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Background: Dystrophin is a key protein encoded by the DMD gene, serves as a
scaffold linking the cytoskeleton to the extracellular matrix that plays a critical role
in muscle contraction, relaxation, and structural integrity. Mutations, particularly
single-point amino acid substitutions, can lead to dysfunctional Dystrophin,
causing muscular dystrophies, with Duchenne muscular dystrophy (DMD)
being the most severe form.

Objective: This study aimed to evaluate the effects of 184 single-point amino acid
substitutions on the structure and function of Dystrophin using computational
approaches.

Methods: Many computational tools were used to predict the impact of amino
acid substitutions on protein stability, solubility, and function. Pathogenic
potential was assessed using disease phenotype predictors and CADD scores,
while allele frequency data from gnomAD contextualized mutation prevalence.
Additionally, aggregation propensity, frustration analysis, and post-translational
modification sites were analyzed for functional disruptions.

Results:Of the 184 substitutions analyzed, 50 were identified as deleterious, with
41 predicted to be pathogenic. Seventeen mutations were localized in the
Calponin-homology (CH) 1 domain, a critical functional region of Dystrophin.
Six substitutions (N26H, N26K, G47W, D98G, G109A, and G109R) were predicted
to decrease protein solubility and were located in minimally frustrated regions,
potentially compromising Dystrophin functionality and contributing to DMD
pathogenesis.
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Conclusion: This study provides novel insights into the molecular mechanisms of
DMD, highlighting specific mutations that disrupt Dystrophin’s solubility and
function. These findings could inform future therapeutic strategies targeting
Dystrophin mutations to address DMD pathogenesis.
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Introduction

Duchenne muscular dystrophy (DMD) is among the most severe
andwidespread types ofmuscular dystrophy that affects approximately
1 in every 5,000 male births worldwide (Ke et al., 2019). This is an
X-linked recessive disorder that primarily occurs in early childhood
and results in premature mortality, typically by the third decade of life
(Younger, 2023). Central to the pathogenesis of DMD is the disruption
of Dystrophin, a critical protein encoded by the DMD gene located on
the X chromosome (Brown and Hoffman, 1988). Dystrophin plays a
central role in maintaining the structural integrity and functionality of
muscle fibers (Gao and McNally, 2015). It serves as a scaffold protein
that links the internal cytoskeleton ofmuscle cells with the extracellular
matrix and offers crucial structural support throughout muscle
contraction and relaxation (Wilson et al., 2022). Mutations in the
DMD gene result in a defective or nonfunctional Dystrophin protein,
which causes a group of muscle-wasting disorders known as muscular
dystrophies (Duan et al., 2021). Of these, DMD is the most severe
phenotype, characterized by the dysfunction of Dystrophin expression
(Bonilla et al., 1988).

Over the years, the identification of single-point amino acid
substitutions in Dystrophin has been markedly increased (Roberts
et al., 1992; Muntoni et al., 2003; Fortunato et al., 2021). However,
interpreting the functional consequences of these substitutions and
elucidating their precise roles in DMD pathogenesis remain tough
challenges (Fuller et al., 2016). The diversity and complexity of
Dystrophin mutations require a thorough analysis to evaluate their
effects on protein structure, function, and, ultimately, disease
progression (Fuller et al., 2016). In recent years, bioinformatics
methods have emerged as helpful tools to predict the functional
impact of genetic variants, including single-point amino acid
substitutions, in disease-associated genes and gene products
(Tang and Thomas, 2016; Amir et al., 2019a; Umair et al., 2021).
In this context, bioinformatics algorithms and structural modeling
techniques can systematically evaluate the pathogenic potential of
Dystrophin mutations and prioritize variants for further
experimental validation. Moreover, computational analyses can
offer deeper insights into the molecular mechanisms underlying
DMD that can guide the development of targeted therapeutic
interventions and personalized treatment strategies.

In this study, we performed a detailed analysis of deleterious
single-point amino acid substitutions in Dystrophin and their
impact on DMD pathogenesis. We employed advanced
computational methods, such as SIFT (Shihab et al., 2013),
PolyPhen-2 (Adzhubei et al., 2013), FATHMM (Rogers et al.,
2018), SNPs&Go (Pires et al., 2014) mCSM (Laimer et al., 2015),
DynaMut2 (Capriotti et al., 2006), MAESTROweb (Laimer et al.,
2016), PremPS (Rodrigues et al., 2021), MutPred2 (Pejaver et al.,

2020), and PhD-SNP (Calabrese et al., 2008), and systematically
evaluate 184 amino acid substitutions to assess their effects on
Dystrophin structure and function.

To gain insights into the molecular mechanism of DMD, we
focused on a group of high-probability mutations that would likely
have severe effects on Dystrophin function. In conclusion, the study
is powerful evidence of the need to incorporate computational
analysis in the discovery of Dystrophin mutations and their
involvement in DMD. The findings highlighted that such
investigations may help advance the development of personalized
treatments for this fatal muscle disease and thereby enhance the
quality of life for patients with DMD.

Materials and methods

Retrieval of data

The protein sequence of human Dystrophin was taken from the
UniProt protein database (Accession ID: P11532). A compilation of
individual amino acid substitutions in Dystrophin was assembled
using the data accessible through dbSNP (https://www.ncbi.nlm.nih.
gov/snp/) (Sherry et al., 2001), Ensembl (https://asia.ensembl.org/
index.html, Ensembl gene IDENSG00000198947.18) (Hubbard et al.,
2002), and PubMed (https://pubmed.ncbi.nlm.nih.gov/) literature
(Supplementary Data). A total of 184 mutations were taken from
these sources. Duplicates were eliminated from the list of mutations.
Population frequency data for thesemutationswere retrieved from the
gnomAD database (https://gnomad.broadinstitute.org/, Genome
buildGRCh38/hg38) to provide insights into their prevalence in the
general population and specific cohorts. The three-dimensional
structure of human Dystrophin (Actin-binding domain) was
downloaded from the RCSB Protein Data Bank (PDB ID: 1DXX)
(Berman et al., 2000). These datasets served as the foundation for
employing various state-of-the-art computational tools, detailed in the
subsequent sections, to predict the structural and functional impact of
these mutations.

Sequence-based predictions

PolyPhen2
PolyPhen-2 (Polymorphism Phenotyping v2) is a bioinformatics

software tool used to predict the impacts of amino acid changes on
protein structure and function (Ramensky et al., 2002). It assesses
amino acid substitutions by considering the relative and spatial
properties of the amino acids, thus approximating the chances of
these substitutions altering the native conformation of the protein.
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PolyPhen-2 uses sequence, structural, and evolutionary information
to predict the physiological relevance of amino acid changes. It
employs a set of machine learning algorithms that are trained on a
database of known polymorphisms to sort variants into various
groups based on their potential effects, which can be labeled as
“benign”, “possibly damaging”, or “probably damaging”.

SIFT
SIFT (Sorting Intolerant FromTolerant) is another bioinformatics

tool widely applied in computational biology and genetics to estimate
whether an amino acid change in a protein will be tolerated or not.
Like PolyPhen-2, SIFT works to rank genetic variants based on their
level of tolerance to change and their impact on protein structure and
function. It aligns the amino acid at the position of interest with the
amino acid residues of a homologous protein from other species. SIFT
assigns a score to each amino acid substitution, with lower scores
indicating a higher likelihood of being deleterious. Mutations are
categorized as intolerable if the SIFT score is 0.05 or lower (Kumar
et al., 2009; Ng and Henikoff, 2003).

FATHMM
FATHMM is an application that is employed in functional

analysis with the help of hidden Markov models to predict the
effects of genetic variants, especially those occurring in coding
regions of the genome. It uses Hidden Markov Model (HMM) to
predict the effects of variants on protein structure and function based
on the data obtained from the PDB (Shihab et al., 2013). FATHMM
uses features such as evolutionary conservation, physicochemical
properties of the amino acid, and genomic context to rate variants.
Incorporation of these features into its model allows FATHMM to
output a prediction of the functional consequence of the given variant.
The result of FATHMM usually includes a score or risk assessment of
a genetic variant being pathogenic or benign. A high FATHMM score
indicates that the variant is likely to be benign and the cells are very
unlikely to be affected by it, whereas a low score indicates that the
variant may have functional consequences and could be pathogenic.

SNPs&GO
SNPs&GO is a web server that employs an SVM for identifying

deleterious single-point amino acid substitutions (Capriotti et al.,
2013). The SVM classifier combines protein sequence, profile, and
functional data to differentiate between disease-associated and
neutral variants, utilizing gene ontology (GO) annotations.
SNPs&GO employs machine learning algorithms trained on
various features derived from protein sequence and structure to
predict the impact of SNPs. These features include amino acid
physicochemical properties, evolutionary conservation, protein
domain information, and structural annotations. An SNPs&GO
score surpassing 0.5 signifies a substitution that is probable to
induce disease. Moreover, the tool yields output from additional
resources such as PANTHER and PhD-SNP.

Structure-based predictions

mCSM
mCSM (Mutation Cutoff Scanning Matrix) is a computational

tool used in structural bioinformatics to predict the effects of

mutations on protein stability. It is a tool designed for assessing
single-point amino acid substitutions via a graph-based method
(Pires et al., 2014). The predictive models are developed using
environmental data extracted from atomic distance patterns of
diverse residues. This tool enriches our comprehension of
mutations related to diseases across a spectrum of proteins. A
mCSM score (ΔΔG) below 0 suggests that a mutation profoundly
influences the protein structure.

MAESTROweb
MAESTROweb (https://pbwww.services.came.sbg.ac.at/maestro/

web) is an online platform for protein structure-based prediction
of the effects of mutations. MAESTROweb is especially helpful in
the identification of the impact of mutations on protein stability,
which is highly important for the assessment of the functional
consequences of genetic changes, particularly in the context of
human diseases. It uses several computational tools to evaluate
the effects of mutations on the stability of proteins. MAESTROweb
employs a range of computational tools and strategies, such as
machine learning and structural bioinformatics, to predict the
functional impact of mutations. A score of below 0 means that the
protein is expected to change stability due to the amino acid
substitutions (Laimer et al., 2015).

PremPS
PremPS (https://lilab.jysw.suda.edu.cn/research/PremPS/) assesses

the impact of amino acid substitutions in proteins (Chen et al., 2020). It
uses multiple approaches, such as multiple sequence alignment (MSA),
protein structure, and a deep learningmodel, to make predictions about
the potential impact of genetic variants on protein function and disease.
It is specifically designed to predict whether a single amino acid
substitution is likely to be deleterious or tolerated based on the
protein’s sequence information. We input the amino acid sequence
of the protein and specify the position and the amino acid substitution.
Then, PremPS calculates a prediction score indicating the likelihood of
the substitution being deleterious or tolerated.

DynaMut2
DynaMut2 (http://biosig.unimelb.edu.au/dynamut2/) is also a

predictive tool tailored for estimating protein stability (Rodrigues
et al., 2021). Amino acid substitution data were obtained from the
ProTherm database. DynaMut2 can make predictions for single and
multiple mutations; however, the experiment conducted on
DynaMut2 focuses on single mutation prediction.
DynaMut2 offers users the predicted effects of the amino acid
substitution on stability and the dynamic properties of the
protein, as well as the graphical representation of the mutations,
to help users better understand the structural context of the changes.

Pathogenicity prediction

PhD-SNP
The PhD-SNP (https://snps.biofold.org/phd-snp/phd-snp.html)

is a web-based pathogenicity analysis tool that employs an SVM-
based classifier to categorize variants associated with diseases
(Capriotti et al., 2006). In this process, both sequence and profile
information are utilized to establish a distinction between neutral
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and disease-associated amino acid substitutions. It employs machine
learning algorithms trained on various sequence, structural, and
functional features to make predictions about the functional
consequences of SNPs. A PhD-SNP score exceeding 0.5 signifies
an amino acid substitution likely to induce disease. We used PhD-
SNP to examine the pathogenicity of mutations in Dystrophin.

MutPred2
MutPred2 (http://mutpred.mutdb.org) is also a web-based tool

designed to classify amino acid substitutions as either disease-
associated or neutral. The tool is designed to accurately estimate
the likelihood that a particular amino acid substitution is likely to be
deleterious or neutral and offers information about the possible
molecular processes that may underlie the predicted outcomes
(Pejaver et al., 2020) MutPred2 considers the sequence and
structural properties of the mutated protein, such as evolutionary
conservation, physicochemical properties of the amino acid
substitution, protein domains, and structural annotations. Any
MutPred2 score greater than 0.5 denotes a substitution
considered to be pathogenic. We utilized MutPred2 to predict
the pathogenicity of the mutations in Dystrophin.

Combined annotation dependent
depletion (CADD)

The CADD (https://cadd.gs.washington.edu/) tool is used to
score the deleteriousness of insertion/deletion variants, multi-
nucleotide substitutions, and single nucleotide variants in the
human genome. By integrating multiple annotation features,
CADD evaluates both coding and non-coding variants,
providing a comprehensive score that reflects the likelihood of
a variant impacting biological function and contributing to
disease. This score combines information from evolutionary
conservation, functional genomics, and experimental data,
allowing researchers to distinguish between benign and
pathogenic variants. CADD was used on the screened
mutations in Dystrophin.

Aggregation propensity analysis

Aggregation propensity analysis of proteins is useful in
investigating how mutations in a protein can affect its tendency
to form aggregates. SODA (http://protein.bio.unipd.it/soda/) is a
bioinformatics tool and web server designed to predict the solubility
of proteins based on their intrinsic disorder and aggregation
propensity (Paladin et al., 2017). The input file for this tool can
be either a FASTA sequence or a PDB structure file. SODA predicts
various types of variations while utilizing multiple algorithms such
as PASTA 2.0, ESpritz-NMR, and Fells. It provides final results
based on the disparity in solubility between the wild-type and
mutant protein. We used SODA to evaluate the aggregation
propensity of mutations in Dystrophin.

Analysis of conserved residues

The concept of conservation of amino acids is crucial in
comprehending the evolution and the structure and function of

proteins. The ConSurf database (https://consurf.tau.ac.il/) is
utilized to evaluate the conservation levels of residues at
specific positions through multiple sequence alignment
(Ashkenazy et al., 2016). ConSurf calculates the conservation
score for each residue using the maximum likelihood (ML)
method or empirical Bayesian method. The ConSurf scores for
residues are determined according to the levels of conservation;
the least conserved residues are given a score of 1, while
intermediate conservation is given a score of 5, and highly
conserved residues receive a score of 9. Scores for well-
characterized PDB structures have been pre-computed and are
available in the ConSurf-DB.

Residual frustration analysis

Residual frustration analysis in proteins is a valuable approach
to exploring the level of frustration present in the structure of a
protein (Ferreiro et al., 2014). The Frustratometer server (http://
frustratometer.qb.fcen.uba.ar/) was employed to assess the enduring
frustration within the Dystrophin structure. We have calculated
both the individual and configurational residual indices for the
structure. The Frustratometer evaluates the energy of a protein
structure by comparing it to a set of “decoy” states (Jenik et al.,
2012). The residual frustration index between amino acids i and j is
determined as a Z-score, comparing the energy of the native contact
to that of N decoys. A contact is considered highly frustrating or
destabilizing if its Z-score is below 0.78. Conversely, a contact was
classified as minimally frustrated or stabilizing if the Z-score value
was >0.78. Contacts falling between these thresholds were
considered neutral.

Analysis of protein-protein interaction

It is crucial to consider protein-protein interactions to
understand better cellular processes and interactions between
different proteins, especially in the case of the influence of
pathological proteins and their connections with diseases
(Mohammad et al., 2022; Mushtaq et al., 2023). The STRING
database was employed to analyze the PPI network of
Dystrophin as a hub. The interaction networks for
Dystrophin were generated with a high confidence of 0.700
(Szklarczyk et al., 2021). Additionally, the 3D structures of
the interacting proteins were obtained from SWISS-MODEL
(https://swissmodel.expasy.org) to analyze these interactions
further. The work pipeline employed in this study is visually
depicted in Figure 1.

Result and discussion

A total of 184 single-point amino acid substitutions were
sourced from the dbSNP (http://www.ncbi.nlm.nih.gov/snp) and
Ensembl (http://www.ensembl.org/) databases, supplemented by
mutations retrieved from the literature available on PubMed
(Figure 2). We were particularly interested in determining the
structural and functional consequences of these substitutions in
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the Dystrophin protein, which we achieved using a tiered
approach. Sequence and structure information were used in
the analyses to pinpoint high-confidence deleterious
mutations. The sequence-based analysis utilized four web
tools: SIFT, PolyPhen2, FATHMM, and SNPs&GO, which are
some of the tools that can be used to predict the impact of a
mutation. On the other hand, the structure-based approach used
mCSM, DynaMut2, MAESTROweb, and PremPS tools to study
the effects of single-point amino acid substitutions in the actin-
binding region of the Dystrophin protein. To minimize the
number of false positives, only those substitutions that were
high-confidence mutations were pursued for further analysis.
To identify diseases related to these high-confidence mutations,
the PhD-SNP and MutPred2 web tools were used.

Deleterious mutations from sequence and
structure-based approaches

The utilization of multiple prediction tools in the sequence-based
approach serves to mitigate false positive results and bolster the
accuracy of mutation predictions. Among these tools, SIFT evaluates
protein physical properties to classify mutations as either tolerated or
intolerant, with a higher tolerance index indicating lower functional
impact and vice versa. PolyPhen2 similarly employs amino acid
sequences to categorize non-synonymous mutations into possibly
damaging, probably damaging, or benign categories based on
specific scores. To further enhance confidence levels, the inclusion
of FATHMM and SNPs&GO tools strengthens the predictive
capacity of the analysis. Mutations associated with diseases
frequently affect the stability of proteins. Proteins can exist in folded
or unfolded states. In thermodynamics, Gibbs free energy between
the folded (Gf) and unfolded (Gu) states of a protein is determined as
ΔG = Gu − Gf. The alteration in protein stability and the free energy
landscape is assessed by ΔΔG = Gm − Gw, with Gm representing
the mutant protein and Gw denoting the wild-type protein. A ΔΔG
value that is negative implies a mutation that stabilizes, whereas a
positive ΔΔG value suggests mutations that destabilize.

In this study, we utilized four different structure-based
prediction tools: mCSM, DynaMut2, MAESTROweb, and
PremPS. These are some of the tools that have been developed to
aid in the study of protein stability and mutations. These tools take
the PDB file of the wild-type protein as input and analyze atomic
coordinates to predict the stability of variants using folding free
energy prediction. Most of these tools follow a machine learning
approach, integrating various biophysics-based methods to predict
the effect of mutations on protein stability. Using this set of tools, we
endeavored to offer a detailed evaluation of the structural effects of
mutations within the protein of focus.

In the sequence-based approach, analysis of all 184 single-point
amino acid substitutions within the actin-binding region of the
human Dystrophin protein revealed predictions from SIFT,

FIGURE 1
Visualization depicting the workflow pipeline of analyzing Dystrophin mutations in this study.

FIGURE 2
Depiction of the SNPs found within the DMD gene utilizing the
dbSNP database.
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PolyPhen2, FATHMM, and SNPs&GO (Supplementary Table S1).
Specifically, these respective tools predicted deleterious substitutions
for 155, 90, 84, and 122 substitutions (Figure 3).

Simultaneously, the structure-based predictions from mCSM,
DynaMut2, MAESTROweb, and PremPS identified 164, 164, 184,
and 163 substitutions as destabilizing mutations (Figure 4). To
enhance confidence, only mutations predicted as deleterious by
all sequence-based and structure-based tools were selected for
further analysis. This stringent filtering process yielded 50 amino
acid substitutions predicted as both deleterious and destabilizing
(Supplementary Table S2). Subsequently, these 50 substitutions were
subjected to analysis for their association with disease phenotypes.

Identification of disease-
associated mutations

Analyzing disease-associated mutations in proteins is a crucial
aspect of understanding the molecular basis of various complex

diseases (Gao et al., 2015). In our analysis of disease-associated
single-point mutations, we employed PhD-SNP and MutPred2.
These methods classify mutations based on their pathogenicity
scores and identify associated disease phenotypes. Among the
50 high-confidence mutations identified through both structure-
based and sequence-based analyses, PhD-SNP predicted
48 substitutions as pathogenic, while MutPred2 identified
43 mutations as pathogenic (Supplementary Table S3). However,
only 41 mutations were identified as pathogenic by both disease
phenotype prediction tools out of the 50 mutations analyzed
(Figure 5). This overlapping subset of mutations represents those
with a higher likelihood of being associated with disease phenotypes,
as indicated by the consensus prediction from both tools. After we
arrived at the pathogenic single-point mutation, we focused on the
Calponin-homology (CH) 1 domain of the actin-binding region of
Dystrophin. We have removed the mutations which were present in
the unstructured region of the domain. We have found 17 single
amino acid substitutions destabilizing in the CH1 domain.

We have also analyzed the 50 single-point mutations using the
CADD tool (Supplementary Table S3). The integration of CADD
scores provided a quantitative framework to assess the
deleteriousness of mutations beyond sequence and structural
analyses. Among the 50 high-confidence mutations, CADD
identified 43 with scores above 20, indicating likely pathogenicity.
The allele frequency of the selected mutations was retrieved using
gnomAD (Supplementary Table S4). Allele frequency data from the
gnomAD database highlighted the rarity of 15 mutations among the
general population, supporting their potential role in disease
pathogenesis. This context is crucial for distinguishing rare
pathogenic variants from benign polymorphisms.

Analysis of aggregation propensity

Further, we have predicted the aggregation propensity of the
protein caused by these mutations. The solubility of a protein
significantly impacts its functionality (Paladin et al., 2017). The
insoluble regions of a protein tend to aggregate, potentially
contributing to disease progression. SODA was used to evaluate
the solubility of protein variants and identify their association with

FIGURE 3
Sequence-based prediction of deleterious mutations in
Dystrophin.

FIGURE 4
Structure-based prediction of destabilizing mutations in
Dystrophin.

FIGURE 5
Structure-based prediction of pathogenic mutations in
Dystrophin.
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disease. SODA evaluates the aggregation, disorder, helix, and strand
tendencies resulting from mutations. Out of the 17 deleterious
single-point amino acid substitutions obtained from disease
phenotype prediction, 6 substitutions (N26H, N26K, G47W,
D98G, G109A, and G109R) decrease the solubility of the
protein (Table 1).

Analysis of evolutionarily conserved residues

Conservation of amino acid residues within a protein structure
helps to identify the role of residues and demonstrates regional
trends in evolution (Umair et al., 2021; Amir et al., 2019b).
Conserved residues are important in ensuring that a protein has
the right shape and structure (Kragelund et al., 1999). The
conservation of an amino acid also determines the probability of
a mutation occurring in the same amino acid (Guo et al., 2004). For
the present study, we employed the ConSurf tool to investigate the
conservation of residues in the human Dystrophin protein. It was
also observed that the various residues, including N26, G47, D98,
and G109, have higher conservation levels than other areas
(Figure 6). This, therefore, implies that these residues are
essential for the proper functioning of Dystrophin. Specifically,
N26, G47, and D98 in the N-terminal of Dystrophin’s actin-
binding domain had the highest conservation scores and a
propensity for forming aggregated protein. This suggests that
mutations in these conserved residues could greatly impact the
protein and its stability and function and may lead to
aggregation, which is associated with diseases. In conclusion, the
evolutionary conservation analysis reveals that residues N26, G47,

D98, and G109 are crucial to the structural and functional stability of
the Dystrophin protein. We have also predicted the post-
translational modification (PTM) sites of the protein
(Supplementary Table S5). The PTM sites were predicted using
MusiteDeep, which uses sequence-based and structural features to

TABLE 1 Predicted aggregated mutants of Dystrophin protein using SODA server.

S. No. Mutation Helix Strand Aggregation Disorder SODA Solubility

1 K18N −1.135 0.18 11.268 −0.01 9.332 More soluble

2 F21S −2.568 0.805 21.438 0.23 18.419 More soluble

3 T22K 0.942 −0.304 14.032 0.036 15.421 More soluble

4 N26D −0.234 0.079 3.602 0.019 3.329 More soluble

5 N26H −0.269 0.138 −15.593 0.041 −15.776 Less soluble

6 N26K 0.333 −0.145 −13.193 0.019 −12.773 Less soluble

7 G47W 0.971 −0.328 −4.736 −0.265 −3.975 Less soluble

8 L50H −1.886 0.886 2.687 0.223 1.228 More soluble

9 L51P −4.48 1.179 9.802 0.897 5.068 More soluble

10 L57P −4.208 1.622 5.441 1.769 3.879 More soluble

11 V77D −8.631 5 197.696 0.283 191.105 More soluble

12 L81Q −2.153 1.157 178.668 0.139 177.054 More soluble

13 D98G −0.703 0.554 −17.877 −0.003 −18.224 Less soluble

14 L108P −4.291 1.489 507 −0.009 501.453 More soluble

15 G109A 2.015 −1.437 −106.767 0.002 −105.638 Less soluble

16 G109D 0.281 −0.577 18.496 −0.043 17.859 More soluble

17 G109R 1.311 −0.932 −22.194 −0.041 −21.462 Less soluble

FIGURE 6
Conservation analysis. (A) Three-dimensional structure of
Dystrophin and its residual conservation. (B) ConSurf plot of
evolutionary conserved residues in Dystrophin.
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identify potential modification sites. PTM predictions revealed
potential disruptions in phosphorylation and acetylation sites,
which are critical for Dystrophin’s stability and interactions with
other proteins.

Residual frustration analysis

Residual frustration analysis offers useful information about the
topological features of energy landscapes of proteins and can be used
to explain the connection between protein structure, stability, and
function (Contessoto et al., 2013). Frustration analysis within
protein structures provides information about locations of
frustration. In this regard, we performed a comprehensive study
of local frustration of the protein and identified frustration in
Dystrophin (Figure 7). Frustration indices provide information
about the relative stability of native contacts concerning all
possible contacts at certain sites, which depend on the level of
frustration. We observed that there are different levels of frustration
in Dystrophin (Figure 7A). In addition, we analyzed configurational
frustration at the residue-residue contact level in Dystrophin
(Figure 7B). The contact map revealed that there was a general
similarity in frustration patterns. The structure also exhibited
moderate levels of frustration at many points (Figure 7C).
Moreover, contacts involving mutated residues N26H, N26K,
G47W, D98G, G109A, and G109R (highlighted within dashed
circles in Figure 7D) demonstrated minimal frustration. These
minimally frustrated residues of Dystrophin can be mutated and
may affect the stability of the protein and, hence, the function of the
protein causing DMD.

Protein-protein interaction and functional
characterization

To examine the regulatory mechanisms of the abnormally
expressed Dystrophin protein, it is important to study its
associations with other proteins. Based on the STRING
database of protein-protein interactions, we found several
proteins that are closely connected (Figure 8). The study
revealed that Dystrophin binds to SGCA, SGCB, and SGCD,
thereby connecting it to the sarcoglycans, a family of proteins
that plays a critical role in the structural integrity and function of
muscle cells (Hack et al., 2000). These proteins are well known for
their function as linkers of the muscle fiber cytoskeleton to the
ECM and protecting the muscle fiber sarcolemma from shearing
forces (Berthier and Blaineau, 1997). Furthermore, Dystrophin
was shown to bind syntrophins SNTA1, SNTB1, SNTG1, and
SNTG2 (Figure 8A), which are crucial for assembling and
stabilizing the DGC in muscle cells (Bhat et al., 2013). These
interactions are crucial for maintaining the structural and
signaling roles of muscles (Bhat et al., 2019). Another
interesting interaction emerged with DAG1, also known as
dystroglycan, which is a critical component involved in
maintaining the structural and functional integrity of muscle
cells (Sciandra et al., 2007). Further, Dystrophin binds with
UTRN (utrophin) and SSPN (sarcospan), both of which are
crucial proteins involved in the structural and functional
maintenance of muscle cells (Peter et al., 2008). It is evident
from the above information that mutations within Dystrophin
are directly associated with DMD (Muntoni et al., 2003). Our study
pinpointed six specific mutations in the conserved region of

FIGURE 7
Residual frustration maps. (A) 3D structure of Dystrophin with frustration index. (B) Residue–residue contact level in Dystrophin. (C) The frustration
contact map in Dystrophin. (D) The pointed frustration contact map of Dystrophin where mutation sites are highlighted in magenta.

Frontiers in Genetics frontiersin.org08

Elasbali et al. 10.3389/fgene.2025.1517707

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1517707


Dystrophin: The amino acid substitutions include N26H, N26K,
G47W, D98G, G109A, and G109R (Figure 8B). These mutations
occur within the region of the protein that is highly conserved and
is involved in actin binding at the N terminus of Dystrophin, which
makes them pathogenic, destabilizing, and damaging. They can
cause protein aggregation and are in the least frustrated protein
domains, which might contribute to the Dystrophin-associated
DMD pathogenesis.

Conclusion

Dystrophin is involved in the structural integrity and function
of muscle fibers and is known to interact with the cytoskeleton and
the extracellular matrix. Mutations in the Dystrophin gene can be
pathogenic, resulting in DMD, which is characterized by
progressive muscle weakening and degeneration. This work
offers a thorough analysis of the effects of pathogenic single-
point mutations in Dystrophin on DMD development. To
achieve this, we used a combination of sequence-based and
structure-based computational tools and identified a set of
high-confidence mutations that are likely to cause a severe
disruption of the Dystrophin structure and function. Functional
annotation tools, including CADD, allele frequency analysis, and
PTM predictions, were also exploited to identify high-confidence
deleterious mutations in Dystrophin. We have identified six
substitutions (N26H, N26K, G47W, D98G, G109A, and G109R)
that can decrease the solubility of the protein and are in the
minimally frustrated conserved region of the protein, which
may affect Dystrophin’s function and contribute to DMD
development. The deleterious impact of mutations like N26H,
N26K, G47W, D98G, G109A, and G109R in Dystrophin can lead
to a breakdown in crucial protein-protein interactions, potentially
exacerbating DMD development. The findings of the study are
important for the current research aimed at identifying the disease
mechanism and developing targeted treatment approaches for
patients with this severe neuromuscular disorder. Future
investigations can incorporate this in silico data to conduct a
more thorough analysis of its biological significance in DMD
pathogenesis.
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