these metabolic changes.

Through in vitro experiments, the study demonstrated that the
vitamin A family regulates mitochondrial metabolic reprogramming
in macrophages via the JAK-STAT signaling pathway, thereby
inhibiting the progression of periodontitis. Specifically, the
antioxidant effects of vitamin A alter the metabolic state of
macrophages, reduce mitochondrial stress, and change
mitochondrial dynamics through the JAK-STAT pathway,
ultimately suppressing inflammation, deepening our
understanding of inflammation and metabolic reprogramming,
and offering new biomarkers and therapeutic targets for future
personalized treatment strategies.

Beyond the therapeutic implications, this study also deepens
the understanding of the genetic and immunological factors
involved in periodontitis. The research identified two
phenotypes related to genetic susceptibility and immune
infiltration and discovered five key genetic markers (RGS1,
ACAT2, KDR, TUBB2A, and TDO2), highlighting the complex
interplay between genetics, immune response, and metabolic

reprogramming in the development of periodontitis. These
findings suggest that vitamin A might influence the expression
and function of these genetic markers, thereby affecting an
individual’s susceptibility to periodontitis. Among these
markers, the activity of ACAT2 is closely related to
mitochondrial metabolism because it is involved in fatty acid
metabolism. Changes in fatty acid metabolism can affect
mitochondrial function, thereby influencing the metabolic
reprogramming and inflammatory response of immune cells
(Wang et al., 2017). TUBB2A is involved in the assembly of
the cell cytoskeleton, and changes in its expression may affect the
positioning and function of mitochondria within the cell, thus
impacting mitochondrial metabolic reprogramming (Sferra et al.,
2018). The activity of TDO2 is also closely related to
mitochondrial metabolism, as alterations in tryptophan
metabolism can influence mitochondrial energy metabolism
and oxidative stress. These metabolic changes may affect the
activity and inflammatory response of immune cells by
modulating mitochondrial function (Lee et al., 2022). Future
research could further explore how these genetic factors interact
with vitamin A metabolism, as well as mitochondrial metabolic
reprogramming, potentially leading to more targeted
interventions based on a patient’s genetic profile.

While this study provides important insights into the
potential role of vitamin A in periodontitis, further research is
needed to validate these findings and explore their broader
implications. Like other applicable periodontitis datasets,
GSE173078 has issues with inconsistent diagnostic criteria
compared to the training dataset (GSE16134) and an
insufficient sample size for periodontal disease. These
inconsistencies and limitations could potentially lead to
misleading interpretations of the diagnostic value of the
selected marker genes. Despite these challenges, GSE16134,
which has consistent diagnostic criteria and an adequate
sample size, serves as a more reliable external validation
dataset. While GSE16134 remains representative, it is also
important to note that it originates from the same research
center as the training dataset, which may introduce certain
level of dependency. Multi-center studies are needed to better
understand the findings and enhance their generalizability.
Future studies could investigate the effects of vitamin A on
other types of immune cells and in different inflammatory
environments to better understand its full therapeutic potential
(Varela-López et al., 2018). Additionally, clinical trials are
necessary to assess the safety and efficacy of vitamin A-based
interventions in diverse patient populations (Ross, 2002).
Regarding the further promotion of vitamin A
supplementation, different vitamin A derivatives (such as
retinol and retinoic acid) may exhibit different effects in
various inflammatory environments, requiring further
research. Additionally, individual differences among patients
(such as genetic background, lifestyle, and dietary habits) can
influence the absorption and metabolism of vitamin A. Therefore,
clinical trials need to consider these factors to ensure the
reliability and generalizability of the results. The ultimate goal
is to integrate nutritional interventions with traditional
periodontal therapies to develop a more comprehensive and
effective approach to managing periodontitis.
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5 Conclusion

In summary, this study significantly enhances our
understanding of how the vitamin A family might influence the
pathogenesis of periodontitis through its effects on mitochondrial
metabolic reprogramming in macrophages via the JAK-STAT
pathway. These findings provide a strong foundation for future
research and clinical applications, suggesting that vitamin A could
be a valuable addition to the arsenal of treatments available for
managing periodontitis. By offering new insights into the
mechanisms underlying periodontitis, this research opens
promising avenues for improving patient outcomes through more
targeted and personalized therapeutic strategies.
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