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Stochastic simulation software, ADAM, has been developed for the purpose of
breeding optimization in animals and plants, and for validation of statistical
models used in genetic evaluations. Just like other common simulation
programs, ADAM assumed the bi-allelic state of quantitative trait locus
(QTL). While the bi-allelic state of marker loci is due to the common choice
of genotyping technology of single nucleotide polymorphism (SNP) chip, the
assumption may not hold for the linked QTL. In the version of ADAM-Multi, we
employ a novel simulation model capable of simulating additive, dominance,
and epistatic genotypic effects for species with different levels of ploidy,
providing with a more realistic assumption of multiple allelism for QTL
variants. When assuming bi-allelic QTL, our proposed model becomes
identical to the model assumption in common simulation programs, and in
genetic textbooks. Along with the description of the updated simulation model
in ADAM-Multi, this paper shows two small-scale studies that investigate the
effects of multi-allelic versus bi-allelic assumptions in simulation and the use of
different prediction models in a single-population breeding program for
potatoes. We found that genomic models using dense bi-allelic markers
could effectively predicted breeding values of individuals in a well-structure
population despite the presence of multi-allelic QTL. Additionally, the small-
scale study indicated that including non-additive genetic effects in the
prediction model for selection did not lead to an improvement in the rate of
genetic gains of the breeding program.
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1 Introduction

Stochastic simulation is a cost-effective and powerful tool to optimize breeding
programs with reduced experimental costs. Such a tool unlocks possibilities for
investigating alternative breeding schemes, in order to maximizing genetic gains of the
breeding program at a given input of resources. Software package, ADAM (Pedersen et al.,
2009; Liu et al., 2019), has been developed for the purpose of breeding optimization in pig,
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cattle, fish and plants (Bengtsson et al., 2022; Tessema et al., 2020;
Zaalberg et al., 2022; Chu et al., 2020). The tool is also very useful in
validating statistical genetic prediction models (Romé et al., 2023;
Chu et al., 2021) and in studying methods for preserving genetic
diversity in breeding programs (Henryon et al., 2015). Over time the
software has been further developed and updated with many
features including extension to non-additive genetic models (Chu
et al., 2024), indirect genetic effects (Chu et al., 2021), categorical
traits (Gebreyesus et al., 2020), definition of true inbreeding
(Henryon et al., 2019), or extension to plant breeding (Liu
et al., 2019).

ADAM (Pedersen et al., 2009) simulates genotypic effects for
each allele in a quantitative trait locus (QTL). This model is unique
from other software like AlphaSim (Gaynor et al., 2021; Faux et al.,
2016), ChromaX (Younis et al., 2023), MoBPS (Pook et al., 2020),
SeqBreed (Pérez-Enciso et al., 2020) and XSim (Chen et al., 2022)
that use substitution genotypic effects of QTL. However, all of these
tools including ADAM assume a bi-allelic state of each segregating
QTL. This assumption might come from current, common genetic
models (Christensen et al., 2012; VanRaden, 2008; Falconer and
Mackay, 1996) that assume substitution effects of one allele to its
alternative. While the bi-allelic state of marker loci is due to the
common choice of genotyping technology that yield single
nucleotide polymorphism (SNP). The assumption of bi-allelic
QTL may not true for all QTL. Multiple alleles have been shown
in numerous QTL (Biová et al., 2024; Jiang et al., 2020). In addition,
multi-allelic models of QTL are more reasonable explanations for
different functional genetic effects from unrelated populations
(González-Diéguez et al., 2021).

Multi-allelic models have been developed for genomic
prediction in diploid species (Álvarez-Castro and Crujeiras,
2019; Álvarez-Castro and Yang, 2011; Yang and Álvarez-Castro,
2008; Da, 2015). Relevant model based on haplotype blocks also
have been shown for genomic prediction (Weber et al., 2023).
Thérèse Navarro et al. (2022) has developed a package for genome
wide association studies (GWAS) of polyploid populations with
multi-allelic models, but only the additive genetic effects were
included in the model. For the purpose of simulation, however, we
are not aware of any studies that have used multi-allelic models
with additive, dominance and epistatic genetic effects, or
accounting for different levels of ploidy.

In addition to bi-allelic assumptions, earlier version of ADAM
(Pedersen et al., 2009; Liu et al., 2019) use was limited to diploid
species only. Many economically important species like potato,
banana, sugar cane and some fish orders of salmonids and
common carps are polyploid. Extension of simulation models to
different ploidy levels is necessary for ADAM (Pedersen et al., 2009;
Liu et al., 2019) to design complex breeding schemes for
these species.

This paper will describe new features of software package, now
called ADAM-Multi, for simulating breeding programs for plants
and animals. The focus will be on description of genotypic models
for simulating traits with genotypic effects of additive, dominance,
and epistatic genetics for species with different ploidy levels
including extensions to multi-allelic assumptions. The methods
implemented are illustrated in two examples that study the
effects of different assumptions on number of alleles, ploidy level
and different prediction models used in selection.

2 Materials and methods

2.1 Genotypic models for simulation

We aim to simulate genotypic effects that are generalized to
multi-allelic QTL with number (nB) of alleles, and the genome with
ploidy level of nploidy. Assuming a QTL with alleles B1, B2,. . ., BnB,
ADAM-Multi uses following model to simulate additive genotypic
value (a) at one locus:

a � ∑nB
iB

taiBaiB � ta1a1 + ta2a2 + . . . + tanBanB (1)

where a is the additive genotypic value of a QTL; aiB is genotypic
additive effect of allele BiB (or called iB for short) at the QTL; taiB
is the additive covariate for allele iB that is scaled genotype
dosage calculated as in the AlphaSimR software (Gaynor
et al., 2021):

taiB � tiB −
nploidy
2

( ) 2
nploidy

( ) (2)

where tiB is a raw genotype dosage, or number of copies of allele iB at
the locus, nploidy is the ploidy level of genome. Key notations are
defined in Table 1.

Similarly, the genotypic model for dominance value (d) of a QTL
at the locus level is:

d � ∑nB
iB

tdiBdiB � td1d1 + td2d2 + . . . + tdnBdnB (3)

where diB is dominance genotypic effect of allele iB; tdiB is the
dominance covariate for allele iB that is scaled genotype dosage
calculated as in AlphaSimR (Gaynor et al., 2021):

tdiB � tiB nploidy − tiB( ) 2
nploidy

( )2

(4)

This simulation model assumes digenic dominance for each
allele, i.e., each allele has the same dominance effect with all other
alleles. Table 2 shows examples of t, ta and td for diploid and
tetraploid genome assuming nB � 2 with allele B1 and B2.

The simulation model for additive × additive genotypic value
(aa)kl of the two-locus epistatic interaction between the pair of loci k
and l:

aa( )kl � ta,l1 ta,l2 . . . ta,lnB[ ] ⊗ ta,k1 ta,k2 . . . ta,knB[ ]{ } · aa( )kl1
aa( )kl2
. . .

aa( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where [ ta,x1 ta,x2 . . . ta,xnB ] is a vector of additive covariates for locus
x (k or l) with nB elements; ⊗ denotes the Kronecker product;

denotes the symbol for matrix multiplication;

aa( )kl1
aa( )kl2
. . .

aa( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is vector
of additive × additive genotypic effects that have nB × nB elements.
In Equation 5, the number of alleles in loci k and l are the same, and
equal to nB. Simulationmodels in this paper consider a fixed number
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nB for all QTL, even if not all alleles in a QTL are segregating.
Genotypic models in case of arbitrary number of alleles for QTL that
set the effects of non-segregating alleles to zero can be found in
Supplementary Appendix 1.

The simulation model for additive-dominance genotypic value
(ad)kl of the epistatic interaction is the sum of additive × dominance
and dominance × additive interaction between the pair of loci k
and l:

TABLE 1 List of key symbols.

Symbol Definition

Simulation models at one-locus level

nB Defined number of alleles in a QTL. It is also the maximum number of segregating alleles for all QTL.

B1, B2, BiB ,. . ., BnB Allele 1st, 2nd, iB th, . . . , nB th of B. Allele iB is referred to BiB

t1, t2, tiB ,. . ., tnB A raw genotype dosage, or number of copies of allele B1, B2, BiB ,. . ., BnB at the locus

nploidy Ploidy level of genome

ta1 , t
a
2 , t

a
iB
,. . ., tanB Additive effect covariates, or scaled genotype dosages for additive genetic effect corresponding to t1, t2, tiB ,. . ., tnB at the locus for allele

B1, B2, BiB ,. . ., BnB

a1, a2, aiB ,. . ., anB Additive genotypic effect of allele B1, B2, BiB ,. . ., BnB at a locus

td1 , t
d
2 , t

d
iB
,. . ., tdnB Dominance effect covariates, or scaled genotype dosages for dominance effect corresponding to t1, t2, tiB ,. . ., tnB at the locus for allele

B1, B2, BiB ,. . ., BnB

d1, d2, diB ,. . ., dnB Dominance genotypic effect of allele B1, B2, BiB ,. . ., BnB at the locus

a, d Additive, dominance genotypic value at the locus level

Simulation models of two-loci epistatic interactions

kl The epistatic interaction pair between loci k and l

ta,xiB , td,xiB
Additive, and dominance covariates for the effect of allele iB

th at locus x. Here, x represents k and l in two-loci epistasis

(aa)kl , (dd)kl Additive × additive, and dominance × dominance genotypic values of the epistatic interaction between the pair of loci k and l

(ad)kl Additive-dominance genotypic values of the epistatic interaction that includes both additive × dominance and dominance × additive
between the pair of loci k and l

(aa)kliklB , (ad)
kl
iklB
, (da)kliklB , (dd)

kl
iklB

Additive × additive, additive × dominance, dominance × additive, dominance × dominance genotypic effects of the epistatic interaction
between allele ikB of locus k and allele ilB of locus l

Simulation models at individual level

gi Total genetic value of individual i

nqtl , nep Number of QTL, and number of epistatic interactions

a, d nB × nqtl matrices of additive and dominance genotypic effects of nB alleles for nqtl QTL

tai , t
d
i nqtl × nB matrices of additive and dominance covariates of nB alleles for nqtl QTL of individual i

(aa), (ad), (da), (dd) Matrices of additive × additive, additive × dominance, dominance × additive, dominance × dominance epistatic effects with a
dimension of (nB × nB) rows and nep columns

taai , tadi , tdai , tddi Matrices of additive × additive, additive × dominance, dominance × additive, dominance × dominance epistatic covariates with a
dimension of nep rows and (nB × nB) columns for individual i

a*, d*, (aa)*, (ad)*, (da)*, (dd)* Starting (prior) values of a, d, (aa), (ad), (da) and (dd)

σ2A , σ
2
D , σ

2
AA , σ

2
AD , σ

2
DD Functional variances of additive, dominance, additive × additive, additive-dominance, and dominance × dominance for simulation

Prediction models based on population level

u, v, (uu), (uv), (vv) Vectors of individuals’ additive, dominance, and epistatic effects

Gu, Gv , Guu, Guv , Gvv Genomic relationship matrices constructed based on bi-allelic markers

σ2u , σ
2
v , σ

2
uu , σ

2
uv , σ

2
vv Statistical variances of additive, dominance, additive × additive, additive-dominance, and dominance × dominance
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ad( )kl � td,l1 td,l2 . . . td,lnB[ ] ⊗ ta,k1 ta,k2 . . . ta,knB[ ]{ } · ad( )kl1
ad( )kl2
. . .

ad( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ta,l1 ta,l2 . . . ta,lnB[ ] ⊗ td,k1 td,k2 . . . td,knB[ ]{ } · da( )kl1

da( )kl2
. . .

da( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where [ td,x1 td,x2 . . . td,xnB
] is a vector of dominance covariates

(Equation 4) for locus x with nB elements;

ad( )kl1
ad( )kl2
. . .

ad( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and
da( )kl1
da( )kl2
. . .

da( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ are vectors of additive ×

dominance ((ad)klx ), and dominance × additive ((da)klx )
genotypic effects that have nB × nB elements. The value (ad)klx is
different from (da)klx .

The simulation model for dominance × dominance genotypic
value (dd)kl of the epistatic interaction between the pair of loci k
and l:

dd( )kl � td,l1 td,l2 . . . td,lnB[ ] ⊗ td,k1 td,k2 . . . td,knB[ ]{ } · dd( )kl1
dd( )kl2
. . .

dd( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where

dd( )kl1
dd( )kl2
. . .

dd( )klnB × nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is vector of dominance × dominance genotypic

effects that have nB × nB elements.
So far, the simulated genotypic values were presented at the

levels of locus and loci pairs. Here, we present the model for
simulating genotypic value at the individual level, which is the
sum effects of all QTLs and epistatic pair interactions. The

model in a matrix form for total genotypic value gi of individual
i is:

gi � tr tai · a( ) + tr tdi · d( ) + tr taai · aa( )[ ] + tr tddi · dd( )[ ]
+ tr tadi · ad( )[ ] + tr tdai · da( )[ ] (8)

where a is a nB × nqtl matrix:

a �
aj11 aj21 . . . a

nqtl
1

aj12 aj22 . . . a
nqtl
2

. . . . . . . . . . . .
aj1nB aj2nB . . . a

nqtl
nB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where nqtl is the number of QTL; a

jqtl
iB is the additive genotypic effect

of allele iB at QTL jqtl; tai is a nqtl × nB matrix:

tai �
ta,11,i ta,12,i . . . ta,1nB,i
ta,21,i ta,22,i . . . ta,2nB,i
. . . . . . . . . . . .
t
a,nqtl
1,i t

a,nqtl
2,i . . . t

a,nqtl
nB,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where t

a,jqtl
iB,i is the additive covariate of allele iB at QTL jqtl of

individual i. t
a,jqtl
iB,i can be calculated based on the genotype of

individual i at locus jqtl using Equation 2; tr() is the trace of a
matrix. Similarly, d is a nB × nqtl matrix of dominance genotypic
effects; tdi is a nqtl × nB matrix of dominance covariate of
individual i. Matrix (aa) has a dimension of (nB × nB) rows
and nep columns:

aa( ) �
aa( )kl1,1 aa( )kl2,1 . . . aa( )klnep,1
aa( )kl1,2 aa( )kl2,2 . . . aa( )klnep,2
. . . . . . . . . . . .

aa( )kl1, nB × nB( ) aa( )kl2, nB × nB( ) . . . aa( )klnep, nB × nB( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where nep is number of epistatic interactions between pairs of
loci;(aa)kljep,(ikB,ilB) is the epistatic additive × additive effect at
the interaction pair jep between allele ikB of locus k and allele ilB
of locus l. taai is a matrix with nep rows and (nB × nB)
columns.Row jep th of taai is set up as in Equation 5. For example,

taajep ,i � ta,ljep,1,i ta,ljep,2,i . . . ta,ljep,nB,i[ ] ⊗ ta,kjep,1,i ta,kjep,2,i . . . ta,kjep,nB,i[ ],
where ta,xjep,ixB,i is the additive covariate of allele i

k
B of QTL k or allele ilB

of QTL l at the interaction pair jep for individual i.
Similarly, (dd) is a (nB × nB) × nep matrix of dominance ×

dominance genotypic effects; tddi is a nep × (nB × nB) matrix of
dominance × dominance covariates of individual i. The genotypic
additive-dominance effects consist of two components: additive ×
dominance tr[tadi · (ad)] and dominance × additive tr[tdai · (da)].
Similar to (dd), matrices (ad) and (da) have dimension
of (nB × nB) × nep. tadi and tdai are matrices with nep rows
and (nB × nB) columns. Row jep th of tadi is set up as in
Equation 6. For example,

tadjep ,i � td,ljep,1,i td,ljep,2,i . . . td,ljep,nB,i[ ] ⊗ ta,kjep,1,i ta,kjep,2,i . . . ta,kjep,nB,i[ ],

TABLE 2 Conversion from raw genotype dosages (t1, t2) to additive (ta1, t
a
2)

and dominance (td1 , t
d
2 ) covariates when assuming bi-allelic loci.

Genotype t1 t2 ta1 ta2 td1 td2

Diploid

B1B1 2 0 1 −1 0 0

B1B2 1 1 0 0 1 1

B2B2 0 2 −1 1 0 0

Tetraploid

B1B1B1B1 4 0 1 −1 0 0

B1B1B1B2 3 1 1
2 −1

2
3
4

3
4

B1B1B2B2 2 2 0 0 1 1

B1B2B2B2 1 3 −1
2

1
2

3
4

3
4

B2B2B2B2 0 4 −1 1 0 0
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where td,xjep,ixB,i is the dominance covariate of allele ikB of QTL k or allele i
l
B

of QTL l at the interaction pair jep for individual i. Row jep th of tdai is:

tdajep ,i � ta,ljep,1,i ta,ljep,2,i . . . ta,ljep,nB,i[ ] ⊗ td,kjep,1,i td,kjep,2,i . . . td,kjep,nB,i[ ].
2.2 Stochastic simulation

Details of simulation steps and theoretical principles of ADAM-
Multi can be found in previous version by Pedersen et al. (2009) and Liu
et al. (2019). These principles are also similar to those in AphaSim
(Gaynor et al., 2021). Simulation of genomic models with ADAM first
starts with founder haplotypes of a defined genome structure. To create
linkage disequilibrium (LD) between QTL and markers, ADAM-Multi
can be used in case of multi-allelism. Other packages such as QMSIM
(Sargolzaei and Schenkel, 2009) and AlphaSim (Gaynor et al., 2021) do
not support multi-allelic models, but they can be used to generate the
genome with a specified degree of LD in case of bi-allelic loci. The
genotypic effects of alleles in QTLs are sampled, and then centered and
scaled to user-defined parameters using the founders’ QTL haplotypes
(Chu et al., 2024). Steps for generating additive effects of alleles a
(nB × nqtl matrix) in ADAM-Multi are:

- Sampling: Each element of matrix as is sampled from a user-
defined normal distribution, e.g., mean of zero and additive
variance σ2A [or N(0, σ2A)]. Matrix as with the same dimension
as a contains starting values of additive effects.

- Centering: Based on matrix as and genotypes of a founder
population, we can calculate population mean at each QTL
locus. Additive effects of alleles within each QTL (each row of
as) are centered to achieve population mean of zero. For
example,: a

jqtl
iB
* � a

jqtls

iB − μjqtl
s
,where μjqtl s is the population

mean at locus jqtl given as (before being centered) and
genotypes of the founder population; a

jqtl
iB
* is the prior value

after centering. Matrix a* (same dimension as a) with elements
of a

jqtl
iB
* is the prior values of additive effects after centering.

- Rescaling: Prior variance σ2A* can also be calculated as we know
all individuals’ genotype in the population and functional
effects of QTL (a*). Calculation of the variance can be done
by different methods including variance by locus, by
chromosome, or by individual as in Chu et al. (2024).
Additive effects a are calculated by rescaling prior effects a*
to achieve the user-defined variance input σ2A for the founder
population. For example:

a � a* ×

���
σ2A
σ2A*

√

The calculated variances of σ2A and σ2A* in the rescaling step are
functional, biological or genotypic parameters, which are different
from classical, statistical quantitative parameters. The differences
between functional and statistical variances are detailed and
explained in Álvarez-Castro and Carlborg (2007), Álvarez-Castro
and Yang (2011), Chu et al. (2024), and Vitezica et al. (2017).
Functional effects of dominance and epistasis are also generated
based on user-defined inputs of functional variances. Steps for
generating dominance effects of alleles d (nB × nqtl matrix) are:

- Sampling: A dominance degree δ
d,jqtl
iB for allele iB of QTL jqtl is

sampled from a user-defined normal distribution N(μδ , σ2δ),
where μδ is the mean of dominance degree, and σ2δ is the
variance of dominance degree. If a user does not provide this
distribution, ADAM-Multi default values are N(0.19, 0.097)
as in Wellmann and Bennewitz, (2011). Each element of
matrix d* (starting (or prior) values of dominance effects) is
generated as:

d
jqtl
iB
* � δ

d,jqtl
iB

* a
jqtl
iB

∣∣∣∣∣ ∣∣∣∣∣.
- Rescaling: This is done similarly to rescaling as for simulating
additive effects. Based on matrix d* and QTL genotypes of a
founder population, prior variance σ2D* can be calculated.
Dominance effects d are the prior effects d* that are
rescaled to achieve the user-defined variance inputs of σ2D
for the founder population.

Steps for sampling additive × additive effects are.

- Sampling: Each element of matrix (aa)* [starting (or prior)
values of additive × additive effects] is sampled from a user-
defined normal distribution N(0, σ2AA).

- Rescaling: Prior variance σ2AA* can be calculated as we know all
individuals’ genotype in the population and functional effects
of QTL (aa)*. Calculation of the variance can be done by
different methods including variance by pair loci, or by
individual as in Chu et al. (2024). Additive × additive
effects (aa) are obtained by rescaling prior effects (aa)* to
achieve the desired variance inputs of σ2AA for the founder
population.

Steps for sampling dominance × dominance effects are similar to
those for additive × additive effects. Steps for sampling additive-
dominance effects are:

- Sampling: Each element of matrices (ad)* and (da)* [starting
(or prior) values of additive × dominance and dominance ×
additive effects] is sampled from a user-defined normal
distribution N(0, σ2AD).

- Rescaling: Prior variance σ2AD* can be calculated as we know all
individuals’ genotype in the population and functional effects
of QTL (ad)* and (da)*. Note that the additive-dominance
effects of an individuals’ genotype is the sum of additive ×
dominance and dominance × additive. Effects (ad) and (da)
are obtained by rescaling prior effects (ad)* and (da)* to
achieve the desired variance inputs of σ2AD for the founder
population. For example:

ad( ) � ad( )* ×
����
σ2AD
σ2AD*

√
and da( ) � da( )* ×

����
σ2AD
σ2AD*

√
.

A centering step is not included for dominance and epistatic
effects, but the total genetic value gi is centered to achieve the
population mean of zero based on the founder population. For
example, the model for simulating individuals’ phenotypes is:

yi � μ + gi + ei (9)
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where gi is the genetic values of individual i that is constructed as in
(Equation 8); μ is the population mean to re-adjust the mean of the
founder population to zero.

In ADAM-Multi, model (Equation 9) can be extended to
repeated records, inclusion of non-genetic effects, and multiple
traits. The functional genetic effects of additive, dominance, and
epistasis are independent of allele frequencies, and in the simulation,
they are kept constant across generations. Modeling of genetic
recombination during meiosis uses bivalent chromosome pairing
(Voorrips and Maliepaard, 2012). A breeding scheme is simulated
by combining series of actions: mating, reproduction, phenotyping,
genotyping, prediction of breeding values and different selection
methods. The use of ADAM-Multi is demonstrated in two examples
that study the effects of multi-allelic versus bi-allelic assumptions
and the use of different prediction models on accuracy of prediction
and genetic gains of breeding programs for potato.

2.3 Example 1

The example uses a simulation model with additive effects only
for a single-population breeding scheme. The investigated factors
include different multi-allelic assumptions (6 levels) and two levels
of ploidy (Table 3). In total, there were 6 × 2 = 12 scenarios
simulated in example 1.

The simulation model for individuals’ phenotype in
example 1 was:

yi � μ +∑nB
iB

ta,1iB,ia
j1
iB +∑nB

iB

ta,2iB,ia
j2
iB + . . . +∑nB

iB

t
a,nqtl
iB,i a

nqtl
iB + ei (10)

Simulation of genetic values in (Equation 10) is an extension of
(Equation 1) to the sum effects of nqtl, or equivalent to the additive
part of (Equation 8). Notations and symbols are the same as in
(Equation 8). The environment term ei was drawn from a normal
distribution N(0, σ2e) with σ2e � 2. This example used a simplified
simulation model as compared to Equation 9 because we would like
to assess accuracy of predicted breeding values in selection. When
non-additive genetics are included in the model, the definition of
accuracy of predicted breeding values with multi-allelic assumption
is unclear in literature.

Figure 1 shows the simulation pipeline for this example. The
genome of founders was simulated to form LD between QTL and
markers using a Fisher-Wright inheritance model (Fisher, 1930).
The LD genome consisted of 12 chromosomes with genetic distances
emulating that of potato (Massa et al., 2018). The total genome
length was 888.6 cM. The initial genome that had 50k marker loci
and 10k QTL with an equal frequency for each allele. A historical
population with effective population size of 200 was simulated for
1,000 generations of random mating, a simulated bottleneck, and an

TABLE 3 Overview of factors investigated in example 1 and 2.

Factor Levels

Example 1

Simulation model for individuals’ genetic values Additive genetic effect only

Multi-allelic assumption with percentage of QTL having bi-allelic state
(6 levels)

Bi-allele (100%)

Bi-allele (80%) + tri-allele (20%)

Bi-allele (50%) + tri-allele (50%)

Bi-allele (80%) + quad-allele (20%)

Bi-allele (50%) + quad-allele (50%)

Bi-allele (20%) + quad-allele (80%)

Genetic effects included in prediction model for selection (1 level) Additive genetic effect only

Ploidy (2 levels) Diploids

Tetraploids

Example 2

Simulation model for individuals’ genetic values Additive, dominance, additive × additive, additive-dominance, and dominance × dominance
effects

Multi-allelic assumption with percentage of QTL having bi-allelic state
(2 levels)

Bi-allele (100%)

Bi-allele (20%) + quad-allele (80%)

Genetic effects included in prediction model for selection (3 levels) Additive only

Additive and dominance

Additive, dominance, epistatic effects

Ploidy (2 levels) Diploids

Tetraploids
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inheritance pattern of standard Mendelian principles and bivalent
chromosome pairing (Voorrips and Maliepaard, 2012). In example
1, 12 founder populations were created corresponding to 6 levels of
multi-allelic assumptions and 2 levels of ploidy (Table 3). The 100-
individual founders for each of the populations was created, where
the genome of these founders consisted of 2k QTL and 10k bi-allelic
markers. The QTL andmarkers were drawn randomly from loci that
were segregating with a minor allele frequency ≥0.05. For markers,
bi-allelic state was assumed in all scenarios. The percentage of QTL
having segerating bi-, tri-, or quad-alleles was corresponding to the
assumption of the scenario. In case of multiple allellisms, for
example, quad-allelic assumption for a QTL, each of the four
alleles must have a minor allele frequency of at least 0.05. The
LD pattern in case of bi-allelic loci for diploid and tetraploid
genomes can be found in Supplementary Appendix 2. The
functional additive variance of the founder populations was
simulated at σ2A � 1.0.

A simplified breeding scheme was simulated for 13 discrete
generations. In a generation, 80 parents were crossed, pseudo-
randomly with no self-pollination, to create 80 families. A parent
could mate any other parents, but each parent could contribute to
only maximum of four crosses. Each family had 10 full-sib
offspring, thus in total there were 800 offspring per
generation. From generation 1 to 5, the 80 parents were
randomly selected from the 800 offspring. In generation 6 to
13, the selection of the offspring to be parents in the following

generation was based on predicted breeding values. At generation
6, variance components were estimated when the phenotype data
consisted of 4,000 individuals. This estimation of variance
components ensures that extra variation due to unknown
variance components were taken into account. These variance
component estimates were used in the models for prediction of
breeding values in the subsequent generations. Selection of
80 new parents from 800 individuals were carried out based
on the genetic evaluation after the phenotypes in a generation
were obtained.

Model Equation 11 were used in example 1 for variance
component estimation and prediction of breeding values is
as follows:

y � Xb + Zuu + e (11)
where y is the vector of individual phenotypes; b is a vector of the
fixed effects of individuals’ generation; u is the vector of breeding
values u ~ N(0,Guσ2u), where the relationship matrix for additive
genetics (Gu) was constructed based on bi-allelic markers using
method (VanRaden, 2008) for different levels of ploidy assumed in
the scenario. The computation of Gu was carried out using
AGHmatrix R package (Amadeu et al., 2023). X and Zu are
design matrices relating individuals to fixed effects and additive
genetic effects, respectively. Vector e is an environmental residual
term: e ~ N(0, Iσ2e), where I is an identity matrix, σ2e is the
environmental residual variance.

FIGURE 1
An overview of simulation pipeline in example 1 and 2.
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Simulation model Equation 10 is QTL-based whereas Equation
11 is marker-based prediction model. Simulation and prediction
models are also different in how the covariate of additive effects is
calculated. The covariate in Equation 10 is independent of the allele
frequency in the population while the covariate as elements of Gu in
Equation 11 uses the frequency in calculation (Chu et al., 2024). The
variances estimated from Equation 11 are statistical parameters
whereas the simulated variances in Equation 10 are functional
variances (Chu et al., 2024). However, as non-additive genetic
effects were not simulated in this example, the functional and
statistical variances in example 1 would be identical.

Each founder population (at generation 0) were replicated
5 times, i.e., a total of 50 replicates were simulated. The breeding
scheme at generations 1–13 was replicated 10 times per founder
population replicate. Variance component estimation was carried
out using REML in the DMUAI module of the DMU package
(Madsen and Jensen, 2013). The prediction of breeding values was
performed with the DMU4 module of the DMU package.
Population accuracy of the predicted breeding values were
assessed for the individuals in generation 6. The accuracy was
the correlation between true u from the simulated values and
predicted û in (Equation 11). Rate of genetic gain was assessed as
the rate of increase in the genetic mean of population from
generation 5 to 13, i.e., rate of genetic gain = u13−u5

8 , where u5 and
u13 are the genetic means of population at generation 5 and 13.

2.4 Example 2

The investigated factors in example 2 included different prediction
models for selection, multi-allelic levels and two levels of ploidy
(Table 3). This example used four haplotype founder populations
from example 1 for scenarios that had multi-allelic assumption of
bi-allelic (100%), and bi-allelic (20%) + quad-allelic (80%) QTL at two
ploidy levels of diploids and tetraploids. There were three prediction
models investigated, thus in total 2 × 2 × 3 = 12 scenarios simulated. The
simulation pipeline of this example is the same as in example 1 and
Figure 1. However, the simulation model in example 2 included
additive, dominance, and epistatic genetic effects, as in (Equation 9).

For simulating epistasis, we assumed nep � 1000, with each QTL
present in precisely one pair. The functional variance inputs for the
simulationmodel were set for additive σ2A � 1.0, dominance σ2D � 0.25,
additive × additive σ2AA � 0.25, additive-dominance σ2AD � 0.25,
dominance × dominance σ2DD � 0.25, and environmental term
σ2e � 2. The GBLUP models for predicting breeding values included
(Equation 11) and two others as follows:

y � Xb + Zuu + Zvv + e (12)
y � Xb + Zuu + Zvv + Zuv uu( ) + Zuv uv( ) + Zvv vv( ) + e (13)

where u is the vector of breeding (additive) values as described in
Equation 11; v is the vector of dominance values v ~ N(0,Gvσ2v),
where σ2v is dominance variance, and the relationship matrix for
dominance (Gv) is genomic marker-based, which were calculated
using AGHmatrix R package (Amadeu et al., 2023). The
construction of dominance relationships between individuals used
the method by Vitezica et al. (2017) for diploids, and Endelman et al.
(2018) for tetraploids. Vector (uu) is additive × additive
(uu) ~ N(0,Guuσ2uu), where σ2uu is additive × additive variance,
and the relationship matrix Guu � Gu ⊙ Gu, where Gu is
genomic-based relationship as in (Equation 11), ⊙ is the
Hadamard product. Similarly, (uv) is the vector of additive-
dominance: (uv) ~ N(0,Guvσ2uv), where σ2uv is the variance, and
Guv � Gu ⊙ Gv. Vector (vv) is dominance × dominance:
(vv) ~ N(0,Gvvσ2vv), where σ2vv is the variance, and
Gvv � Gv ⊙ Gv. Other notations and symbols are the same as in
(Equation 11). Variances σ2u, σ

2
v , σ

2
uu, σ

2
uv and σ2vv from Equation 13

are statistical parameters, which are different from functional
variances σ2A, σ

2
D, σ

2
AA, σ

2
AD and σ2DD in Equation 9 (Chu et al., 2024).

Similar to example 1, the breeding scheme at generations
1–13 was replicated for 10 times for each of the five founder
population replicates. Variance component estimation and
prediction of breeding values were carried out by DMUAI and
DMU4 module, respectively, of the DMU package (Madsen and
Jensen, 2013). Rate of genetic gain was calculated similar as in
example 1, except that the total genetic value gi was used instead of
additive values only.

3 Results

Table 4 shows genotypic values of additive (a) using (Equation
1) and dominance (d) using (Equation 3) for diploids and
tetraploids when assuming nB � 2 at a locus with allele B1 and
B2. With bi-allelic QTL locus of diploids, the genotypic effects of
B1B1, B1B2, and B2B2 were −(a2 − a1), 0 and +(a2 − a1) for a,
respectively, and 0, (d1 + d2) and 0 for d, respectively. Table 5 shows
epistatic genotypic values for diploids due to interactions between
loci k and l when assuming nB � 2 at the two loci. The additive-
dominance interaction between the pair of loci k and l is the sum of
additive × dominance and dominance × additive interaction effects
for the two loci.

Table 6 shows rate of genetic gains and accuracy of predicted
breeding values in a simplified breeding scheme for diploids and
tetraploids when different levels of multiple allelism were assumed
in example 1. Surprisingly, accuracy of predicted breeding values
was not statistically different for altered levels of QTL multi-allelic

TABLE 4 Genotypic values of additive (a) and dominance (d) at one-locus
level when assuming bi-allelic QTL.

Genotype a d

Diploid

B1B1 −(a2 − a1) 0

B1B2 0 (d1 + d2)

B2B2 (a2 − a1) 0

Tetraploid

B1B1B1B1 −(a2 − a1) 0

B1B1B1B2 −1
2 (a2 − a1) 3

4 (d1 + d2)

B1B1B2B2 0 (d1 + d2)

B1B2B2B2
1
2 (a2 − a1) 3

4 (d1 + d2)

B2B2B2B2 (a2 − a1) 0
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assumptions, which occurred in the breeding scheme for both
diploids and tetraploids. On the contrary, the rate of genetic
gains had increasing tendency with increasing levels of multiple
allelic QTL in the scheme for tetraploids whereas the genetic gain did
not show this tendency in the scheme for diploids. The increasing

tendency in genetic gains was most likely due to increased additive
variances with higher multiple allelism in tetraploids. The estimated
variances for different scenarios in example 1 could be found in
Supplementary Table 1, and the true variances at different
generations are in Supplementary Table 2.

TABLE 5 Genotypic values of additive × additive (aa), additive - dominance (ad), and dominance × dominance (dd) in two-loci epistatic interactions when
assuming bi-allelic QTL.

Genotype (aa)kl (ad)kl (dd)kl

Bk
1B

k
1B

l
1B

l
1 + (aa)kl1 − (aa)kl2 − (aa)kl3 + (aa)kl4{ } 0 0

Bk
1B

k
1B

l
1B

l
2

0 + (ad)kl1 − (ad)kl2 + (ad)kl3 − (ad)kl4{ } 0

Bk
1B

k
1B

l
2B

l
2 − (aa)kl1 − (aa)kl2 − (aa)kl3 + (aa)kl4{ } 0 0

Bk
1B

k
2B

l
1B

l
1

0 + (da)kl1 − (da)kl2 + (da)kl3 − (da)kl4{ } 0

Bk
1B

k
2B

l
1B

l
2 0 0 (dd)kl1 + (dd)kl2 + (dd)kl3 + (dd)kl4

Bk
1B

k
2B

l
2B

l
2 0 − (da)kl1 − (da)kl2 + (da)kl3 − (da)kl4{ } 0

Bk
2B

k
2B

l
1B

l
1 − (aa)kl1 − (aa)kl2 − (aa)kl3 + (aa)kl4{ } 0 0

Bk
2B

k
2B

l
1B

l
2 0 − (ad)kl1 − (ad)kl2 + (ad)kl3 − (ad)kl4{ } 0

Bk
2B

k
2B

l
2B

l
2 + (aa)kl1 − (aa)kl2 − (aa)kl3 + (aa)kl4{ } 0 0

TABLE 6 Genetic gain and accuracy in simulation model with additive effects only of example 1.

Multi-allelic assumption Diploids Tetraploids

Genetic gain Accuracy Genetic gain Accuracy

Bi-allele (100%) 1.086 0.842 1.068 0.798

Bi-allele (80%) + tri-allele (20%) 1.097 0.837 1.066 0.796

Bi-allele (50%) + tri-allele (50%) 1.074 0.838 1.104 0.807

Bi-allele (80%) + quad-allele (20%) 1.065 0.842 1.061 0.792

Bi-allele (50%) + quad-allele (50%) 1.077 0.844 1.146 0.794

Bi-allele (20%) + quad-allele (80%) 1.088 0.842 1.118 0.795

Standard deviation over replicates in range (for column) 0.044–0.061 0.03–0.06 0.047–0.068 0.04–0.06

TABLE 7 Genetic gain in simulation model with additive, dominance and epistatic effects of example 2 when different prediction models were used.

Multi-allelic assumption Prediction model

Additive only Additive and dominance Additive, dominance and epistasis

Diploids

Bi-allele (100%) 1.103 1.117 1.114

Bi-allele (20%) + quad-allele (80%) 1.012 0.991 0.994

Tetraploids

Bi-allele (100%) 1.283 1.275 1.269

Bi-allele (20%) + quad-allele (80%) 1.224 1.238 1.214

Standard deviation over replicates in range (for column) 0.050–0.064 0.048–0.068 0.045–0.065
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Table 7 shows the rate of genetic gains in a breeding scheme
where different prediction models were used for selection in
example 2. In this example, while the simulation model includes
additive, dominance, and epistatic interactions between pairs of loci,
different prediction models were used for selection. The prediction
models with and without non-additive effects did not lead to
statistical differences in rate of genetic gains. In about two thirds
of replicates, the model could not estimate epistatic effects
(Supplementary Table 3). Different multiple allelism did not lead
to a significant change in rate of genetic gains. The variance
components estimated from different prediction models in
example 2 can be found in Supplementary Table 4, and the true
variances of total genetic values at different generations are in
Supplementary Table 2.

4 Discussion

Our simulation models allow the presence of multi-allelic loci,
which is a more realistic assumption for QTL variants. Our simulation
model for additive genetic effects is basically the sum of allelic effects.
When bi-allelic QTL is assumed, the simulation models applying
Equations 1, 3, and 5–7 are identical to the assumption in common
genetic textbook, e.g., Falconer and Mackay (1996) and AlphaSimR
package (Gaynor et al., 2021). For example, AlphaSimR defines effects
of genotype B1B1, B1B2 and B2B2 as –a, 0 and +a for additive,
respectively. These effects would be corresponding to values in Table 4
if a was defined: a � (a2 − a1). Here, (a2 − a1) is the substitution
effect of allele B2 for B1, which is also the definition of a in AlphaSimR
and Falconer and Mackay (1996). When bi-allelic QTL is assumed,
dominance effect in different ploidy levels is based on a digenic
dominance model, which is consistent to Gaynor et al. (2021).
Similarly, the epistatic effects in Gaynor et al. (2021) are a special
case of our simulation model with bi-allelic assumption.

Interestingly, different levels of multi-allelic assumptions for
QTL did not affect accuracy of predicted breeding values based on
bi-allelic markers in example 1. This may be due to high density of
markers and well-structure population where each clone had many
full and half-sibs. Multiple markers can link to a given QTL.
Therefore, effects of all alleles at the QTL with multi-allelic state
could be estimated using bi-allelic markers. For example, three
different bi-allelic marker loci that were closely linked to a QTL
could combined to code for up to eight different alleles of the QTL.
This could be the reason that regardless of possible multiple alleles in
QTL, bi-allelic markers with reasonably high density could predict
breeding values in many genomic selection programs (Chu et al.,
2019; Samorè and Fontanesi, 2016; Hayes et al., 2013).

In example 1, the differences in rate of genetic gain between
different degree of multi-allelisms is primarily due to genetic
variances. Although the base population variances are simulated as
the same values between two populations, existence of multi-allelism
can have higher potential variance, or lower loss of genetic variance
under selection. For example, selection led to a removal of a “bad”
allele at a QTL in the population. The genetic variance due to QTL
would be zero in the bi-allelic case, butmight be not in themulti-allelic
population. However, maintenance of multi-allelic state might require
a bigger effective population size. Otherwise, the multi-allelic state
could be lost due to random sampling. This could be the explanation

for a higher genetic variance of multi-allelic population in case of
tetraploids, but not in diploids in example 1.

While the simulation model including additive, dominance and
epistasis was the same for scenarios in example 2, different
prediction models (Equations 11–13) were employed for
selection. Definition of accuracy of prediction is unclear in
literature when different prediction models were used in this
case, and particularly when multi-allelic QTL was assumed.
Therefore, the rate of genetic gains was used as the main criteria
to compare prediction models. Surprisingly, the use of different
prediction models did not lead to significant changes in the rate of
genetic gains. In other words, the use of correct prediction model for
selection, i.e., prediction model and simulation model were more
similar, did not improve genetic gains of the breeding scheme. The
higher level of multi-allelic assumptions for QTL tended to reduce
the genetic gains in example 2, whichmight be due to lower accuracy
of prediction. However, the reduction was not significant.

Nonetheless, examples in this paper are small-scale studies to test
ADAM-Multi for multi-allelic features. Many other factors that may
affect genetic gain, accuracy of predictions and genetic variances in
multi-allelic populations include LD between markers and QTL alleles,
population structure, population size, and prediction model. Like other
software (Gaynor et al., 2021; Pook et al., 2020; Younis et al., 2023),
ADAM-Multi uses functional effects for simulating genotypic values of
individuals. Functional effects are independent of allele frequency, thus
convenient for studying the consequence of selection in breeding
programs (Chu et al., 2024). However, the functional effects and
variance parameters cannot be obtained directly by model
estimation using real data. Therefore, it is difficult to ensure user-
defined parameters for the simulated populations. Just like other
software (Gaynor et al., 2021; Pook et al., 2020; Younis et al., 2023),
ADAM-Multi is still missing an important feature for a transformation
between functional and statistical parameters. More theories are needed
to be developed for this transformation, particularly, in case of multi-
allelic QTL. Nonetheless, with a more realistic assumption of QTL,
ADAM-Multi opens research possibility to study the use of genotyping
technology of bi-allelic markers, or the need of new genotyping
technology to improve accuracy of selection. Particularly, this
assumption of QTL remains very relevant for genomic prediction
studies involving multiple breeds and populations. For example,
different functional effects of QTL could be assumed in two
populations, e.g., González-Diéguez et al. (2021).

This paper presented single-trait models, but the program,
ADAM-Multi, can be used for simulating multiple traits with
different levels of correlations. For example, the scaling and
rescaling procedures in simulation of multiple traits use matrix
multiplication, inversion and Cholesky decomposition instead of
number multiplication, devision and square root calculations as
indicated in this paper. Another note is that the number of alleles nB
could be defined individually for each of QTL (Supplementary
Appendix 1). However, this paper assumes a defined nB for all
QTL even when not all alleles in a QTL are segregating. With this
assumption, non-segregating alleles’ effects can affect the mean, but
the mean can be altered with adding constant values to μ just like in
Equation 9. On the contrary, non-segregating alleles do not affect the
functional or statistical variances as the frequencies of these alleles
are fixed. In addition, additive effects are centered in our simulation
models, but the dominance effects are not. This assumption of
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dominance leads to a positive effect of heterozygous genotypes, as
recommended in Wellmann and Bennewitz (2011).

5 Conclusion

This paper presented a simulation model capable of simulating
genotypic effects generalized for multiple allelic models and
different ploidy levels. This model accommodates genotypic
effects of additive, dominance, and epistasis. When assuming bi-
allelic QTL, the generalized model becomes identical to the model
assumption in common simulation programs, and in genetic
textbooks. This model is integrated in our software ADAM-Multi.

In a small-scale study, we have shown that with a reasonable
density of bi-allelic markers and a well-structured population,
genomic models can effectively predict breeding values despite
the presence of multi-allelic QTL. It was also shown that the
inclusion of non-additive genetic effects in the prediction model
for selection did not lead to a significant improvement in the rate of
genetic gains of a breeding program.
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