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Recent studies indicate that microorganisms are crucial for maintaining human
health. Dysbiosis, or an imbalance in these microbial communities, is strongly
linked to a variety of human diseases. Therefore, understanding the impact of
microbes on disease is essential. The DuGEL model leverages the strengths of
graph convolutional neural network (GCN) and graph attention network (GAT),
ensuring that both local and global relationships within the microbe-disease
association network are captured. The integration of the Long Short-Term
Memory Network (LSTM) further enhances the model’s ability to understand
sequential dependencies in the feature representations. This comprehensive
approach allows DuGEL to achieve a high level of accuracy in predicting
potential microbe-disease associations, making it a valuable tool for
biomedical research and the discovery of new therapeutic targets. By
combining advanced graph-based and sequence-based learning techniques,
DuGEL addresses the limitations of existing methods and provides a robust
framework for the prediction of microbe-disease associations. To evaluate the
performance of DuGEL, we conducted comprehensive comparative experiments
and case studies based on two databases, HMDAD, and Disbiome to demonstrate
that DuGEL can effectively predict potential microbe-disease associations.
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1 Introduction

Microorganisms play an important and far-reaching role in human life and greatly
impact our health (Liang et al., 2018). Recent reports indicate that the human body is host to
trillions of microorganisms (Hoffmann et al., 2016) and that the number of microorganisms
in the human body far exceeds the number of human cells (Bocci, 1992). These
microorganisms constitute the microbiota in the human body (Zhu et al., 2010). The
microbiome plays a critical role in human physiology (Heintz-Buschart andWilmes, 2018),
helping the body’s intestinal tract to reduce the growth of pathogenic bacteria and infections
and synthesizing some of the vitamins and amino acids needed by the body (Islam et al.,
2022). Suppose the microbial community in the human body is out of balance. In that case,
it can impair the function of the immune system, increase the risk of infection with
pathogens (Pickard et al., 2017), lead to malnutrition or nutritional deficiencies (Burr et al.,
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2020), and contribute to the development of mental health-related
problems such as anxiety and depression (Anisman et al., 2018), as
well as metabolic diseases such as obesity and diabetes (Sanz et al.,
2015). Of course, the microbiota can help the body regulate and
prevent attacks from bacteria outside the body (Barr, 2017); for
example, actinomycetes are a class of antibiotic-producing bacteria
that produce a wide range of antibiotics such as streptomycin and
tetracycline (Grasso et al., 2016). These antibiotics inhibit the growth
of other pathogenic microorganisms and help protect the body from
infection (Jagannathan et al., 2021). Therefore, predicting potential
associations between microorganisms and diseases is vital for
unraveling the complex mechanisms of disease occurrence and
discovering potential biomarkers (Montaner et al., 2020). By
inferring the interactions between microorganisms and diseases,
we can better understand the diagnosis and prognosis of diseases
and provide new ideas and methods for preventing, diagnosing, and
treating diseases (Malla et al., 2019). As technology advances, we no
longer rely solely on traditional biological methods to explore the
association between microbes and disease (Gilbert et al., 2016).
Instead, we are increasingly introducing computational modelling
into our research to predict the role of microbes in disease
occurrence, development, and treatment through techniques such
as big data analytics and deep learning (Marcos-Zambrano et al.,
2021), which are more practical and accurate (Najafabadi et al.,
2015). Researchers have recently established a series of microbe-
disease association databases to conduct an in-depth study of the
potential link between microbes and diseases (Jin et al., 2022). These
databases combine a large amount of microbial composition data
and disease information. For example, the HMDAD database
created by Ma et al. became the first to document human
microbe-disease associations by manually organizing a large
amount of public literature (Ma et al., 2017). This database
covers 483 pieces of information about the association between
39 diseases and 292 microorganisms. Second, Janssens et al. created
a microbial-disease association database called Disbiome by
collecting 10,922 experimental records from 1,191 documents
containing 372 diseases and 1,622 microorganisms (Janssens
et al., 2018).

Researchers can explore and discover the relationships between
microorganisms and different diseases using the above microbe-
disease association database as the primary data. Moreover, these
recent technological tools can be broadly categorized into four types,
namely, network-based methods (Wu et al., 2018), matrix
decomposition-based methods (Shen et al., 2021), traditional
machine learning-based methods (Afshari et al., 2022), and graph
neural network-based methods (Li et al., 2023).

In DuGEL, we use both Graph Convolutional Neural Network
(GCN) and Graph Attention Network (GAT), where GCN is
specifically designed to process graph data (Jin et al., 2021).
GCN can learn feature representations at both node and graph
levels, and it achieves the task of learning and predicting the
representations of graph data by efficiently exploiting the
connectivity relationships between the nodes (Zhou et al.,
2023). By adaptively learning the attention weights between
each node and its neighbouring nodes, GAT can better capture
local structural information in graph data. The GAT introduction
enriches the representational capabilities of the graph neural
network, allowing it to perform well when dealing with

complex graph-structured data (Munikoti et al., 2023). DuGEL
can adapt to an extensive range of datasets with solid robustness.

Unlike the above methods, in this paper, we designed a new
computational model called DuGEL based on the graph
convolutional neural network and the graph attention network to
infer possible microbe-disease associations. In DuGEL, we first
downloaded known microbe-disease associations to form a
heterogeneous microbe-disease network. Then, we input this
network into a graph convolutional neural network and a graph
attention network separately to obtain the local and global features
of nodes in the network. Next, we spliced the outputs of the graph
convolutional neural network and the graph attention network and
then introduced a Long Short-Term Memory (LSTM) network to
process the fused features. Finally, the output of the LSTM would be
passed to a fully connected layer to infer potential associations
between microbes and diseases. Experiments showed that DuGEL
obtained satisfactory predictive performance with a 5-fold cross-
validated auc of 0.9698 and 0.9119 for HMDAD and Disbiome
datasets, respectively, and may be a potential tool for future
microbe-disease association prediction.

2 Materials and methods

2.1 Datasets

HMDAD, constructed by Ma et al. (2017), and Disbiome
(Janssens et al., 2018), constructed by Janssens et al., are the
main publicly available biomedical databases containing microbe-
disease association data. As shown in Table 1, HMDAD database
covers 483 known microbe-disease associations, and processing
these data, we ended up with 450 known microbial-disease
associations. The HMDAD database provides a valuable
information resource for studying microbial-disease relationships.
In addition, the Disbiome, constructed by Janssens et al., is a publicly
available database of microbe-disease associations. As shown in
Table 1, Disbiome database collects 5,573 known associations from
published academic papers for 240 diseases and
1,098 microorganisms. After de-duplication, we had 4,351 known
microbe-disease associations covering 218 diseases and
1,052 microorganisms. Due to its extensive data collection and
detailed information records, the Disbiome database has become
a vital data support for research in this field.

After acquiring the initial data, we performed data preprocessing
steps to ensure the quality of the data and the validity of the model
training. First, we removed all duplicate records to ensure that the
association of each microbe with a disease was unique. Further, we
converted the data into a uniform format to facilitate subsequent
processing and model training. For simplicity, for each dataset, let
M � m1m2, . . . , mNM{ } denote the set of newly downloaded
different microorganisms, and D � d1d2, . . . , dNd{ } represent the

TABLE 1 The statistics of the two databases.

Datasets Microbes Diseases Associations

HMDAD 292 39 450

Disbiome 1,052 218 4,351
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set of newly downloaded different diseases. Thus, we can construct a
primitive known microbe-disease association network Net �
〈M ∪ D,E〉 as follows: for any given mi(1≤ i≤Nm) and
dj(1≤ j≤Nd), if and only if there is a known association
between them, we assume that there is an edge belonging to E.
Obviously, based on above definition, we can obtain an adjacency
matrix A ∈ RNm×Nd as follows: for any given mi(1≤ i≤Nm) and
dj(1≤ j≤Nd) if and only if there is an edge between them in E,
there is Ai,j � 1, otherwise, there is Ai,j � 0.

2.2 Multiple similarity calculation of disease

2.2.1 Gaussian interaction profile kernel similarity
of disease

Based on the assumption that two similar diseases will show
similar interaction and non-interaction relationships with the same
microorganism, in this section, we adapt the Gaussian interaction
profile kernel similarity between a pair of diseases di and dj
as follows:

GD di, dj( ) � exp −λd A i, :( ) − A j, :( )���� ����2( )
Where A(i, : ) and A(j, : ) represent the ith and jth rows of the
adjacency matrix A respectively, and λd denotes the normalized
kernel bandwidths that can be calculated as follows:

λd � 1

1
nd
∑nd

i�1 A‖ i, :( )����2( )

2.2.2 Cosine similarity of disease
Based on the assumption that if two diseases are similar to each

other, then their cosine curves will be more coincident, we introduce
the cosine similarity between a pair of diseases di and dj as follows:

CD di, dj( ) � A i, :( ) · A j, :( )
A i, :( )| | × A j, :( )∣∣∣∣ ∣∣∣∣

The result of cosine similarity has good stability and certainty,
the calculation speed is fast and the result is more intuitive. Suitable
for large-scale information retrieval. Where A(i, : ) · A(j, : )
denotes multiplying the vectors of row i and row j , |A(i, : )|
represents the mode of A(i, : ), and |A(j, : )| represents the
mode of A(j, : ) . |A(i, : )|* |A(j, : )| represents the
multiplication of two moduli, and then the vector’s product
removes the modulus’s value. Finally, the cosine value of the
angle between the two diseases is obtained, that is the cosine
similarity. The calculation result of cosine similarity is
between −1 and 1. When the similarity between two diseases is
exceptionally high, the calculation result tends to be 1. When the
similarity between two diseases is very low, the calculation result
tends to −1.

2.2.3 Functional similarity of disease
Based on the assumption that similar diseases tend to interact

with similar genes, in this section, we calculate the disease functional
similarity based on the functional associations between disease-
related genes as follows: Firstly, we download the gene interactions

from the HumanNet database in which, every interaction has an
associated log-likelihood score (LLS). And then, for any given
diseases di and dj, let Gi � gi1, gi2, . . . , gim{ } and Gj �
gj1, gj2, . . . , gjn{ } be the gene sets of di and dj separately, we will
define the functional similarity between di and dj as follows:

DFS di, dj( ) � ∑gk∈Gi
FGj gk( ) +∑gk∈Gj

FGi gk( )
m + n

where FGt(gq) � maxgp∈Gt(FSS(gp, gq)) and FSS(gp, gq) is the
functional similarity score between the genes gp and gq, which
can be calculated as follows:

FSS gp, gq( ) �
1 if p � q

LLS gp, gq( ) − LLSmin

LLSmax − LLSmin
if p ≠ q

⎧⎪⎪⎨⎪⎪⎩
where LLSmax and LLSmin represent the maximum value of LLS and
the minimum value of LLS in HumanNet, respectively.

Thereafter, by combining the above GIP kernel similarity,
disease cosine similarity, and functional similarity of disease, we
can obtain an integrated similarity matrix of disease as follows:

DS � GD + CD +DFS

3

2.3 Multiple similarity calculation of microbe

2.3.1 Gaussian interaction profile kernel similarity
of microbe

In the same way, we can calculate the gaussian interaction profile
kernel similarity between any two microbes mi and mj as follows:

MD mi,mj( ) � exp −λm A : , i( ) − A : , j( )���� ����2( )
where A(: , i) and A(: , j) represent the ith and jth columns of the
adjacency matrix A respectively, and λm denotes the normalized
kernel bandwidths that can be calculated as follows:

λm � 1
1
nm
∑nm

i�1 A‖ : , i( )����2( )
2.3.2 Cosine similarity of microbe

Similarly, the cosine similarity between any two microbes mi

and mj can be obtained as follows:

CM mi,mj( ) � A : , i( ) · A : , j( )
A : , i( )| | × A : , j( )∣∣∣∣ ∣∣∣∣

The calculation process of cosine similarity between two
microorganisms is the same as that of disease cosine similarity.
Similarly, when the similarity between two microorganisms is
exceptionally high, the calculation result tends to be 1. When the
similarity between two microorganisms is very low, the calculation
result tends to −1.

2.3.3 Functional similarity of microbe
The functional similarity of the microbe is calculated by using

the following method (Zhang et al., 2018): for any given disease dt , it
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is first raised Directed Acyclic GraphDAGdt � (Vdt, Edt), where Vdt

includes the disease dt and its ancestor diseases, Edt contains all the
directed edges from parent nodes to children nodes, and then, the
semantic contribution of the disease dl in Vdt to dt is defined as:

SCdt dl( ) � 1 if dl � dt

max 0.5 × SCdl d
′
l( ) | d′

l ∈ children of dl{ } otherwise{
The semantic value of disease dt is formulated by:

SVdt � ∑
dl∈Vdt

SCdt dl( )

Then, the semantic similarity between any two diseases di and dj
can be defined as follows:

DSS di, dj( ) � ∑di∈Vdi
∩Vdj

SCdi dl( ) + SCdj dl( )( )
SVdi + SVdj

Relying on the above formulae, we can further define the
similarity between the disease di and a set of diseases D
as follows:

DS di, D( ) � maxdj∈D DSS di, dj( )( )
Hence, for any two given microbes mi and mj , we can calculate the
function similarity between them as follows:

MFS mi, mj( ) � ∑dj∈Dj
DS dj, Di( ) +∑dj∈Di

DS dj, Dj( )
Di| | + Dj

∣∣∣∣ ∣∣∣∣
where Di denotes the set of diseases associated with the microbe mi

, and Dj represents the set of diseases associated with the microbe
mj.Obviously, by combining the above GIP kernel similarity,
disease cosine similarity, and functional similarity of the
microbe, we can obtain an integrated similarity matrix of the
microbe as follows:

MS � MD + CM +MFS

3

2.4 Construction of the
heterogeneous network

Based on above descriptions, it is easy to see that we can
construct a heterogeneous network Y by combining the
integrated similarity matrix DS of disease and the integrated
similarity matrix MS of microbe with the adjacency matrix A
as follows:

Y � DS
AT

A
MS

[ ]

2.5 Structure of the DuGEL

As illustrated in above Figure 1, the DuGEL consists of the
following five steps:

• Step 1: Construct a heterogeneous microbe-disease network
based on newly downloaded known microbe-disease
associations and multiple microbe and disease
similarity metrics.

• Step 2: Feeding the heterogeneous microbe-disease network
forward into a dual channel structure consisting of a Graph
Convolutional Neural Network (GCN) and a Graph Attention
Network (GAT), where the GCN is utilized to extract spatial
features of nodes in the heterogeneous microbe-disease
network from local to global, and the GAT is adopted to
assign different importance to the neighbors of each node in
the heterogeneous microbe-disease network as it is processed.

• Step 3: Splicing the outputs of GCN and GAT by simply fusing
the information captured by GCN and GAT and combining
structural and node characteristics and the importance
between neighboring nodes.

• Step 4: Implementing a Long Short-Term Memory (LSTM)
network to process the fused features, then feeding the
output of LSTM into a fully connected layer to convert

FIGURE 1
The structure of DuGEL.
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the high-level features captured by LSTM into the target
output space.

• Step 5: By feeding the newly obtained feature vectors of the
target output space into a Sigmoid function for binary
prediction, potential associations between microbes and
diseases can be finally computed.

2.6 Microbe-disease representation layer

In DuGEL, the input layer is the Microbe-Disease Association
Representation Layer, is a component used to convert raw data of
knownmicrobe-disease associations into a structured data fame that
can be processed by subsequent graph neural networks. Firstly, the
newly collected microbe-disease association data need to be pre-
processed to ensure consistency and accuracy. The preprocessed
data will be used in turn to construct a binary microbe-disease
association matrixM, which implies potential relationships between
microorganisms and disease (Marsh and Zaura, 2017), and can be
defined as follows: Given a microorganism m and a disease n, he
known relationship between the microorganism and the disease can
be characterized by a binary association matrix M ∈ Rm×n, where
the matrix element Mij is 1 if there is a known association between
the microorganism i and the disease j, and 0 otherwise. Each row of
the matrix represents a microorganism, and each column represents
a disease. The entries in the matrix indicate the presence or absence
of an association. The graph structure G is obtained by the
association matrix M, where the nodes in the graph are either
microbe nodes or disease nodes, and if there is an association
between a microbe node and a disease node (Abuin-Denis et al.,
2024), i.e., Mij � 1, then an edge exists between the nodes.

To enhance the prediction ability of DuGEL, similarity
information is also fused in the representation layer (Feng et al.,
2023), which contains the microbial similarity matrix Sm and the
disease similarity matrix Sd. Among them, the microbial similarity
matrix Sm captures similarities between different microorganisms
based on genomic, phenotypic, or ecological characteristics. After
the microbial similarity matrix Sm and disease similarity matrix Sd
are constructed, we fuse this similarity information with the
microbe-disease association matrix M to enhance the
performance of the association prediction model. Therefore, at
this point, we can obtain the association matrix that incorporates
microbial similarity and disease similarity as a graph structure (Yu
et al., 2024), which further serves as the initial input form for the
dual graph-based feature extraction module. This graph structure
captures direct associations and enables the model to learn a more
comprehensive representation of features.

In addition, we will initialize each representative microbe or
disease node in the graph with a feature vector. Formally, let
Xm ∈ Rm×d represent the initial feature matrix for microbes and
Xd ∈ Rn×d represent the initial feature matrix for diseases, where d is
the dimension of the feature vector. The initial embeddings Xm and
Xd are combined into a unified feature matrixX ∈ R(m+n)×d.X is fed
forward as input to the dual graph-based feature extraction module.

The microbe-disease association representation layer lays the
foundation for the entire DuGEL model, and by meticulously
structuring the input data, the layer ensures that subsequent
graph neural networks are able to effectively capture both local

and global patterns in the data. The construction of the graph
enables the model to fully utilize all available information, thereby
improving the accuracy and robustness of microbe-disease
association predictions.

2.7 Bipartite graph feature
extraction module

In this study, the dual graph feature extraction module is a core
component of the DuGEL designed to extract deep features from the
input microbe-disease association feature matrix. The module
combines two parallel graph neural network architectures: graph
convolutional network (GCN) and graph attention network (GAT),
ensuring effective capture of local and global relationships in
the graph.

2.7.1 Graph convolution sublayer
The Graph Convolutional Network (GCN) module extracts the

spatial features of the graph by processing the microbe-disease feature
matrix X to capture the intrinsic structural information of the graph.
The spatial features represent the connections between nodes,
including direct links (edges) and indirect influences through
neighboring nodes. For example, in a microbe-disease graph, the
direct association between a microbe and a disease, as well as second-
or higher-order neighborhood relationships, contribute to the spatial
information. The GCN extracts the features of the nodes by applying
convolutional operations on the graph structure, and aggregates the
information of the aggregated features of the local neighborhoods of
each node by means of the layer-wise propagation rules (Du et al.,
2024). The propagation rules of the GCN layers are defined as follows:

H l+1( ) � σ D̂
−1
2ÂD̂

−1
2H l( )W l( )( )

whereH(l) is the node representation X of the l nd layer,W(l) whose
initial input is, is the weight matrix of the l-th layer, σ denotes the
nonlinear activation function, Â is the representation of the
adjacency matrix A plus the unitary matrix I, and D̂ is the
corresponding Â degree matrix.

GCN effectively smoothies the feature representation over the
graph structure and ensures that the representation of each node is
influenced by its neighbors (Chen et al., 2021), thus capturing the
local structure information. By aggregating a node’s neighbor
information, the feature representation of a node is made to
reflect its local graph structure. This aggregation operation is
performed in each layer, and through the gradual aggregation of
multiple layers (Liu et al., 2018), the GCN can capture a wider range
of graph information. This is particularly important for microbe-
disease association prediction, as some associations may not be
directly visible, but indirectly inferred through multi-hop
relationships.

2.7.2 Attention sublayer
The Graph Attention Network (GAT) module introduces an

attention mechanism that assigns different importance coefficients
to each node’s neighbors. For each node i in the graph, GAT
computes an attention coefficient αi,j between node i and its
neighbor node j, which is learned by a shared attention mechanism:

Frontiers in Genetics frontiersin.org05

Wu et al. 10.3389/fgene.2025.1511521

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1511521


αij �
exp LeakyReLU aT W l( )hi ‖ W l( )hj[ ]( )( )∑k∈N i( )exp LeakyReLU aT W l( )hi ‖ W l( )hk[ ]( )( )

where hi and hj are the feature vectors of node i and node j,
respectively; W(l) is the learnable weight matrix; ‖ represents the
splicing operation between the vectors, N (i) denotes the set of
neighboring nodes of node i, and aT is the weight vector of the
attention mechanism. Further, the updated feature vector h′i of node
i is computed by weighted sum of its neighboring features:

h′i � σ ∑
j∈N i( )

αijW
l( )hj⎛⎝ ⎞⎠

The GAT sublayer enables the model to focus on the most
relevant parts of the graph, thus capturing the importance of each
neighboring node during the feature aggregation process. The
advantage is that it can dynamically adjust the contribution of
each neighbor to a node’s feature update, and by learning
different attention weights, GAT can allocate different attention
between different parts of the graph structure (Chatzianastasis et al.,
2023). This is particularly useful when dealing with complex
biological networks, where associations between microorganisms
and diseases may have different biological significance and
importance.

The dual graph feature extraction module can capture local and
global information in the graph structure by combining GCN and
GAT approaches. GCN emphasizes the aggregated features of a
node’s local neighbors. At the same time, GAT dynamically adjusts
the weights of the neighboring nodes through the attentional
mechanism (Wang et al., 2022), thus providing more flexible and
fine-grained control in the feature extraction process. This dual
approach ensures that the model understands direct associations
between microbes and diseases and identifies potential indirect
relationships through graph structural features and attention
weights. Combining these two approaches enables the DuGEL
model to excel in microbe-disease association prediction tasks,
providing more accurate and comprehensive predictions.

The dual graph feature extraction module plays a crucial role in
the DuGEL model. Capturing complex graph structure information
improves the model’s predictive ability and enhances its robustness
and generalization ability.

2.8 Feature fusion and sequence
learning networks

2.8.1 Fusion layer
After processing in the GCN and GAT layers, we obtain two sets

of feature representations HGCN ∈ R(m+n)×d and HGAT ∈ R(m+n)×d.
These two sets of feature representations capture the spatial
properties of the graph and the weighted properties of the
important nodes, respectively. For integrating the feature
representations generated by the GCN and the GAT, we
introduce the fusion layer. These representations encode
complementary information: GCN captures spatial structure,
while GAT focuses on the relative importance of neighboring nodes.

In the dual graph feature extraction module, we extract two
different feature representations through GCN and GAT. The task

of the feature fusion layer is to effectively fuse these different features
to obtain a comprehensive feature representation. The fusion
operation can be realized in various ways, such as concatenation,
weighted summing, or multilayer perceptron (MLP) (Afzal et al.,
2023). Here, we adopt the concatenation operation to stitch together
feature representations from different sub-networks to form a richer
feature vector. Assuming that the feature representation extracted
through GCN is HGCN and the feature representation extracted
through GAT is HGAT, the fused feature representation Hfusion :

Hfusion � HGCN||HGAT[ ]
where ‖ represents the concatenation operation between the vectors;
the fused feature matrix Hfusion ∈ R(m+n)×2d contains features
extracted from two different viewpoints, providing a more
comprehensive node representation.

2.8.2 Sequence learning layer
After feature fusion, we need to further learn useful information

from these high-dimensional features. The sequence learning layer is
designed to capture the temporal or sequential dependencies
between features to enhance the prediction capability (Yuan
et al., 2023). By treating the node features as a sequence, the
order in which node features are fed to the LSTM introduces a
dependency chain. The model learns how the features of one node
are influenced by or related to those of neighboring nodes. As
illustrated in Figure 2, we introduce the Long Short-Term Memory
Network (LSTM), which is capable of effectively remembering long-
term dependencies and is suitable for processing sequence data (Yoo
et al., 2023). The LSTM processes each node’s features across
multiple time steps. Here, the “time steps” correspond to
sequential relationships between node features derived from their
embedding in the heterogeneous network. We represent the vector
corresponding to the t-th time step in the matrixHfusion ∈ R(m+n)×2d

asHt
fusion∈ R2d. The computational mechanism of the LSTM can be

formally represented as follows:

It � σ WiH
t
fusion + Uiht−1 + bi( )

ft � σ WfH
t
fusion + Ufht−1 + bf( )

ot � σ WoH
t
fusion + Uoht−1 + bo( )

~ct � tanh WcH
t
fusion + Ucht−1 + bc( )

Ct � ft ⊙ ct−1 + it ⊙ ~ct

ht � ot ⊙ tanh ct( )
where it, ft, and ot denote the activation vectors of the input,
oblivion, and output gates, respectively, ~ct is the candidate cell state,
ct and ht∈ Rdl are the cell state and hidden state at time step,
respectively,W and U are the learnable weight matrices, and b is the
bias vector. dl is the dimensionality of the LSTM hidden layer. The
output of the LSTM HLSTM � dtl{ }m+n

t�1 ∈ R(m+n)×dl combines
information provided by the feature fusion layer, and captures
through sequence learning the complex dependencies
between features.

The feature fusion layer effectively integrates feature
representations extracted from different perspectives, providing
more comprehensive input data (Zhang et al., 2020). The
sequence learning layer, on the other hand, further enhances the
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model’s predictive capability by capturing the temporal
dependencies between features. Combining the two ensures the
model can fully utilize all available information to achieve higher
accuracy and robustness in microbe-disease association
prediction tasks.

2.9 Prediction

The feature representation HLSTM output from the sequence
learning layer is used as input to the fully connected layer for further
processing. The fully connected layer maps the high-dimensional
features to the final prediction results through a series of linear
transformations and nonlinear activation functions (Feng et al.,
2023). The computational process of the fully connected layer can be
formally represented as:

ŷ � σ WfcHLSTM + bfc( )
where Wfc and bfc are the weights and bias parameters of the fully
connected layer, respectively, and σ represents the Sigmoid
nonlinear activation function.

Ultimately, the output layer gives the predicted probability of
microbe-disease association (Marsh and Zaura, 2017). By setting an
appropriate threshold, it is possible to determine whether there is an
association between microbes and diseases.

2.10 Objective function

To measure the difference between the predicted and true values
of the model, in the DuGEL model, we use the cross-entropy loss
function to evaluate the effectiveness of microbe-disease association
prediction (Mao et al., 2023). The cross-entropy loss function is
commonly used in classification problems, and in microbe-disease
association prediction, we modeled the problem as a binary
classification task, i.e., predicting whether there is an association
between a certain pair of microorganisms and a disease. The cross-
entropy loss function is defined as follows:

LCE � − 1
N

∑N
i�1

yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )[ ]

where N denotes the number of samples; yi is the true label of the
i-th sample, indicating the presence of an association, and 0 denotes
the absence of an association. ŷi is the predicted probability of the
model for the i-th sample, indicating the probability of an
association between microorganisms and diseases. The cross-
entropy loss function improves the accuracy of the prediction by
penalizing the wrong prediction of the model, which makes the
model continuously adjust the parameters during the
training process.

To prevent model overfitting, we add a regularization term to the
loss function. The regularization term improves the generalization
ability of the model by adding a penalty to the model complexity in
the loss function (Fu et al., 2023), encouraging the model to choose
simpler parameter configurations. In the DuGEL model, we use
L2 regularization or weight decay. It is defined as follows:

Lreg � ∑
k

‖ Wk ‖22

where Wk denotes the k rd weight matrix of the model; and
‖ Wk ‖22 is the L2 paradigm of Wk, i.e., the sum of squares of the
weight matrix. The regularization term prevents the model from
overfitting the training data by penalizing excessively large values of
the weights, thus improving the model’s performance on
the test data.

Ultimately, the integrated loss function of the DuGEL model
consists of a cross-entropy loss and a regularization term of the
following form:

L � LCE + λ *Lreg

where λ is the number, which controls the weights of the
regularization term. This integrated loss function takes into
account both the accuracy of the model prediction and the
complexity of the model, and by balancing the two (Cui et al.,
2019), it ensures that the model not only accurately fits the training
data during training, but also has good generalization ability.

3 Experiments and results

In this section, we will detail the experimental setup, evaluation
metrics, and baseline methodology used to evaluate the performance

FIGURE 2
The structure of LSTM.
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of the DuGEL model and present the experimental results and
analysis. The effectiveness and superiority of the DuGEL model in
the microbe-disease association prediction task are verified by
comparing it with multiple baseline methods. The corresponding
pseudo-code of the DuGEL model is shown in Table 2.

3.1 Experimental setup

In this study, we extracted disease features, microbial features,
and disease-microbe association matrices from the HMDAD and
Disbiome databases, and the three feature matrices mentioned above

were used to construct heterogeneous maps to reflect the
interactions between diseases and microbes for disease
characterization and microbial characterization. The number of
training rounds was set to 4,000 in the training phase. To
optimize the algorithm to adjust the weights, the learning rate
was set to 0.01. We set the random deactivation strategy for the
adjacency matrix with the dropout ratio set to 0.5, thus preventing
overfitting. For the subject model, to randomly discard some
network connections during the training process to enhance the
model’s generalization ability, we similarly set the random
deactivation strategy with the dropout ratio set to 0.5. In
addition, we set the similarity weight to 6 to weigh the similarity
features of diseases and microorganisms. From the above
description, it is easy to see that there are several
hyperparameters in DuGEL, such as the dimension k of the
embedded features, the number of layers L, the initial learning
rate r of the optimizer, the total training epoch α, the node dropout
β, and the rule dropout γ. As illustrated in Figures 3, 4, the various
results for several combinations of parameters k and L in the 5-fold
cv. From the figures, it is easy to see that the optimal combination of
k and L is L = 2, k = 128, which indicates that the first and second-
layer embedded features contain more information than the third-
layer embedded features. After analyzing, this may be due to
excessive smoothing of LSTM.

In the training and evaluation phases of the model, we
perform multiple cross-validations. In each validation, the
dataset is divided into a training set and a test set, which
trains the model on the training set and evaluates the model
performance on the test set. Specifically, 5-fold cross-validation
(k_folds) is used to evaluate the model performance. In each
cross-validation, the data are randomly disrupted and divided
into five parts, one used as the test set and the rest as the training
set. To ensure the stability and reliability of the results, we repeat
the execution of the experiment 5 times and report the average
performance metrics.

3.2 Evaluation metrics

In order to evaluate the method proposed in this paper, we
employ a series of evaluation metrics to comprehensively measure
the performance of the model, including AUC, accuracy and
specificity The formal definitions and calculations of each
evaluation metric are given below:

Accuracy is the ratio of the number of correctly categorized
samples to the total number of samples, which is defined as follows:

Accuracy � TP + TN

TP + TN + FP + FN

where TP denotes True Positives, FP denotes False Positives, FN
denotes False Negatives, and TN denotes True Negatives. Accuracy
reflects the overall ability of the model to correctly classify.

AUC (Area Under the ROC Curve) represents the area under
the receiver operating characteristic curve (ROC Curve), which is
used to measure the classification performance of the model. The
ROC Curve plots the True Positive Rate (TPR) and False Positive
Rate (FPR) through different thresholds. TPR and FPR are defined
as follows:

TABLE 2 Pseudocode of the DuGEL model proposed in this study.

Algorithm 1 Algorithm of the DuGEL.

Input: Known associations matrix A ∈ RNm×Nd ;

Â: Representation of the adjacency matrix A plus the unitary matrix I

Microbe similarity matrix Sm ∈ RNm×Nm

Disease similarity matrix Sd ∈ RNd×Nd

N: the number of iterations for DuGEL

L: the number of layers in GCN and GAT

Output: Reconstructed microbe-disease associations matrix A′

1 Phase 1: Construct the heterogeneous network Y ∈ R(Nm+Nd )×(Nd×Nm)Nd×Nd

2 Y � [Sm, A, AT, Sd]

3 Phase 2: Initialize the embedding feature matrix H0

4 H0 = Initial embeddings for microbes and diseases

5 Phase 3: for i = 1 to N do

6 for l = 1 to L do

7 Calculate the embedding feature Hl(l � 1, ..., L) in the lth layer
according to the GCN formula and GAT:

8 HGCN
l � σ(D−0.5

* Â*D
−0.5

*Hl−1*Wl)

9 Update Hl using GAT mechanism:

10 HGAT
l = Attention (Hl)

11 end for

12 end for

13 Phase 4: Feature Fusion and Sequential Learning

14 Concatenate the final embeddings of microbes and diseases:

15 Hfused � Concatenate(HGCN
l ,HGAT

l )

16 Pass Hfused through a BiLSTM layer:

17 Hseq = BiLSTM(Hfused)

18 Apply a dense layer to the output of BiLSTM:

19 Hfinal = Dense (Hseq)

20 Phase 5: Reconstruct Associations

21 Compute the reconstructed associationmatrixA′ using the final embeddings:

22 A′ � sigmoid(Hfinal)

23 Return A′
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TPR Recall( ) � TP

TP + FN

FPR � FP

FP + TN

The value of AUC is between 0 and 1, with larger values
indicating better model performance.

Specificity, also known as True Negative Rate (TNR), is formally
defined as follows:

Specificity � TN

FP + TN

Specificity indicates the proportion of all samples that are
actually negative that are correctly predicted to be negative.

3.3 Alternative methods for microbedisease
association prediction

In order to compare the methods proposed in this paper
horizontally, as shown in Table 3, we introduced nine microbe-
disease association prediction methods of.

The above methods can be categorised into four groups, with
network-based methods constructing complex network structures
based on known microbial disease associations. These network-

based methods construct complex network structures based on
known microbial-disease associations. Then, the potential
probability of associations between microorganisms and diseases
is inferred by analyzing the structural features of these networks and
the lengths and numbers of connecting paths between the nodes
(Wang et al., 2011). For example, Chen et al. proposed the
KATZHMDA computational model to infer possible microbe-
disease associations using the KATZ measure, which takes
measurements to capture global information in a network by
counting all paths between nodes and then predicts potential
associations (Chen et al., 2017). However, the matrix
decomposition-based approach focuses on decomposing the
known microbe-disease association matrix into two feature
matrices and approximating the original association matrix by
the product of these two matrices (Ma and Liu, 2022).
Information such as similarity and strength of association
between microorganisms and diseases can be obtained. Shen
et al. proposed a computational model of CMFHMDA based on
synergistic matrix decomposition (Shen et al., 2017). In addition,
based on the traditional machine learning approach by using known
associations as training samples, we can construct a model for
predicting the association between unknown microorganisms and
diseases (Long et al., 2021). For example, Wang et al. designed the
LRLSHMDA model which represents the network structure by
constructing a Laplace matrix and predicts the association by
regularized least squares (Wang et al., 2017). Finally, the graph
neural network-based approach utilizes neural networks to take
microbial and disease-related data as inputs and to extract and
explore features and patterns from graph-structured data (Bessadok
et al., 2022). They can utilize we can utilize the powerful learning
ability of neural networks to discover potential associations between
microbes and diseases and mine functional patterns and features
from complex graph data. For example, Wang et al. designed
GCNMA that captures structural information in the network by
introducing a graph convolutional neural network and incorporates
a multilayer attention mechanism to enhance the ability to model
complex relationships between nodes (Wang et al., 2023).

Although the above models can perform reliably in some
aspects, they still have limitations. For example, the computation
of Katz path correlation must consider all paths between different
nodes (Zhang et al., 2017). This may lead to high computational
complexity on large datasets, especially when the network size is
large (Kumar et al., 2020). In addition, regularized least squares
usually introduce a regularization term to avoid overfitting.
However, choosing the appropriate regularization parameter is
not easy. If it is not chosen correctly, it may lead to underfitting
or overfitting problems. When there is noise in the input data, the
regularized least squares method may be too sensitive to the noise,
resulting in unstable or inaccurate prediction results (Jung and
Park, 2017).

3.4 Experimental results and analysis

In this section, we provide a detailed analysis of the experimental
results of our proposed DuGEL model on the HMDAD and
Disbiome datasets and compare it with nine other state-of-the-art
microbe-disease association prediction methods. First, Tables 4, 5

FIGURE 3
Model parameters analysis on the HMDAD dataset.

FIGURE 4
Model parameters analysis on the disbiome dataset.
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show the performance of our proposed DuGEL model, and the nine
compared methods on the HMDAD and Disbiome datasets,
respectively, are mainly compared under the AUC assessment
metrics. On the HMDAD dataset, the DuGEL model performs
well, with its AUC values of 0.9698 and 0.9606 in 5-fold cross-
validation and 2-fold cross-validation, respectively, The higher AUC
values indicate the more vital overall predictive ability of the model,
which indicates that DuGEL can effectively distinguish between
positive and negative samples. For the Disbiome dataset, the DuGEL
model still performs well. Under 5-fold cross-validation and 2-fold
cross-validation settings, DuGEL reaches 0.9119 and 0.8932.

In comparison with previous methods, the DuGEL model
demonstrates excellent performance. we attribute the results to
the intrinsic structure of DuGEL. DuGEL successfully achieves
efficient prediction of microbial-disease associations by
combining a graph convolutional neural network (GCN) and a
graph Attention Network (GAT), as well as introducing a Long
Short-Term Memory Network (LSTM) to process fused features,
enabling efficient prediction of microbe-disease associations. This
multilevel feature extraction and sequence modeling approach
enables DuGEL to perform well on key metrics (e.g., AUPR and
AUC),demonstrating its robustness in microbe-disease association
prediction tasks.

In particular, the DuGEL model combines the strengths of GCN
and GAT; GCN can efficiently capture both local and global spatial
features in the graph and extract complex relationships between
microbes and diseases by performing convolutional operations on
the features of neighboring nodes. Moreover, through the attention
mechanism, GAT can assign different importance weights to its
neighbors when processing nodes, thus better capturing the
information of critical nodes. After combining the two, the
outputs of GCN and GAT are fused through the Dual Graph
Enhanced Layer of the DuGEL model, which effectively
integrates the structural features and node importance.

Furthermore, introducing the LSTM module further enhances
the model’s capabilities. LSTM is good at processing sequence data
and can better identify potential associations between microbes
and diseases by capturing temporal dependencies (Baranwal et al.,
2022). The memory unit of LSTM can preserve information of
long-time dependencies (Wu et al., 2021), which is especially

important for analyzing potential microbe-disease relationships
over long periods.

3.5 Ablation experiment

In addition, considering the role and contribution of every sub-
module in the DuGEL model proposed in this study, we function
ablation experiments on the HMDAD dataset to inspect the effect of
distinctive parts of the model. We carried out three specific ablation
experiments:

1. Doing away with the diagram convolution sublayer (denoted as
“-GCN Layer”)

2. Removing the sketch attention sublayer (denoted as
“-GAT Layer”)

3. Casting off the BiLSTM module (denoted as
“-BiLSTM Module”)

Overall, each sub-module of the DuGEL model improves the
primary mannequin’s effectiveness by taking pictures of the

TABLE 3 Microbe-disease association prediction methods.

Method Approach

KATZHMDA (Chen et al., 2017) Use of KATZ measurements to infer possible microbe-disease associations

LRLSHMDA (Wang et al., 2017) Microbial disease prediction using the Laplace regularised least squares framework

NTSHMDA (Luo and Long, 2018) Predicting potential microbe-disease associations using a model based on stochastic roaming restarts

BiRWMP (Shen et al., 2018) Predicting microbial-disease using a bidirectional stochastic wandering approach

NBLPIHMDA (Wang et al., 2019) Detecting potential microbe-disease associations using a bidirectional tag dissemination scheme

HMDApred (Fan et al., 2020) Predicting microbe-disease associations using network-consistent projections and multiple data integration

BPNNHMDA (Li et al., 2020) Based on a back propagation neural network design

GATMDA (Long et al., 2021) Microbial Disease Association Prediction Using Graphical Attention Networks Combined with Matrix Filling

GCNMA (Wang et al., 2023) Proposing a new computational model based on graph convolutional neural networks and multilayer attention mechanisms

TABLE 4 HMDAD dataset in 5-fold cv and 2-fold cv.

Methods AUC(5-
fold cv)

AUC(2-
fold cv)

KATZHMDA (Chen et al., 2017) 0.8291 ± 0.0041 0.8164 ± 0.0047

LRLSHMDA (Wang et al., 2017) 0.8792 ± 0.0032 0.8589 ± 0.0043

NTSHMDA (Luo and Long, 2018) 0.8893 ± 0.0043 0.8631 ± 0.0052

BiRWMP (Shen et al., 2018) 0.8777 ± 0.0089 0.8693 ± 0.0081

NBLPIHMDA (Wang et al., 2019) 0.8961 ± 0.0033 0.8792 ± 0.0056

HMDApred (Fan et al., 2020) 0.9357 ± 0.0041 0.9049 ± 0.0035

BPNNHMDA (Li et al., 2020) 0.9133 ± 0.0012 0.8949 ± 0.0023

GATMDA (Long et al., 2021) 0.9561 ± 0.0142 0.9541 ± 0.0053

GCNMA (Wang et al., 2023) 0.9610 ± 0.0223 0.9512 ± 0.0076

DuGEL (our model) 0.9698 ± 0.0172 0.9606 ± 0.0057
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correlation between microorganisms and diseases. Table 6 suggests
the results of the ablation experiments. In the first ablation
experiment, after getting rid of the graph convolution sublayer,
the mannequin’s AUC drops to 0.9465 and 0.9392 in 5-fold cross-
validation and 2-fold pass validation, respectively, which suggests
that GCN plays a crucial role in shooting nearby and international
spatial points between microbes and diseases. By performing
convolutional operations on the elements of neighboring nodes,
GCN can extract complex correlation information, and removing
this component considerably decreases the model’s
predictive power.

In the second ablation experiment, doing away with the GAT
sublayer reduces the model’s AUC to 0.9520 and 0.9408 in 5-fold
cross-validation and 2-fold pass-validation, respectively. GAT can
better capture facts about key nodes via an attentionmechanism that
assigns unique weights of importance to its neighbors when
processing nodes. This mechanism is necessary for improving the
model’s prediction accuracy, and the mannequin’s performance in a
similar fashion decreases after its removal.

Finally, we explored the function of the BiLSTMmodule. After
eliminating the BiLSTM module, the AUC of the mannequin
diminished to 0.9602 and 0.9510 in the 5-fold move validation
and 2-fold move validation, respectively. The LSTM module
appropriately processes sequence information and can become
aware of attainable associations between microbes and diseases by
capturing time dependencies. The reminiscence unit of the LSTM
can retain lengthy time-dependent information, which is especially
essential for examining the viable microbes’ disease. This is mainly
necessary for analyzing doable microbe-disease relationships over
lengthy periods. The elimination of this module resulted in a
considerable reduction in the predictive energy of the model, in
addition to demonstrating the necessary function of the BiLSTM
module in the DuGEL model.

Overall, every sub-module had a practical impact on the
expected performance of the DuGEL model. The GCN and
GAT successfully extracted complicated associations between
microbes and diseases through shooting spatial features and
node importance statistics in the diagram structure, while the
BiLSTM module furthermore desirable the predictive capacity of

the mannequin via processing sequence features. The effects of the
ablation experiments validate the effectiveness and necessity of
these sub-modules and reveal the rationality and superiority of the
DuGEL model sketch in the microbe-disease affiliation
prediction task.3.6.

4 Case study

In this section, we selected three diseases, kidney stones,
eczema, and ileal Crohn’s disease, as case studies for HMDAD
to validate our model’s performance further. Specifically, we
ranked these three relevant microorganisms in the prediction
score and selected the top 20. Then, we evaluated the predictive
performance of DuGEL by searching the literature. Among the

TABLE 6 Fold cv and 2-fold cv and based on HMDAD dataset.

Methods AUC(5-fold cv) AUC(2-fold cv)

DuGEL (Proposed) 0.9698 ± 0.0172 0.9606 ± 0.0057

-GCN Layer 0.9465 ± 0.0185 0.9392 ± 0.0046

-GAT Layer 0.9520 ± 0.0163 0.9408 ± 0.0041

-BiLSTM Module 0.9602 ± 0.0053 0.9510 ± 0.0075

TABLE 5 Disbiome dataset in 5-fold cv and 2-fold cv.

Methods AUC(5-
fold cv)

AUC(2-
fold cv)

KATZHMDA (Chen et al., 2017) 0.6781 ± 0.0132 0.6692 ± 0.0063

LRLSHMDA (Wang et al., 2017) 0.7361 ± 0.0221 0.7191 ± 0.0115

NTSHMDA (Luo and Long, 2018) 0.8301 ± 0.0059 0.8079 ± 0.0065

BiRWMP (Shen et al., 2018) 0.8319 ± 0.0092 0.8141 ± 0.0057

NBLPIHMDA (Wang et al., 2019) 0.8429 ± 0.0112 0.8281 ± 0.0142

HMDApred (Fan et al., 2020) 0.8521 ± 0.0381 0.8373 ± 0.0342

BPNNHMDA (Li et al., 2020) 0.8716 ± 0.0191 0.8532 ± 0.0151

GATMDA (Long et al., 2021) 0.9229 ± 0.0081 0.9201 ± 0.0141

GCNMA (Wang et al., 2023) 0.9001 ± 0.0161 0.8803 ± 0.0178

DuGEL (our model) 0.9119 ± 0.0059 0.8932 ± 0.0038

TABLE 7 The top 20 Kidney stones microbes predicted by DuGEL.

Rank Microbe Evidence

1 Clostridium difficile PMID: 30021693

2 Helicobacter pylori PMID: 25459132

3 Staphylococcus aureus PMID: 14241187

4 Clostridium coccoides PMID: 37609403

5 Staphylococcus PMID: 14241187

6 Bifidobacterium PMID: 37145061

7 Comamonadaceae Unconfirmeda

8 Oxalobacteraceae PMID: 32381601

9 Sphingomonadaceae PMID: 36970590

10 Dietzia maris Unconfirmeda

11 Staphylococcus epidermidis PMID: 20466,084

12 Escherichia coli PMID: 14241187

13 Acinetobacter PMID: 32111156

14 Corynebacterium PMID: 24563271

15 Prevotella copri PMID: 27708409

16 Propionibacterium PMID: 33153435

17 Propionibacterium acnes Unconfirmeda

18 Desulfovibrio PMID: 38007438

19 Oxalobacter formigenes PMID: 32880090

20 Fusobacterium nucleatum PMID: 37458823
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common diseases, kidney stones cause severe back or
abdominal pain accompanied by nausea, vomiting,
hematuria, and other symptoms (Stevens, 2018). In recent
years, kidney stones have been on the rise. It is prevalent in
young adult males (Stamatelou and Goldfarb, 2023). A diverse
microbial community exists around renal stones; changes in
intestinal and urinary microorganisms may cause the
occurrence and development of renal stones. Clostridium
difficile, Bifidobacterium, and others are more closely
associated with kidney stone occurrence (Miller et al., 2022).
As shown in Table 7, the relevance of 17 of the top 20 candidate
kidney stones-associated microorganisms predicted by DuGEL
has been confirmed by previous publications.

In addition, eczema is an inflammatory skin disease. According
to many studies, microorganisms are strongly associated with
eczema (Zimmermann et al., 2019). People with eczema have a
less diverse and less stable skin microbiome than those without. This
means the balance of beneficial and harmful bacteria on the skin is
disrupted, making it more susceptible to infection and inflammation
(Flowers and Grice, 2020). In addition, the presence of
Staphylococcus aureus is associated with more severe eczema
symptoms (Chapsa et al., 2023), suggesting a direct link between
this bacteria and the condition. As shown in Table 8 below, it is
evident that existing publications have confirmed 17 of the
20 potential eczema-associated microorganisms predicted
by DuGEL.

Ileal Crohn’s disease is an inflammatory bowel disease. It
causes swelling of the tissues of the digestive tract, which may
lead to abdominal pain, severe diarrhea, fatigue, weight loss, and
malnutrition (Fakhoury et al., 2014). The degree of symptoms
ranges from mild to severe and usually comes on gradually, but
sometimes, it can come on suddenly without warning. The cause
of ileal Crohn’s disease is still unknown, but it is often assumed
that a virus or bacteria may trigger Crohn’s disease. This paper
presents a case study of ileal Crohn’s disease. As shown in
Table 9, it is clear that 18 of the top 20 microorganisms
associated with ileal Crohn’s disease have been confirmed in
the published literature.

5 Discussion and conclusion

Microorganisms play an important role in our lives and exist in
countless numbers and diversity. Investigating the potential link
between microorganisms and diseases cannot only contribute to
the discovery of new therapeutic approaches and preventive
strategies but also help advance the field of microbiology
and medicine.

In this study, we propose a deep learning model called DuGEL to
predict potential microbial disease associations. The DuGEL model
combines graph convolutional neural network (GCN), graph
attention network (GAT), and long-short-term memory network

TABLE 8 The top 20 Eczema microbes predicted by DuGEL.

Rank Microbe Evidence

1 Clostridium difficile PMID: 27667310

2 Helicobacter pylori PMID: 17568058

3 Staphylococcus aureus PMID: 16965415

4 Escherichia coli PMID: 27667310

5 Dietzia maris PMID: 26821151

6 Staphylococcus epidermidis PMID: 27416972

7 Stenotrophomonas maltophilia PMID: 26821151

8 Comamonadaceae Unconfirmeda

9 Oxalobacteraceae PMID: 32971520

10 Sphingomonadaceae PMID: 33735474

11 Acinetobacter PMID: 28207943

12 Corynebacterium PMID: 27562264

13 Prevotella copri Unconfirmeda

14 Oxalobacter formigenes Unconfirmeda

15 Desulfovibrio PMID: 27812181

16 Tropheryma whipplei PMID: 2,456,205

17 Enterococcus PMID: 16601353

18 Pseudomonas PMID: 33492004

19 Staphylococcus PMID: 20222931

20 Clostridium coccoides PMID: 24650346

TABLE 9 The top 20 Ileal Crohn’s disease microbes predicted by DuGEL.

Rank Microbe Evidence

1 Actinobacteria PMID: 33975420

2 Bacteroidetes PMID: 32448900

3 Clostridium coccoides PMID: 22719818

4 Firmicutes PMID: 33975420

5 Prevotella PMID: 35967326

6 Proteobacteria PMID: 31530835

7 Enterobacteriaceae PMID: 36268225

8 Lachnospiraceae Unconfirmeda

9 Bacteroides ovatus PMID: 26275394

10 Bacteroides uniformis PMID: 33102745

11 Bacteroides vulgatus PMID: 26275394

12 Clostridia PMID: 30818349

13 Faecalibacterium prausnitzii PMID: 18936492

14 Clostridium leptum PMID: 16188921

15 Lactobacillus PMID: 18839424

16 Klebsiella PMID: 24223596

17 Staphylococcus PMID: 23885156

18 Veillonella Unconfirmeda

19 Bacteroides PMID: 21484962

20 Escherichia coli PMID: 15300573
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(LSTM) to efficiently capture and fuse the complex relationships
between microbes and diseases. With the dual-channel structure,
DuGEL can extract local and global features in the graph structure
and enhance the model’s ability to capture critical nodes by
assigning different importance weights to neighboring nodes
through the attention mechanism. Our comprehensive
experiments and case studies consistently show that DuGEL
performs very satisfactorily in terms of prediction accuracy.

Although the DuGEL model has been very effective in studying
the relationship between microbes and disease, it still has some
limitations. Currently, the model relies heavily on the HMDAD and
Disbiome datasets. Therefore, future work could focus on expanding
the datasets to capture microbe-disease associations more
comprehensively and accurately. In addition, the DuGEL model
can be applied to drug-target interaction prediction and gene-
disease association prediction to validate its broad applicability
and effectiveness.
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