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Introduction: Hemophilia A (HA) patients (HAPs) with the human leukocyte
antigen (HLA)-class-II (HLAII) haplotype DRB1*15:01/DQB1*06:02, and thus
antigen presenting cells which express HLAII β-polypeptide chains that form
heterodimers of DR15- and DQ6-serotypes, respectively, have an increased risk
of developing factor (F)VIII inhibitors (FEIs)—neutralizing antibodies against the
therapeutic-FVIII-proteins (tFVIIIs) infused to prevent/arrest bleeding. As
DRB1*15:01 and DQB1*06:02 exist in strong linkage disequilibrium,
association analysis cannot determine which is the actual risk allele.

Methods: To establish the true risk allele of this haplotype, we analyzed the tFVIII-
derived peptides (tFVIII-dPs) bound to either the DR or DQ molecules that
comprise the individual HLAII repertoires expressed by monocyte-derived
dendritic cells obtained from 25 normal blood donors and six HAPs, four
without and two with FEIs. We performed log-linear mixed model analyses,
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where the dependent variable is the log of the measured peptide count. Under
Model 1, we analyzed an HLAII allele predictor consisting of ten levels (four
DRB1 and six DQB1 alleles) in the fixed effects and variables in the random
effects to account for non-independence. Model 2—where the HLAII allele
variable consisted of only DRB1*15:01 and DQB1*06:02—compares the
HLAII alleles.

Results: Relative to the Model 1 reference, DRB1*15:01 and DQB1*06:
02 significantly increased tFVIII-derived peptide counts, and DRB1*15:
01 contributed significantly more than DQB1*06:02. Reported as risk ratios
(RRs) and their 95% confidence interval (CI) lower- (LB) and upper-bound (UB),
we found a RR (95% CI-LB, -UB) of 14.16 (10.38, 19.33) and 1.76 (1.24, 2.50) for
DRB1*15:01 and DQB1*06:02, respectively. Under Model 2, we found an RR for
DRB1*15:01 against DQB1*06:02 of 7.00 (5.80, 8.44).

Discussion/conclusion:Our results suggest that DRB1*15:01 is the offending HLAII
allele and that DR15 allotypes underlie the increased FEI risk in HAPs.

KEYWORDS

Hemophilia A, therapeutic FVIII proteins, FVIII inhibitors, linkage disequilibrium and HLAII
haplotype DRB1*15:01/DQB1*06:02, dendritic cell protein processing and presentation
assays, therapeutic FVIII derived peptides, MHC-associated peptide proteomics,
immunogenic potential

Introduction

Hemophilia A (HA) is the X-linked bleeding disorder that
results from highly heterogeneous loss-of-function factor (F) VIII
(FVIII) gene (F8) mutations and variably deficient-to-absent
plasma FVIII coagulant activity (FVIII:C). Life-long regularly
repeated infusions of plasma-derived (pd) or recombinant (r)
therapeutic FVIII replacement proteins (tFVIIIs) are the
standard of care for preventing and arresting bleeding in HA
patients (HAPs), but ~25% will develop neutralizing anti-tFVIII-
antibodies, called “FVIII inhibitors (FEIs),” which impair or
eliminate their efficacy (Lai and Lillicrap, 2017; Cormier et al.,
2020). In addition to well-known environmental variables, FEI
risk is influenced by genetic variables, which include the
highly heterogeneous set of causative F8 mutations; the
functionally distinct single-nucleotide variations (SNVs) in or
near loci critical for immune responses which are frequently
called immune-mediated disease (IMD) genes; haplotypes of
nonsynonymous (ns) SNVs in genes that encode (i) the HLA-
class-II (HLAII) molecules used by dendritic cells (DCs), B-cells,
and macrophages to present peptide antigens to T cells (i.e., DPA1,
DPB1, DQA1, DQB1, DRB1, DRB3, DRB4, and DRB5), and (ii) all
or part of FVIII (i.e., F8, F8I22I, and F8B) (Howard et al., 2011;
Margaglione and Intrieri, 2018).

In this study, we focused on the HLAII system, particularly on
the Chr6 haplotype DRB1*15:01/DQB1*06:02, which contains the
*15:01 and *06:02 alleles of DRB1 and DQB1 that exist in strong
linkage disequilibrium (LD). This haplotype was found in early
studies of HAPs to be positively associated with the risk of
developing FEIs (Pavlova et al., 2009). While more recent studies
have provided additional support for DRB1*15:01, none have
reported that DQB1*06:02 influences FEI risk (Diego et al., 2020;
Lessard et al., 2022). Moreover, DRB1*15:01 has also been
implicated in the risk for developing autoimmune disorders, such
as multiple sclerosis and type 1 diabetes, as well as drug-induced

immune-mediated liver disease (Hollenbach and Oksenberg, 2015;
Hu et al., 2015; Mangalam et al., 2013; Singer et al., 2010). It cannot
be definitively concluded that DRB1*15:01 is the sole risk allele
based on genetic association studies alone, however, as it exists in LD
with DQB1*06:02. This is especially so in light of findings from a
study involving a mouse model of multiple sclerosis in which
humanized mice expressing only DQB1*06:02 develop a multiple
sclerosis-like neurodegenerative disease mediated by autoimmune
targeting of myelin-oligodendrocyte-basic-protein (Kaushansky and
Ben-Nun, 2014).

To answer this question and better understand T-cell epitope
generation and presentation, we used DC-protein processing and
presentation assays (PPPAs), followed by mass spectrometric and
peptide proteomic analyses called “MHC-associated peptide
proteomics (MAPPs)” to identify and quantify the HLAII-
bound/tFVIII-derived peptides (dPs) (Diego et al., 2020; van
Haren et al., 2011; V et al., 2013; Sorvillo et al., 2016; Peyron
et al., 2018; Jankowski et al., 2019). The DC-PPPA data generated
are the HLAII-bound/tFVIII-dPs, with the total number of
peptides derived from a specific tFVIII by the DCs of a given
HAP, being directly proportional to its immunogenic potential
(IP) in that subject (Diego et al., 2020; Jankowski et al., 2019).
Because DC-PPPAs and MAPPs analyses yield HLAII-isomer-
specific peptide counts—the number of HLAII-bound/tFVIII-dPs
being determined for the DP-, DQ-, and DR-isomers
separately—we used a generalized linear mixed model to
analyze the data (after organization into multiway contingency
tables) and draw inferences regarding the relative importance of
the DQ- and DR-allotypes to IP. We analyzed HLAII-bound
tFVIII-derived peptidomic profiling data generated from DC-
PPPAs performed previously in three independent experiments
on both the HLA-DQ and -DR isomers (Peyron et al., 2018;
Jankowski et al., 2019; Diego et al., 2020). The tFVIII in all
three experiments was a full-length (FL)-r-tFVIII, designated
“FL-rFVIII” herein.
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Methods

Subjects and samples

As described by Peyron et al. (2018), Jankowski et al. (2019), and
Diego et al. (2020), peripheral blood mononuclear cells (PBMCs)
were isolated from six HAPs—including four without and two with
FEIs designated FEI− and FEI+, respectively—and 25 normal
donors (NDs) for use in three independent DC-PPPAs (see DC-
PPPAs and MAPPs). Information concerning the required
Institutional Review Board (IRB) approvals and informed consent
have been detailed previously (Peyron et al., 2018; Jankowsky et al.,
2019; Diego et al., 2020). Briefly, IRB approval was obtained at
either: (1) the University of North Carolina Chapel Hill (USA),
which is where PBMCs were isolated from component blood
samples obtained from the six HAPs by cytopheresis after each
provided informed consent (Jankowski et al., 2019; Diego et al.,
2020); (2) Sanquin Research Laboratories (Amsterdam, NLD),
where PBMCs were isolated from whole blood (WB) samples
obtained by phlebotomy from the nine NDs (Peyron et al.,
2018); or (3) Addenbrooke’s Hospital (Cambridge, GBR), where
PBMCs were isolated from WB samples obtained by phlebotomy
from the 16 NDs (Jankowski et al., 2019; Diego et al., 2020). All six
HAPs were Caucasian, as detailed in Jankowski et al. (2019), which
additionally provides the relevant characteristics of these subjects
necessary for clinical/pathologic correlation. Though the racial

ancestry of the nine NDs studied by Peyron et al. (2018) and the
16 NDs studied by Jankowski et al. (2019) and Diego et al. (2020) is
unknown—as the Ethics Committee at the Sanquin Research
Laboratories and Addenbrooke’s Hospital, respectively, did not
allow this information to be given to the investigators or, for the
latter, to ProImmune (www.ProImmune.com) (Oxford, GBR), the
fee-for-service company which performed the DC-PPPAs reported
in Jankowski et al. (2019) and Diego et al. (2020), i.e., after receiving
their WB samples, isolating PBMCs then monocytes, and
differentiating their monocytes into immature DCs—most were
likely to be Caucasian based on the demographics of US and
European blood donors, which, as reported by Wang et al.
(2004), Garratty et al. (2004), Glynn et al. (2006), and Benjamin
et al. (2008), are typically greater than 80% white. Important details
concerning the collection, processing, shipping, and DNA extraction
of/from PBMCs have also been described previously by Peyron et al.
(2018), Jankowski et al. (2019), and Diego et al. (2020).

DC-PPPAs and MAPPs

The DC-PPPAs used for the research described herein—and in
prior investigations referred to collectively as the “FED (FVIII
Epitope Determination) Study”—was selected because it directly
identifies and relatively quantifies the HLAII-bound/tFVIII-dPs
presented by DCs after their uptake and processing of tFVIIIs,

FIGURE 1
Comparison of the DQ- and DR-derived peptide counts. (A) Peptide counts of the DQB1 (blue) and DRB1 (red) fractions at each amino acid position
along the FVIII protein, where the A1, A2, B, A3, C1, and C2 domains are indicated at the top of the figure and where the vertical dashed lines mark
contiguous domains. The asterisks at the top indicate themidpoint of ranges from the N-termini to the C-termini of the tFVIII-derived IPSs (relative to the
amino acid sequence of the FL-rFVIII parent protein) reported in other studies of potentially immunogenic peptides as well as the corresponding
locations from the current study. The purple asterisks indicate peptides that were reported in van Haren et al. with residue midpoints—after rounding to
the nearest integer—of 89 and 466 (van Haren et al., 2011; van Haren et al., 2013). The green asterisk located at residue 376 represents a peptide in van
Haren et al. (2011), van Haren et al. (2013), Sorvillo et al. (2016), and Hu et al. (2004). The study by Hu et al. (2004) is of interest because they demonstrated
in CD4 T-cell stimulation assays that their reported peptide, which spanned residues 371 to 400, consistently had the highest immunogenicity index in
NDs as well as in HAPs both those with (FEI+) and without (FEI−) FEIs. The orange asterisk located at midpoint residue 1775 represents a peptide reported
in van Haren et al. (2011), van Haren et al. (2013), Sorvillo et al. (2016), and Reding et al. (2004).
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doing so separately for the three isomeric forms of HLAII molecules,
including DP, DQ, and DR (Diego et al., 2020; Peyron et al., 2018;
Jankowski et al., 2019). Note that for the purpose of maximizing our
ability to disentangle the allele-specific effects of the DRB1*15:01/
DQB1*06:02 haplotype by combining our data with those of Peyron
et al. (2018), we were not able to address any DP isomer effects as
this other study only isolated/identified the DR- and DQ-bound
tFVIII-dPs. The two independent DC-PPPAs and MAPPs analyses
reported in Jankowski et al. (2019) and Diego et al. (2020) were
conducted under identical experimental conditions at ProImmune
using (i) their ProPresent Antigen Presentation Assay (Ventura
et al., 2012; Xue et al., 2016; Gouw et al., 2018), (ii) a FL-r-tFVIII

which originated as Advate® (Takeda) that we designated “FL-
rFVIII”, and (iii) monocyte-derived DCs that were obtained from
two different cohorts—one with 12 NDs and the other with four
NDs and six HAPs—which are referred to as “S1” and “S2” in Diego
et al. (2020). Briefly, immature DCs, which were differentiated from
the monocytes isolated from each subject’s PBMCs, were cultured
for 7 days with 146 nM of FL-rFVIII in both DC-PPPA-S1 and DC-
PPPA-S2 (Diego et al., 2020; Jankowski et al., 2019). After the DCs
were induced to maturity with lipopolysaccharide (LPS) overnight,
harvested, washed, and then detergent-lysed, their HLAII molecules
were affinity-purified as two separate isomer fractions with
proprietary anti-DQ and anti-DR monoclonal antibodies whose

FIGURE 2
Risk ratios for (A)Model 1.DRB1 alleles (red) andDQB1 alleles (blue) with DQB1*02:01 being the baseline (i.e., reference) allele; (B)Model 2. Head-to-
head comparison of DRB1*15:01 (red) to DQB1*06:02 with DQB1*06:02 being the baseline/reference.
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binding properties were established by ProImmune to be equivalent
to the mouse monoclonal antibodies used previously for DC-PPPAs
and MAPPs analyses (van Haren et al., 2011; Van Haren et al., 2013;
Sorvillo et al., 2016; Peyron et al., 2018; Ventura et al., 2012; Xue et
al., 2016; Gouw et al., 2018; van Haren et al., 2012), which include
anti-DQ (SPV-L3) (Novus Biologicals) and anti-DR (L243)
(Abcam). Peptides eluted from the DQ or DR molecules were
analyzed by high-resolution sequencing mass spectrometry (MS),
designated herein as liquid chromatography (LC)-tandem MS (LC-
MS/MS). The set of tFVIII-derived individual peptide sequences

(IPSs) were identified byMAPPs analyses using software to compare
the resulting MS data against the UniProt SWISSProt Reference
Human Proteome Database supplemented with the amino acid
sequences of the commercially available r-tFVIIIs and the known
F8 nonsynonymous (ns)-SNPs (Diego et al., 2020).

The DC-PPPAs and MAPPs analyses performed in Peyron et al.
(2018)–which were conducted in the laboratories of Drs. Jan
Voorberg and Sander Meijer at Sanquin (Amsterdam, NLD)
utilizing the same FL-r-tFVIII that originated as Advate® and
thus is also designated “FL-rFVIII herein”–used monocyte-

TABLE 1 Risk ratios and their 95% confidence intervals (CIs) under (A) Models 1 and (B) 2.

HLAII (Gene*Allele) Risk ratio 95% CI (LB) 95% CI (UB) p-value

A. Model 1

DQB1*02:02 0.60 0.30 1.20 1.50 × 10−1

DQB1*03:01 1.15 0.63 2.11 6.50 × 10−1

DQB1*03:02 1.26 0.71 2.21 4.29 × 10−1

DQB1*04:02 0.94 0.34 2.63 9.09 × 10−1

DQB1*06:02 1.76 1.24 2.49 1.56 × 10−3

DRB1*01:01 9.64 6.81 13.63 1.59 × 10−37

DRB1*03:01 18.79 13.75 25.68 1.04 × 10−75

DRB1*04:01 30.19 22.08 41.27 3.70 × 10−101

DRB1*15:01 14.16 10.38 19.33 1.21 × 10−62

B. Model 2

DRB1*15:01 7.00 5.80 8.44 4.57 × 10−92

FIGURE 3
Tetrachoric correlations between DRB1*15:01 (presence versus absence) with (A) hemophilia-A (HA) status (affected versus unaffected) and (B) FVIII
inhibitor (FEI) status (yes versus no). Liabilities to HA status and FEI status are on the horizontal axes in (A) and (B), espectively, whereas liability to DRB1*15:
01 is on the vertical axis in (A) and (B). The ellipses are the 95% confidence intervals (CIs) for the bivariate normal of the two latent, normally distributed
liabilities in (A) and (B).
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derived DCs generated from nine NDs. After pulsing with 100 nM of
FL-rFVIII, these DCs were then induced to maturity overnight with
LPS, which stabilizes the expression of HLAII-peptide complexes on
their cell surface. Analogous to that described above for Diego et al.
(2020), the cells were subsequently lysed and their HLA-DR or -DQ
molecules were purified using Sepharose beads conjugated with the
monoclonal antibodies L243 (DR) or SPV-L3 (DQ). Samples were
then analyzed using LC-MS/MS.

As detailed previously in Jankowski et al. (2019), quality
control (QC) of the DC-PPPA/MAPPs experiments performed
involved confirming that the immature and mature DCs expressed
DC markers CD86, DC-SIGN and HLA-DR using
immunocytochemistry and flow cytometry (data not shown) and
identifying (in the separate DQ- and DR-peptidomes analyzed)
HLAII-bound IPSs derived from endogenous proteins known to
reside in the endoplasmic reticulum, Golgi, and/or endolysosomal
compartment. Specifically, for each of the two isomer groups of HLAII
molecules in an experiment—for example, the DR-peptidome of a
subject’s DCs cultured with FL-rFVIII—to pass QC within the
collection of IPSs identified, some had to have arisen from a
minimum of three of the following six endogenous proteins:
invariant chain, lysosome-associated membrane proteins-1/-3,
transferrin receptor, FCER2/FCGR2, integrin-αM, and apo-
lipoprotein B (Diego et al., 2020; Peyron et al., 2018; Jankowski
et al., 2019). The likelihood of an LC-MS/MS-identified-peptide
being a real identity is described by its expected value and the false
discovery rate (Xue et al., 2016; Jeong et al., 2012). In Jankowski et al.
(2019), we described how the 1) scoring algorithms and statistical
significance determinations were used, 2) residues in tFVIII-derived-
IPSs were numbered, and 3) FVIII-derived-IPSs were counted if they
contained a minor allele(s) at a variable residue(s). To replicate the
DC-PPPAs/MAPPs analyses, a request may be submitted to
ProImmune to perform ProPresent assays using the same tFVIIIs
and experimental conditions, and similar cellular samples from
comparable NDs and HAPs. A similar QC procedure for the DC-
PPPA/MAPPs experiments performed at Sanquin are detailed in
Peyron et al. (2018)

Statistical analysis

We performed log-linear mixed model analyses under two
models, where the dependent variable in both models is the
logarithm of the expected peptide count (Knudson et al., 2021;
Woodward, 2013; Fienberg and Rinaldo, 2012). Under Model 1, we
analyzed in the fixed-effect component of the model a single HLAII-
allele predictor variable consisting of ten levels represented by
distinct DRB1 and DQB1 alleles (four and six levels,

respectively). Under this model, we analyzed in the random
effects component of the model variables for individuals (eight
and nine levels for Peyron et al. (2018) and Diego et al. (2020),
respectively), experiments (two levels for Peyron et al. (2018) and
Diego et al. (2020)), and HLAII isomers (two levels for DQ and DR)
(Peyron et al., 2018; Jankowski et al., 2019; Diego et al., 2020). The
random effects component of the model serves to reduce the error
(or “noise”) in our estimation of the predictive effect of HLAII alleles
for the peptide counts by accounting for the clustering due to
individuals, experiments, and isomers. This approach can
therefore be understood as maximizing the signal-to-noise ratio.
Model 2 was more focused in that the single HLAII allele predictor
variable in the fixed-effect component consisted of only DRB1*15:01
and DQB1*06:02. Model 2 was also simpler in that we only
accounted for two random effect variables: for individuals (in
this case two and six levels for Peyron et al. (2018) and Diego et
al. (2020), respectively) and experiments (Peyron et al., 2018;
Jankowski et al., 2019; Diego et al., 2020). Thus, Model 2 is a
direct head-to-head comparison of the two main HLAII alleles
of interest.

Using data from HAPs, we performed a tetrachoric correlation
analysis of dichotomous HA status (affected versus unaffected)
(N = 71) and FEI status (affected (i.e., FEI+) versus unaffected
(i.e., FEI−)) (N = 64) each time with DRB1*15:01 (presence versus
absence) in the Psych package in R. Tetrachoric correlation
analysis assumes that the dichotomous variables are each
underlain by a normally distributed, latent variable, termed the
“liability”, along which there is a threshold, where individuals with
liabilities greater than the threshold are affected. The 95%
confidence intervals (CIs) and p-values were obtained by
bootstrap on 1,000 bootstrap samples.

To address allele-specific association with FVIII
immunodominant epitopes reported in the literature, we
performed a Fisher’s Exact test of a 2×2 contingency table in
which the exposure row variable is a dichotomous DRB1*15:
01 or DQB1*06:02 status (that is, where an amino acid residue is
derived from a peptide bound to the HLAII allele or, more
accurately, to the HLAII allotype containing the β-chain encoded
by the allele), and the outcome column variable is a dichotomous
epitope status scored 1 if a particular tFVIII-dP sequence
corresponds to a reported epitope, and 0 otherwise. The
immunodominant epitopes considered were found to correspond
to sequences from the A2, A3, C1, and C2 domains (Hu et al., 2004;
Reding et al., 2003; Reding et al., 2004; Jones et al., 2005; James et al.,
2007; Ettinger et al., 2010; Ettinger et al., 2016). Thus, with respect to
the dichotomous epitope variable, amino acid residues falling within
the published immunodominant epitope sequences were scored 1,
and those falling outside those sequences were scored 0.

Results and discussion

In Figure 1A, we plotted the peptide count (per amino acid
residue along the tFVIII primary sequence). In Figure 1B, we
compared the empirical cumulative distribution functions
(eCDFs) of the DQB1 and DRB1 counts. The two are
significantly different by a two-sided Kolmogorov–Smirnov test
(p < 0.0001) of the difference of eCDFs.

TABLE 2 Differential association of DRB1*15:01 and DQB1*06:02 with
epitopes.

Allele Epitope status

1 0

DRB1*15:01 243 1,680

DQB1*06:02 169 1,583
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The Model 1 results are reported in Figure 2A and Table 1A,
where relative to the baseline reference allele provided by DQB1*02:
01, both DRB1*15:01 and DQB1*06:02 are at significantly increased
risk of contributing to the overall peptide count. Results are reported
as risk ratios (RRs) and their associated 95% CI lower and upper
bounds (95% CI LB and 95% CI UB). For DRB1*15:01 and
DQB1*06:02 respectively, we found an RR (95% CI LB, 95% CI
UB) of 14.16 (10.38, 19.33) and 1.76 (1.24, 2.50). Because they are
compared to the same baseline, the two RRs may also be directly
compared, thus showing that DRB1*15:01 contributes significantly
more to the overall peptide count than DQB1*06:02. Under Model 2
(the head-to-head comparison), the RR for the DRB1*15:01 allele
against the baseline DQB1*06:02 allele is 7.00 (5.80, 8.44) as reported
in Figure 2B and Table 1B.

We now report the tetrachoric correlation analysis results in
terms of the estimate and the LB and UB of its 95% CI, followed by
its p-value, in parentheses. We found tetrachoric correlations of 0.91
(0.77, 0.97; 3.7 × 10−4) for HA status and DRB1*15:01 (Figure 3A)
and 0.52 (0.23, 0.67; 2.9 × 10−5) for FEI status and DRB1*15:01
(Figure 3B).

Results from the statistical analysis of the differential association of
DRB1*15:01 and DQB1*06:02 alleles with known immunodominant
epitopes in tFVIIIs are shown in Table 2. We found an odds ratio
of 1.35 with a 95% CI of 1.10–1.68 (p = 0.005). The inference is
that the DRB1*15:01 allele is significantly more associated with
epitopes than the DQB1*06:02 allele.

Conclusion

The following two limitations should first be mentioned: (1)
These results are from data obtained from DC-PPPAs deriving from
Caucasian subjects (or predominantly Caucasian subjects) and so
are not generalizable to all groups of people; and (2) Functional T-
cell studies are needed to confirm the causality of the DRB1*15:
01 allele.

It appears that the strong immunogenicity of the DRB1*15:01/
DQB1*06:02 haplotype generally and the DRB1*15:01 allele
specifically is underlain at the molecular and cellular levels by a
differentially high (i) affinity of DR15 molecules for tFVIII-dPs and
(ii) level of DC (and B cell) presentation of DR15-bound/tFVIII-
derived peptide complexes to naïve tFVIII-specific CD4 T cells (and
to tFVIII-specific helper T cells). The development of FEIs, and thus
FEI risk, is complicated as it involves the humoral component of the
adaptive immune system and its interactions with the DCs of the
innate immune system, which we have hypothesized is regulated by
the individually distinct repertoires of HLAII molecules expressed
by HAPs via an immunologically relevant gatekeeper role (Diego
et al., 2020). Our findings help further characterize the molecular
determinants of FVIII immunogenicity as well as the role of HLAII
genetics (alleles, genotypes, haplotypes, and allotypes) in the
pathogenesis of FEIs, and also provide data to guide the
development of precision medicine approaches to improve the
management of HAPs. Further investigation is needed to
determine the role of these HLAII alleles, genotypes, and
haplotypes, as well as HLAII allotypes and isomers, in other
diseases, such as the development of multiple sclerosis,
narcolepsy, and drug-induced-hypersensitivity with liver injury.
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Glossary
CI Confidence interval

DCs Dendritic cells

eCDFs Empirical cumulative distribution functions

F Factor

FVIII Factor VIII

FVIII:C FVIII coagulant activity

FED Study FVIII Epitope Determination Study

FEIs FVIII inhibitors

FEI− Negative for FEIs

FEI+ Positive for FEIs

F8 FVIII gene

FL Full-length

HA Hemophilia A

HAPs HA patients

HLA Human leukocyte antigen

HLAII HLA-class-II

IMD Immune-mediated disease

IP Immunogenic potential

IPSs Individual peptide sequences

LD Linkage disequilibrium

LC Liquid chromatography

LB Lower bound

MHC Major histocompatibility complex

MAPPs MHC-associated peptide proteomics

MS Mass spectrometry

MS/MS Tandem MS

− Negative

NDs Normal donors

ns Nonsynonymous

ORs Odds ratios

PBMCs Peripheral blood mononuclear cells

pd Plasma-derived

PPPAs Protein processing and presentation assays

QC Quality control

RRs Risk ratios

+ Positive

r Recombinant

SNVs Single-nucleotide variations

tFVIII Therapeutic FVIII protein

tFVIII-dPs tFVIII-derived peptides

UB Upper bound
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