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Introduction: The conventional approach to estimating heritability in twin studies
implicitly assumeseither the absenceofmeasurement error or that anymeasurement
error is incorporated into the nonshared environment component. However, this
assumption can be problematic when it does not hold or when measurement error
cannot be reasonably classified as part of the nonshared environment.

Methods: In this study,wedemonstrate theneed for improvement in theconventional
structural equationmodeling (SEM) used for estimating heritability when applied to trait
data with measurement errors. The critical issue revolves around an assumption
concerning measurement errors in twin studies. In cases where traits are measured
using samples, data is aggregated during preprocessing, with only a centrality measure
(e.g., mean) being used for modeling. Additionally, measurement errors resulting from
sampling are assumed to be part of the nonshared environment and are thus
overlooked in heritability estimation. Consequently, the presence of intra-individual
variability remains concealed. Moreover, recommended sample sizes are typically
based on the assumption of no measurement errors.

Results:We argue that measurement errors in the form of intra-individual variability are
an intrinsic limitation of finite sampling and should not be considered as part of the
nonshared environment. Previous studies have shown that the intra-individual variability
of psychometric effects is significantly larger than the inter-individual counterpart. Here,
to demonstrate the appropriateness and advantages of our hierarchical linear modeling
approach in heritability estimation,weutilize simulations aswell as a real dataset from the
ABCD (Adolescent Brain Cognitive Development) study. Moreover, we showcase the
following analytical insights for data containing non-negligible measurement errors: i)
The conventional SEMmay underestimate heritability. ii) A hierarchical model provides a
more accurate assessment of heritability. iii) Large samples, exceeding 100 observations
or thousands of twins, may be necessary to reduce imprecision.

Discussion: Our study highlights the impact of measurement error on heritability
estimation and introduces a hierarchical model as amore accurate alternative. These
findings have significant implications for understanding individual differences and
improving the design and analysis of twin studies.
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1 Introduction

As an indication of potential predictability, heritability is an
important concept in assessing individual differences. As the
proportion of trait variability ascribed to genetics, heritability
offers a unique perspective for quantifying the role of genetics in
complex traits (Downes and Turkheimer, 2022; Robette et al., 2022).
Twins provide a hypothetically well-controlled scenario where
genetics, environment, and their interaction can be statistically
separated and apportioned.

1.1 Heritability estimation: ACE model and
Falconer’s formula

Conventional twin studies are typically conceptualized with three
hierarchies of data structure: individual, family, and zygosity. The
individual measures are nested within families, which are further
categorized as either monozygotic (MZ) or dizygotic (DZ) twins. A
model can be formulated for a quantitative trait of interest that is
measured at the individual level. In the popular ACE formulation (Maes,
2005; Downes andMatthews, 2020; Hunter, 2021), the trait data yi(f(z))
is expressed as the combination of latent components through the three
indices of individual (i � 1, 2, . . . , I), family (f � 1, 2, . . . , F), and
zygosity (z � MZ, DZ):

individual :yi f z( )( ) � α + Ai f z( )( ) + Ci f z( )( ) + Ei f z( )( ). (1)

Each pair of parentheses indicates a nesting structure among the
subscripts. The intercept α captures the overall trait effect at the
population level. The acronym for the ACE model reflects the three
latent sources of variability. Ai(f(z)) represents the additive genetic
effects, andCi(f(z)) represents the common or shared environmental
effects. In addition, Ei(f(z)) characterizes the unique or nonshared
environmental effects.

The variances associated with the three latent components are
crucial parameters in twin studies. One may make the following
assumptions for two twins i1 and i2 within a family f of zygosity z
(Arbet et al., 2020),

Ai1

Ai2
[ ] ~ N 0

0
[ ], 1 ρz

ρz 1
[ ]σ2Az

( ), Ci1

Ci2
[ ]

~ N 0
0

[ ], 1 1
1 1

[ ]σ2Cz
( ), Ei1

Ei2
[ ] ~ N 0

0
[ ], 1 0

0 1
[ ]σ2Ez

( ).
(2)

The relatedness ρz for the additive genetic effects between two
twins i1 and i2 in a family is 1 when z � MZ and 0 when z � DZ. As a
side note, the main notations used in this paper are listed in Table 1.

A crucial feature of the Model 2 is the inclusion of the
homogeneity assumption. This assumption is necessary when
estimating variances within the model framework in (Model 2).
Six variances, namely σ2Az

, σ2Cz
, and σ2Ez

for z � DZ and MZ, need to
be estimated, resulting in an undetermined system. To resolve this
identifiability issue, the variances are assumed to be homogeneous
across MZ and DZ twins (Arbet et al., 2020):

σ2AMZ
� σ2ADZ

� σ2A, σ2CMZ
� σ2CDZ

� σ2C, σ2EMZ
� σ2EDZ

� σ2E. (3)

The assumption effectively reduces the number of variance
parameters by half. However, this also leads to having
homogeneity of total variance between MZ and DZ: σ2AMZ

+ σ2CMZ
+

σ2EMZ
� σ2ADZ

+ σ2CDZ
+ σ2EDZ

� σ2A + σ2C + σ2E.
The heritability in a twin study can be defined under the

homogeneity assumption (Equation 3). The classical methodology
is to adopt structural equation modeling (SEM) (e.g., Rijsdijk and
Sham, 2002; Holst et al., 2016; Neale et al., 2016; Bates et al., 2019) to
estimate the three variances. Then, the three proportions of total
variability attributed to additive genetic effects, common
environment, and nonshared environment are expressed
respectively as,

h2 � σ2A
σ2A + σ2C + σ2E

, c2 � σ2C
σ2A + σ2C + σ2E

, e2 � σ2E
σ2A + σ2C + σ2E

. (4)

Effect decomposition under the SEM (Model 2) and the
associated estimation of heritability can be visually represented as
a path diagram (Figure 1), which is analogous to a directed acyclic
diagram in causal inference. The values of h2, c2, and e2 in common
practice are typically reported with their point estimates,
accompanied by their uncertainty expressed through standard
errors or 95% uncertainty intervals1.

The three variability proportions of h2, c2, and e2 can
alternatively be expressed as the relatedness between the twins of
each zygosity. We denote rMZ and rDZ as the correlations between
two twins i1 and i2 within a family f for MZ and DZ, respectively.
The following can be derived per the ACE model under the SEM
Formulation 2,

rz � corr yi1 f z( )( ), yi2 f z( )( )( ) � ρzσ
2
A + σ2C

σ2A + σ2C + σ2E
� ρzh

2 + c2, z � MZ, DZ.

(5)
The expression (Equation 5) leads to Falconer’s formula

(Falconer and MacKay, 1996):

h2 � 2 rMZ − rDZ( ), c2 � 2rDZ − rMZ, e2 � 1 − h2 − c2 � 1 − rMZ.

(6)

1.2 Motivation: addressing the limitations of
the conventional SEM framework

We address the challenges of heritability estimation from the
perspectives of accuracy and precision, which are typically the
objectives of studies to maximize. Here, we define the accuracy of
an estimate as the absence of systematic biases. Inaccuracy, for
example, implies an upward or downward shift in a point estimate of
effect centrality (e.g., mean, mode, median), an uncertainty interval,
or a posterior distribution. On the other hand, we define imprecision
as the extent of uncertainty in an estimate, which can be quantified
as the standard error or an uncertainty interval.

An implicit assumption is present within the conventional SEM
regarding measurement errors, the random or stochastic

1 The term “uncertainty interval” is used here to include confidence intervals

in frequentist usage and credible intervals in Bayesian methods.
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fluctuations in a measurement from one instance to another.
Specifically, the SEM formulation assumes one of two
possibilities: 1) the absence of measurement errors in the
phenotypic data yi(f(z)), or 2) the inclusion of measurement
errors within the nonshared environment component Ei(f(z))
(along with its associated variance σ2E) when they are present.
Both assumptions lead to the same practical outcome: data with
repeated measures are typically preprocessed by aggregating
information through a centrality metric (such as the average)
before estimating heritability.

Measurement errors are not a significant concern for many
measures, such as physical traits that can typically be assessed with
high precision. We focus here on heritability estimation in situations
where measurement errors are not negligible. For example, in a
Stroop task where a large number of trials (e.g., 100) are presented in
the experiment for each congruent and incongruent condition. To
utilize the SEM formulation directly, the data are typically
aggregated, and a centrality measure is used as input.

Data aggregation is a common practice in heritability
estimation. Examples can be found in the fields of psychometrics
(e.g., Smith et al., 2023; Rea-Sandin et al., 2023; Hung et al., 2023;
Gustavson et al., 2023; Vellani et al., 2022; Viktorsson et al., 2022;
Yeom et al., 2022; Wang et al., 2020; Routledge et al., 2018; Stins
et al., 2005; Schachar et al., 2010; Fan et al., 2001) and neuroimaging
(Kastrati et al., 2022; van Drunen et al., 2021; Chen et al., 2019;

Harper et al., 2019; van der Meulen et al., 2018; Anokhin et al., 2017;
Blokland et al., 2011; Matthews et al., 2007; Polk et al., 2007).
However, data aggregation can be a double-edged sword, as valuable
information can be lost. The impact of ignoring intra-individual
variability has been explored in different contexts. For instance, the
issue can be traced back to Spearman (1904) who pointed out the
underestimation problem in estimating the correlation between two
variables when measurement errors occur. It has also been recently
shown that, without proper accountability, test-retest reliability can
be substantially underestimated (Rouder and Haaf, 2019; Haines
et al., 2020; Chen et al., 2021). Even in heritability estimation,
underestimation has been revealed in item response theory due
to the adoption of the aggregation process in the form of sum–scores
(van den Berg et al., 2007; Schwabe et al., 2019). Recently, the bias
problem due to measurement errors has been investigated regarding
the reliability of polygenic score and that of a phenotypic trait
framed under SEM (Pingault et al., 2022).

Here, we employ a hierarchical linear modeling (HLM)
approach to account for intra-individual variability. We
propose that measurement errors should not be considered part
of the nonshared environment component, but rather partitioned
appropriately within the model hierarchy. In addition, we
employ the HLM approach to reexamine the conventional
SEM framework, with the latter being a special case of the
former. Specifically, we demonstrate that the common practice
of data aggregation fails to adequately address the impact of
intra-individual variability. With simulations and real datasets,
we address the following questions:

1) Does disregarding intra-individual variability result in biased
estimation? If so, to what extent?

2) To what degree does intra-individual variability contribute to
precision in heritability estimation?

3) Are typical twin study sample sizes sufficient to achieve a
proper precision of heritability estimation?

It is important to note that SEM has been extended to
accommodate complex hierarchical data structures (e.g., Mehta
and Neale, 2005). Although the SEM framework could potentially
be applied to our work, we have opted for HLM due to our
preference and familiarity. For clarity, our model comparisons
are based on the conventional SEM approach for heritability
estimation, not on SEM’s extended capabilities.

2 Estimating heritability under
hierarchical framework

A hierarchical model partitions data variability by mapping the
stratified structure to effects at various levels. The modeling
approach is well-established in behavior genetics. For example,
van den Oord (2001) proposed using HLM to characterize latent
genetic and environmental components of variance in extended
families. Guo and Wang (2002) derived heritability estimation
through direct variance decomposition. McArdle and Prescott
(2005) demonstrated the equivalence between conventional SEM
and the variance decomposition approach. Hunter (2021) extended
this approach to multiple phenotypes, exploring the feasibility of

TABLE 1 A reference table of major variables and parameters used with
heritability modeling. Quantities which originate in hierarchical linear
modeling (HLM) and structural equation modeling (SEM) are noted
explicitly.

Term Description

σ2Az
(SEM) variance of the additive genetic effects, for a given zygosity z

σ2Cz
(SEM) variance of the common (shared) environment effects, for a
given zygosity z

σ2Ez
(SEM) variance of the nonshared genetic effects, for a given zygosity z

σ2A, σ
2
C, σ

2
E (SEM) variance components (above) under homogeneity assumption

(equal variance across zygosity)

ρz (SEM) relatedness for additive genetic effects between two twins

h2 Heritability, proportion of total variability attributed to additive genetic
effects

c2 Proportion of total variability attributed to common environment

e2 Proportion of total variability attributed to nonshared environment

rz Correlation between two twins of zygosity z

σ2z (HLM) individual-level trait variance for zygosity z

τ2z (HLM) family-level variance for zygosity z

ω2
0 (HLM) theoretical cross-trial variance of observations; intra-individual

variability

ω2 (HLM) cross-trial sampling variance

R2
v (HLM) ratio of variances: intra-individual to sum of inter-individual

and inter-family

U (HLM) scaling factor for correlation rz, containing measurement error
bias
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handling nested data and repeated measures. However, the literature
lacks a discussion on how to incorporate intra-individual variability.

2.1 HLM: reformulating the SEM approach

We construct the following model by decomposing the data
yi(f(z)) into effects through the three indices of individual
(i � 1, 2, . . . , I), family (f � 1, 2, . . . , F), and
zygosity (z � MZ, DZ):

individual :yi f z( )( ) ~ N ]f z( ), σ2z( ),
family : ]f z( ) ~ N α, τ2z( ). (7)

Similar toModel 5, the correlation between any two twins, i1 and
i2, within a family f can be estimated as

rz � corr yi1 f z( )( ), yi2 f z( )( )( ) � τ2z
τ2z + σ2z

, z � MZ, DZ. (8)

The HLM Formulation 7 has been proposed and explored in
previous studies in contexts where intra-individual variability is
absent (e.g., van den Oord, 2001; Guo and Wang, 2002; McArdle
and Prescott, 2005). Here, we aim to extend the framework to
accommodate cases where intra-individual variability is present. We
highlight three advantages regarding the HLM framework. First, the
conventional SEM Formulation 2 assumes the homogeneity of
variances (Equation 3), which leads to total variance
homogeneity between the two zygosities,

τ2MZ + σ2MZ � τ2DZ + σ2DZ, (9)

The equivalence between the two modeling approaches can be
established when we equate the total variance of σ2A + σ2C + σ2E in the
SEM Formula 2 and that in Equation 9 under the HLM framework
(Model 7), as well as rz in Models 5, 8, leading to:

σ2A � 2 τ2MZ − τ2DZ( ) � 2 σ2DZ − σ2MZ( ), σ2C � 2τ2DZ − τ2MZ,

σ2
E � σ2MZ � σ2DZ − τ2MZ − τ2DZ( ).

The HLM (Formulation 7) does not assume variance homogeneity.
Instead, a less stringent assumption–proportionality homogeneity
across zygosities–is made when using Falconer’s Formula 6: the
variance proportions accounted for by genetic and shared
environmental effects – hz and cz (z � MZ,DZ) – are the same
between the two zygosities (Arbet et al., 2020). Specifically, this
proportionality assumption hinges on the derivation (Model 5) for
the Falconer’s formula. With rz � ρzh

2
z + c2z, the proportionality

assumption of h2MZ � h2DZ and c2MZ � c2DZ is sufficient for the validity
of the Falconer’s formula.

Second, the HLM formulation has the flexibility to accommodate
different distribution types. As shown in the Model 7, the individual-
and family-level variances in the two Gaussian distributions N (·, σ2z)
andN (·, τ2z) can be expanded to include a wider range of distribution
options, such as Student’s t and exponentially-modified Gaussian
distribution. This flexibility in choosing distributions can greatly
enhance the quality of the model, especially when working with
datasets that exhibit heavy tails, positive-only quantities, truncated or
bounded values. Finally, HLM has the ability to explicitly capture intra-
individual variability, rather than groupingmeasurement errors with the
nonshared environment component. It allows for appropriately
partitioning variability within the data hierarchy.

2.2 Consistency between SEM and HLM

We utilized a publicly available dataset of body mass index (BMI)
from the R package mets (Holst et al., 2016) to validate the HLM
approach. Despite having only one BMI measurement per individual,
the presence of intra-individual variability can be considered negligible.
In summary, the BMI data comprised I � 11188 twins from F � 6917
families in Finland, including 3665 MZ and 7523 DZ twins aged
between 32 and 61 years. Information on each individual’s age and
sex was also included in the dataset. Both the data and the code for this
example are available at https://github.com/afni/apaper_heritability.

Heritability estimation for the BMIdataset was performed using SEM
with the following specifications. Alongside the three latent componentsA,
C, andE inModel 1, we incorporated the following covariates: zygosity and
a nonlinear age effect for sex using third-order B-spline bases. The SEM
formulation was implemented using theR packages mets and umx (Bates
et al., 2019), yielding h2 � 64%, c2 � 0% and e2 � 34%.

For the HLM approach, we adopted the model (Formulation 7)
with log-normal and Gaussian density for the individual- and
family-level distributions, respectively based on the tendency of
the BMI data skewed to the right (Figure 2A). The following
covariates were included: zygosity and nonlinear age effect for
each sex using smooth splines with thin plate bases. The model
was implemented under the Bayesian framework using the R

package brms (Bürkner, 2017). The resulting h2, c2, and e2 were
largely consistent with the SEM estimation (Figure 2B), both in
terms of point estimate and uncertainty range values.

3 HLM: accounting for intra-individual
variability

Within the hierarchical framework, we will employ simulations
to systematically investigate the influence of intra-individual

FIGURE 1
Path diagram (reticular action model) for the ACE formulation
yi � α. All the subscript indices for family (f), and zygosity (z) are
dropped for brevity. Observable effects of y are represented as
rectangles while latent effects (A, C and E components) are
represented by ellipses. A directed path, represented by a single-
headed arrow, indicates predictability. An undirected path,
represented by a double-headed curved arrow, indicates a covarying
relationship. The value on each path shows the correlation coefficient.
Note that h2, c2, and e2 can be estimated through effect partitioning
into the three latent components (A, C, and E), or through Falconer’s
formula h2 � 2(rMZ − rDZ).
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variability, trial and participant sample sizes on precision, and
determine the necessary sample sizes to achieve a satisfactory
level of precision. The insights obtained from these simulations
will be further validated by applying the HLM framework to a
behavioral dataset.

3.1 Measurement errors: part of nonshared
environment component?

Measurement errors have traditionally been regarded as part of
the nonshared environment component in the heritability model,
either implicitly or explicitly (e.g., Maes, 2005; Germine et al., 2015).
In other words, it has been considered appropriate to include any
measurement errors in the trait measurement yi(f(z)) within the
variance component σ2E under the SEM (Formulation 2).

We contend that an ideal modeling approach should appropriately
allocate measurement errors rather than grouping them together with
the nonshared environment. Suppose that the observation yi(f(z))t
(t � 1, 2, . . . , T) in the tth trial is sampled from a Gaussian
distribution with a mean effect θi(f(z)) and a standard deviation ω0,

trial :yi f z( )( )t ~ N θi f z( )( ), ω2
0( ). (10)

Thus, the sample mean θ̂i(f(z)) � ∑T
t�1yi(f(z))t/T carries a cross-

trial sampling variance ω2 � ω2
0/T, which represents the precision of

the estimate. In common practice, when data is aggregated, only the
sample mean θ̂i(f(z)) is utilized in the SEM formulation, while the
cross-trial sampling variance ω2 is not explicitly accounted for.
Consequently, ω2 � ω2

0/T remains embedded as part of the
nonshared environment component σ2E, and the estimation of
heritability in Formula 4 becomes dependent on trial sample size
and sampling precision. As heritability aims to measure differences
among individuals rather than within individuals, it is more
conceptually sensible to construct a model where the sample size
impacts the precision of the estimated variance, rather than
its accuracy.

Measurement errors can be appropriately accounted for as a
separate component from the nonshared environment. Suppose we
consider the individual-level trait effect θi(f(z)) as a latent variable.
For the corresponding estimate θ̂i(f(z)), we characterize the
measurement errors through the cross-trial sampling variance ω2.
In other words, we do not solely partition the trait into the three
latent components of A, C, and E. Instead, we also treat the true trait
effect θi(f(z)) as another latent effect, as depicted in the path diagram
shown in Figure 3. Additionally, we emphasize that the cross-trial
sampling variance ω2 is not conceptualized as part of the (latent)
nonshared environment component E, but rather as a separate entity
that is directly observable. Therefore, the original SEM (Formulation
2) is augmented to include two levels,

aggregation : θ̂i f z( )( ) ~ N θi f z( )( ), ω2( );
individual : θi f z( )( )� α + Ai f z( )( ) + Ci f z( )( ) + Ei f z( )( ). (11)

The same distribution assumptions inModel 2 apply to the three
latent effects of A, C, and E here. Solving this augmented SEM
(Formulation 11) directly is challenging. However, in Section 3.4, we
will present an approximate approach to heritability estimation.

Measurement errors can also be incorporated into the HLM
framework. In particular, we augment the HLM Formulation 7 to

aggregation : θ̂i f z( )( ) ~ N θi f z( )( ), ω2( );
individual : θi f z( )( )~ N ]f z( ), σ2z( );

family : ]f z( )~ N α, τ2z( ). (12)

When the cross-trial sampling variance ω2 is available, this
augmented model (Formulation 12) can be analyzed under the
Bayesian framework or approximately solved as discussed in Section 3.4.

Framing the presence of measurement errors as a distinction
between observed and latent effects helps in understanding the
associated impact. As illustrated in the path diagram (Figure 3),
one can estimate heritability directly based on the correlations r̂z
using the sample means θ̂i(f(z)) through Falconer’s Formula 6. Long
ago, Spearman (1904) highlighted a bias issue: the correlation
between two quantities becomes attenuated when measurement
errors are not accounted for. Similarly, when measurement errors
are disregarded, r̂z would be underestimated compared to their
counterparts rz based on the latent effects θi(f(z)) (Figure 3). Next,
we construct an HLM formulation at the observation level to fully
illustrate the issues associated with data aggregation.

3.2 HLM with trial-level data under one
task condition

Webegin by extending theHLM (Equation 7) to a case where data
are collected at the observation level with repeated measures through
trials under a single task condition. The data yi(f(z))t are represented
using four indices: family (f � 1, 2, . . . , F), zygosity (z � MZ,DZ),
individual (i � 1, 2, . . . , I), and trial (t � 1, 2, . . . , T). Instead of
utilizing aggregated information as in Equations 11, 12, we
formulate the following HLM based on Formulation 10:

trial :yi f z( )( )t ~ N θi f z( )( ), ω2
0( );

individual : θi f z( )( )~ N ]f z( ), σ2z( );
family : ]f z( )~ N α, τ2z( ). (13)

The corresponding path diagram is shown in Figure 4. The
Model 13 can be extended to include various distributions. For
instance, the trial-level effects can be characterized through
Bernoulli, gamma, and Poisson distributions, which allow for
modeling different types of data (count, binary, skewed).

Heritability can be estimated using the HLM (Formulation 13) for
trial-level data as follows. Similar to the situation with HLM for the
conventional SEM in (Formulation 7), we compute the correlations
between two twins within a family using the inter-individual and inter-
family variances, σ2z and τ2z, through the Formula 8. Then, the three
variance proportions h2, c2, and e2 are obtained using
Falconer’s Formula 6.

3.3 Consequences of data aggregation
under the SEM formulation

Now we examine the common practice of data aggregation in
light of the HLM (Formulation 13). To capture the crucial role of
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intra-individual variability ω2
0 across different phenotypic traits, we

define a dimensionless measure of the variability ratio for
each zygosity:

Rv,z �

ω2
0

τ2z + σ2z

√
, z � MZ,DZ. (14)

The variability ratio Rv,z captures the fundamental aspect of
heritability: the proportion of inter-family and inter-individual
variance relative to intra-individual variance. Under the
assumption of homogeneity (Equation 9), Rv,MZ � Rv,DZ. For
simplicity, we drop the subscript Z and denote their average
as Rv.

When the trial-level datayi(f(z))t are aggregated across trialswith their
average �yi(f(z)) � 1

T∑T
t�1yi(f(z))t, the model (Formulation 7) becomes

individual : �yi f z( )( ) ~ N ]f z( ), ~σ
2
z( ), ~σ2z � σ2z + ω2

0/T;

family : ]f z( )~ N α, τ2z( ). (15)

In comparing the model (Formulation 15) with aggregated
data to its counterpart (Formulation 7) for data without
measurement errors, we note that ignoring intra-individual
variability leads to its combination with the inter-individual
variance σ2z into ~σ2z. As a result, the correlations rMZ and rDZ

in Formula 8 are updated to

~rz � τ2z
τ2z + ~σ2z

� τ2z
τ2z + σ2z + ω2

0/T � rzU, (16)

where the introduced bias into rMZ and rDZ is quantified by the
dimensionless quantity U � 1

1+R2
v /T
. It is noteworthy that when ω0 is

nonzero, U< 1, signifying that ~rz is consistently downward biased.
This bias arises due to the presence of intra-individual variability,
and its attenuation rate follows a sigmoid function of Rv. In the limit
where ω2

0/[T(τ2z + σ2z)] → 0, which can occur with decreasing
standard error ω0 or increasing trial size T, ~rz → rz.

The parameter U quantifies the degree of bias in heritability
estimation under SEM when data aggregation is applied.
According to Falconer’s Formula 6, both h2 and c2 would be
underestimated by a factor of U, while e2 would be

overestimated by the same factor. For example, with T � 100
trials, a small intra-individual variability such as Rv � 1 has
negligible impact on heritability estimation (U ≈ 0.99), whereas
a large intra-individual variability with Rv � 10 substantially
underestimates h2 and c2 by 50%. Conversely, if Rv � 3, biases
cannot be disregarded even with T � 20 trials unless T
approaches or exceeds 100.

One direct way to view the distinction between SEM and
HLM is to compare their respective path diagrams (Figures 3, 4).
HLM preserves the hierarchical structure and cross-trial
variability, ensuring this information propagates across other
hierarchical levels (Model 13). In contrast, SEM obscures this
variability through data aggregation, compromising the
hierarchical integrity. This loss of data structure fidelity in
SEM leads to biased underestimation of heritability, as
captured through the parameter U in the
expression (Formula 16).

FIGURE 2
(A)Data distribution. BMI exhibits a right-skewed distribution, with slightly greater dispersion among DZ twins compared to MZ twins. (B)Heritability
estimation of BMI data. The proportions of BMI variability attributed to each of the three components are depicted. The distributions for h2, c2, and e2 are
estimated using the HLM Formulation 7 and presented in blue. The shaded area under each distribution represents the 95% highest density interval, while
the vertical dashed line indicates the mode (peak). For comparison, the point estimates (dot) and their corresponding 95% uncertainty intervals
(horizontal line) for the SEM (Formulation 2) are displayed in red.

FIGURE 3
Path diagram (reticular action model) for the augmented SEM
(Formulation 11) and theHLM (Formulation 12). Subscript indices for family
f , and zygosity z are omitted from the nodes for brevity. Unlike the path
diagram in Figure 1, the trait sample means across trials, θ̂i1 and θ̂i2 ,
are observable. A directed path, indicated by a single-headed arrow,
represents predictability, while an undirected path, shown by a double-
headed curved arrow, represents a covarying relationship. The value on
each path indicates the correlation coefficient.
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3.4 Ameliorating the biases in the SEM
formulation

The biases induced in the SEM formulation can be theoretically
corrected by introducing an adjustment term in the denominator of
(Formula 16) to counteract the contaminating effect of ω2

0/T under
the model (Formulation 15),

rz � τ2z

τ2z + ~σ2z − ω2
0/T

. (17)

Similarly, decontamination can be achieved for the Formulas 4,
8. However, these adjustments rely on the availability of the intra-
individual variance ω2

0, which is not directly accessible once the data
are aggregated. Nevertheless, the biases can be practically mitigated.
For example, we can use the cross-trial variance estimates ω̂2

0 �
1
I∑I

i�1s
2
i(f(z)) in Formula 17, leading to the following approximate

adjustment,

r̂z � τ2z

τ2z + ~σ2z − ω̂2
0/T

. (18)

Similarly, as σE inherently contains the additive contribution of
measurement error, we can directly adjust the biases in the SEM
estimates to,

ĥ
2 � σ2A

σ2A + σ2C + σ2E − ω̂2
0/T, ĉ2 � σ2C

σ2A + σ2C + σ2E − ω̂2
0/T, ê2

� σ2E − 1
Tω̂

2
0

σ2A + σ2C + σ2E − ω̂2
0/T � 1 − ĥ

2 − ĉ2. (19)

These approximate adjustments (Formulas 18, 19) offer a
solution to the augmented SEM Formulation 11 and its
hierarchical counterpart (Model 12). We will further explore and
validate their effectiveness as approximate adjustments later with an
experimental dataset.

An intriguing aspect of biased estimation for heritability is its
analogy to the phenomenon of correlation attenuation in the
presence of measurement errors. Spearman (1904) recognized the
problem of bias caused by measurement errors and proposed an
adjustment method to disattenuate the correlation between two
variables. In Formula 16, the term U serves a similar purpose to the
reliability coefficient or separation index in classical test theory.
Consequently, it is interesting to note that the decontamination
Formula 18 and its approximation (Formula 19) employ a similar
adjustment strategy as suggested by Spearman (1904).

3.5 HLM with trial-level data under two task
conditions

We now extend the HLM (Formulation 13) to accommodate
two task conditions. In fields such as psychometrics and
neuroimaging, the focus often lies in comparing and analyzing
the contrast between two conditions. We expand the previous
HLM (Formulation 13) to one with hierarchical levels using five
indices: family (f � 1, 2, . . . , F), zygosity (z � MZ, DZ), individual
(i � 1, 2, . . . , I), condition (c � c1, c2), and trial (t � 1, 2, . . . , T):

trial : yci f z( )( )t ~ N θci f z( )( ), ω2
0( );

individual :
θc1 i f z( )( )
θc2 i f z( )( )[ ] ~ N ]c1f z( )

]c2f z( )
[ ], σ2c1 ,g p

p σ2c2 ,g
[ ]( );

family :
]c1f z( )
]c2f z( )

[ ] ~ N αc1
αc2

[ ], τ2c1 ,g p

p τ2c2 ,g
[ ]( ). (20)

The differences from Section 2.2 are twofold: (a) the presence
of two intercepts, αc, one for each condition, and (b) the
individual- and family-level distributions being bivariate
instead of univariate. While the covariances for the
individual- and family-level distributions are not of interest in
the current context, we acknowledge their presence by denoting
them with an asterisk p in the respective variance-
covariance matrix.

Heritability estimation is straightforward for each condition
under the HLM (Formulation 20). First, we calculate the
correlation between two twins within a family for condition
ck (k � 1, 2) using

rck,MZ �
τ2ck,MZ

τ2ck,MZ + σ2ck,MZ

,

rck,DZ �
τ2ck,DZ

τ2ck,DZ + σ2ck,DZ
.

(21)

Then, we estimate heritability for each condition by plugging
rck,MZ and rck,DZ into Falconer’s Formula 6.

Two approaches are available for estimating heritability and the
variability ratio for the contrast between two conditions. One
approach involves reparameterizing the model (Formulation 20)
through an indicator variable using effect coding for the two
conditions,

xck � 0.5, if k � 1;
−0.5, if k � 2.

{ (22)

Alternatively, within the Bayesian framework, one can directly
obtain the distribution of the contrast by formulating it based on
each condition’s posterior draws from the HLM (Formulation 20).

FIGURE 4
Path diagram (reticular action model) for the HLM Formulation
13. Subscript indices for family f, and zygosity z are omitted from the
nodes for brevity. Unlike the path diagram in Figure 3, the trait
measures y are observable. A directed path, indicated by a single-
headed arrow, represents predictability, while an undirected path,
shown by a double-headed curved arrow, represents a covarying
relationship. The value on each path indicates the correlation
coefficient.
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Biased estimation due to data aggregation and its adjustment in
the previous subsection also apply to the case with two conditions.
For each condition and their contrast, the variability ratio Rv can be
similarly defined. The only modification for the contrast is to replace
σ20/T with 2σ20/T in Formula 14. Similarly, the discussions regarding
the biases in heritability estimation for each condition in the
preceding subsection can be directly applied here. However,
when considering the contrast, the bias requires replacing σ20/T
in (Formulas 15–19) with 2σ20/T.

3.6 Assessing model performance through
simulations

We have shown that, by closely reflecting the actual data
structure, an HLM framework appropriately accounts for
different sources of data variability. However, the precision of
heritability estimation remains unclear, as there is no analytical
quantification available. Simulations were conducted to assess the
precision of heritability estimation from the following aspects
regarding the impact of intra-individual variability that the
analytical approach cannot easily reveal: 1) the precision of
heritability estimation, and 2) the requirement of family and trial
sample sizes in twin studies.

Detailed information about the simulations and results can be
found in Supplementary Appendix A. As expected, HLM showed no
bias in heritability estimation, whereas biases under the SEM
framework become more pronounced as the variability ratio Rv

increases and/or the trial sample size T decreases. Additionally,
biases under the SEM formulation with aggregated data can be
effectively adjusted using empirical or theoretical standard errors
through Formula 17 or Formula 18. More importantly, simulations
indicate that intra-individual variability impacts estimation
precision. Specifically, larger Rv leads to poorer precision. Lastly,
family sample size has a greater impact than trial sample size on
estimation precision. For instance, when Rv ≲ 1, an appropriate level
of uncertainty can be achieved with 50 trials and 1,000 families.
When Rv ≫ 1, several thousand families may be necessary.

4 Applying HLM to an experimental
dataset

We apply the HLM approach to an experimental dataset to
address two primary questions. First, do the insights gained from
numerical simulations in the previous section align with the findings
when real data is analyzed? Second, what is the range of the relative
magnitude of intra-individual variability, as indicated by the ratio
Rv, in commonly encountered empirical datasets?

We utilize a behavioral dataset obtained from an experiment
conducted as part of the ABCD study. The experiment investigated
selective attention during adolescence using an emotional Stroop
task (Smolker et al., 2022), with reaction time (RT) as a phenotypic
trait. The data was collected during the 1-year follow-up visit and is
publicly accessible through the 2020 ABCD Annual Curated Data
Release 4.0 (https://nda.nih.gov/study.html?id=1299). The analysis
scripts can be found online at: https://github.com/afni/apaper_
heritability.

4.1 Data description

A subset of the original dataset, specifically containing twins,
was utilized for the analysis. Refer to Table 2 for detailed
information on participant counts and demographic data. The
subset consisted of 1,102 twins (including some triplets) from
555 families and was selected from a larger dataset of
11,876 participants (Iacono et al., 2018). Among the included
twins, there were 461 MZ and 641 DZ participants.

We focus on the RT data for estimating heritability. The RT was
measured for two levels of congruency in a Stroop task: congruent
and incongruent. Each participant was instructed to respond to a
total of 48 trials, consisting of 24 congruent and 24 incongruent
trials. The response window for each trial was set to 2,000 ms.
Among 1,102 twins, a total of 49,524 trials were included in the
analysis after excluding incorrect responses. This resulted in an
overall correct response rate of approximately 93.6%. The
distribution of RTs is heavily right-skewed (Figure 5), with a
mode of 962 ms and a 95% highest density interval ranging from
634 to 1,827 ms.

4.2 Model comparisons with real data

The RT data was analyzed using two different approaches: HLM
and SEM. For HLM, the trial-level data was fitted using the
Formulation 20. Site, sex, race, age, and zygosity were included
as covariates. To account for the right-skewness (Figure 5), a log-
normal distribution was used for the trial-level effects. The Bayesian
framework was employed to implement the HLM approach,
utilizing the brms package in R (Bürkner, 2017). Heritabilty was
estimated for each of the three RT effects: the congruent condition,
incongruent condition, and the Stroop effect (the contrast between
incongruent and congruent conditions). The SEM was applied with
aggregated data. Specifically, RT was aggregated across trials for each
condition at the individual level. Similar to the HLM approach,
covariates including site, sex, race, age, and zygosity were included.
The SEM formulation was implemented using the R packages of
mets and umx. The computational time for SEM with aggregated
data was negligible. In contrast, HLM-based estimation, using
Markov chain Monte Carlo simulations, required 3.5 hours with
four chains and 12 threads per chain. These computations were
performed on an Intel Server S2600WFT equipped with 96 CPUs
running at 2,933 MHz.

The estimation results are presented in Figure 6. The
performance of HLM relative to SEM, as summarized below,
aligns with our simulations in Section 3.6. Overall, both SEM and
HLM exhibited a significant amount of uncertainty in estimating
heritability for both conditions. SEM displayed noticeable
underestimation of h2 and c2 (first two columns, Figure 6).
However, neither modeling approach provided satisfactory
estimation for the contrast (third column, Figure 6). This
estimation challenge arises from the combination of three
factors encapsulated by a large intra-individual variability
ratio Rv ≈ 10: 1) a much smaller effect size, 2) an extremely
limited trial sample size, and 3) a relatively small twin
sample size.

Below are a few detailed elaborations:
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1) Impact of relative intra-individual variability on estimation
precision. First, under each of the individual congruent and
incongruent conditions, the observed intra-individual
variability was not large (Rv ≈ 2), resulting in moderate
uncertainties for HLM estimates of h2, c2, and e2. However,
the SEM approach showed difficulty in accurately assessing
uncertainty near the parameter boundaries (e.g., 0 or 1 for h2,
c2, and e2). For instance, the SEM’s small uncertainty interval
(0, 0.01) for c2 likely stemmed from numerical singularity
issues in the traditional statistical framework. In contrast,
regularization in hierarchical modeling (Chung et al., 2013)
yielded a more reasonable uncertainty interval (0, 0.28) for c2

under the Bayesian framework. Second, the intra-individual
variability for the contrast between the two conditions was
large (Rv ≈ 10). Consequently, the uncertainties for h2, c2 and
e2 were very large, with the estimated density of c2 resembling
a uniform distribution. The SEM approach did not provide any
meaningful estimates either, and this challenge was further
demonstrated by its inability to provide an appropriate
uncertainty interval, yielding only a single point estimate
constrained at the parameter boundaries, likely due to
convergence difficulties.

2) Impact of relative intra-individual variability on estimation
bias. Under both conditions, the intra-individual variability is
moderate (Rv ≈ 2), resulting in small underestimations of h2

and c2 by SEM. The overestimation of e2 was also small.
However, the large intra-individual variability for the contrast
(Rv ≈ 10) led to more noticeable underestimations of h2 and
c2 by SEM.

3) Impact of relative intra-individual variability on sample sizes.
The larger Rv for the contrast (Rv ≈ 10) is consequential.
Simulation results in Section 3.6 indicate that larger sample
sizes, especially in terms of family count, would be required to
reduce the large uncertainty. We note that the observed range
of Rv values aligns with psychometric data from individual
studies in test-retest reliability estimation (Rouder and Haaf,
2019; Chen et al., 2021; Baker et al., 2021).

4) Bias adjustment for SEM estimates. The biases under the
SEM framework, due to data aggregation, adjusted using
Formula 18, were reduced. The adjusted estimates for ĥ

2

under the congruent, incongruent, and contrast conditions
were 0.38, 0.40, and 0.0, respectively (green triangles,
Figure 6). These adjustments effectively reduced bias,
although they remained slightly biased compared to
HLM, which could be attributed to deviations from the
Gaussian assumption under SEM.

We also explored the HLM approach for the ABCD-Stroop data
using a conventional linear mixed-effects modeling framework
instead of a Bayesian approach. The lmer function from the
lme4 package in R (Bates et al., 2015) was utilized to fit the
models (Formulations 13, 20) with RT log-transformed. Although
the point estimates (not shown here) for h2, c2, e2, and Rv under the
congruent and incongruent task conditions were largely consistent
with the values obtained under the Bayesian framework, the
numerical solver in lme4 failed to converge for the contrast
between the incongruent and congruent conditions due to the
relatively small inter-individual variances (Rv ≈ 10).

5 Discussion

Heritability estimation based on data with a non-negligible
intra-individual variability necessitates a model that accurately
represents the underlying hierarchical structure. When assessing
a phenotypic trait with repeated measures, we propose a hierarchical
model that encompasses all relevant levels, allowing for the
incorporation, propagation, and separation of intra-individual
measurement error from parameter estimation at higher levels.
Through numerical simulations and a real behavioral dataset, we
have demonstrated a few advantages of HLM. These advantages
include: 1) avoidance of estimation bias, 2) the ability to account for
the significant influence of intra-individual variability on heritability
estimation, and 3) enhanced interpretability and explanatory power
of results, such as identifying the challenges associated with reducing
estimation uncertainty due to sample size limitations.

5.1 The importance of modeling data
generating mechanism

Data reduction through aggregation is a commonly used in
statistical applications, particularly in studying individual
differences. Even though intraindividual variability has long been
recognized (Fiske and Rice, 1955), many classical frameworks have
been applied in contexts where measurement errors are minimal or
nonexistent. For example, intraclass correlation (Fisher, 1954) for
test-retest reliability in individual differences is typically assessed
without considering intra-individual variability. A similar situation
can be observed in heritability estimation: to date, common
modeling approaches do not explicitly account for the level of
measurement units (e.g., individual trials), and instead they
simplify the data through preliminary aggregation steps such
as averaging.

Can data aggregation be justified by attributing intraindividual
variability to the nonshared environment (the E component in the
ACE model)? The underlying rationale for data aggregation is that
intraindividual variability arises either from true biological
fluctuations (ontological variability) or measurement limitations
(epistemological noise). However, the specific sources are often
too complex to be fully accounted for in typical studies. A more
pragmatic and effective approach is to adopt a causal inference
perspective that focuses on the underlying data-generating process.
It is well established that when within-individual variability follows
systematic patterns, treating it solely as residual errors can introduce
bias and misinterpretation. Instead, explicitly modeling this
variability is crucial to ensuring accurate and meaningful estimates.

In heritability estimation, path diagrams are commonly used to
depict causal relationships among variables. Within this framework,
a latent trait or condition is conceptualized as a higher-level
theoretical construct that causally influences each individual
measurement or trial (see Figure 4). In other words, individual
measurements are specific realizations determined by the underlying
latent construct. Crucially, heritability is defined at the level of this
latent construct, not at the level of single measurements.

A hierarchical modeling framework more accurately maps the
causal structure outlined in the path diagram. In contrast,
conventional SEM, which treats intraindividual variability as
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residual errors, does not fully align with the causal structure and can
lead to underestimated heritability, as demonstrated in Section 3.3.
This underscores the necessity of explicitly modeling hierarchical
data structures to account for both between- and within-individual
variability.

Our empirical evidence here from both a real dataset and
simulations demonstrates that adopting an HLM
framework—which respects the full hierarchical structure of the
data—yields more accurate heritability estimates than the
conventional SEM for psychometric traits. When intraindividual
variability is minimal—as is often the case with many physical
traits—the conventional SEM can be seen as a special asymptotic
case of a more general HLM, and aggregation is justified because the
impact of such variability is negligible (Rv ≪ 1). However, for traits
such as psychometric measures where intraindividual variability is
substantial (Rv ≫ 1), simply aggregating data (i.e., incorporating this
variability into residual errors) will likely lead to biased heritability
estimates. This underestimation issue extends beyond heritability
estimation and has also been observed in test-retest reliability
estimation (Rouder and Haaf, 2019; Haines et al., 2020; Chen
et al., 2021) and in neuroimaging experimental designs, where
the role of trial samples is often overlooked (Chen et al., 2022).

To recapitulate, the HLM approach acknowledges that
heritability is defined at the latent trait level and avoids biases
associated with oversimplified data aggregation. While data
aggregation may be acceptable for traits with minimal
intraindividual variability, a hierarchical modeling approach that
directly incorporates the causal structure of the data is essential for
accurately estimating heritability when variability is pronounced.

To improve the accuracy of heritability estimation, we
recommend adopting HLM in the presence of intra-individual
variability. It is important to note that the HLM framework is
not mutually exclusive with SEM, on which SEM and other methods
such as common pathway model are based. As the path diagrams in
Figures 1, 4 illustrate, both frameworks are conceptually consistent,
as discussed in Section 2.2. Nevertheless, we emphasize that the
broader framework of HLM combined with the Bayesian approach
offers several advantages:

1) It supports a wider range of numerically implemented
distributions (e.g., Student’s t, inverse Gaussian).

2) It integrates uncertainty assessment into a single process.
3) It robustly handles variance-covariance structures.

While the last point is important for theoretical and
interpretational reasons, it also has useful practical benefits. In
the commonly-used R software packages, there are severe
challenges faced when using methods implemented in the nlme

and lme4 packages, which can struggle with numerical singularities
when correlations (or variances) approach boundary values such
as −1, 1, or 0, as encountered in this Stroop dataset. The proposed
framework avoids these difficulties.

5.2 Biases, uncertainty and challenge of
heritability estimation

There are two aspects of accuracy compromise that need to be
considered in heritability estimation. The first aspect pertains to
estimation biases. As demonstrated in this study, failure to fully
incorporate the data structure can lead to biased estimates of
heritability. The second aspect concerns the uncertainty in
heritability estimation. In addition to providing a point estimate
for the effect of interest, it is equally important to quantify its
uncertainty, characterized through measures such as standard error,
an uncertainty interval (e.g., 95%), or even a full distribution (as
depicted in Figure 6). However, uncertainty is often not well
emphasized in common practice. In some cases, only the central
tendency (e.g., mean) of heritability estimation is reported.
However, to truly comprehend the generalizability of results,
understanding uncertainty is crucial. One of the benefits of the
HLM framework is its ability to directly generate posterior
distributions that illustrate estimate precision.

In the presence of intra-individual variability, one might be
tempted to adopt the bias adjustment approach using the
conventional SEM. Our findings demonstrate that the biases
resulting from data aggregation can be mitigated to some extent
if variability can be determined separately (e.g., through repeated
measures), as indicated by Formula 18 or Formula 19. However, in
practical applications, these adjustments are suboptimal due to
distributional deviations, as demonstrated in our example using
the Stroop dataset. Furthermore, an effective adjustment for biases
in uncertainty assessment is currently lacking. Hence, a
comprehensive HLM framework remains the preferred choice.

Sample sizes remain a challenge in twin studies. The dataset we
used for demonstration, exemplifying a cognitive inhibition study,
suggests that reasonable levels of uncertainty can be achieved with

TABLE 2 Demographic information of twins in a Stroop experiment from
the ABCD Study.

Twin I � 1102 twins; F � 555 families; 3 families with
DZ triplets; 11 families with available data from
only one twin

Zygosity 461 MZ twins, 641 DZ twins

Sex 550 males, 552 females

Race 720 white, 152 black, 112 Hispanic, 3 Asian, 114 others

Age 108–132 months; mean: 121 months, standard deviation: 6 months

FIGURE 5
Reaction time (RT) distributions. The shaded area under each
density represents the 95% highest density interval, while the vertical
dashed line indicates the mode. The RT distribution is 1) right-skewed,
2) slightly right-shifted under the incongruent condition
compared to the congruent condition, and 3) slightly more dispersed
for DZ twins than MZ twins.
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sample sizes of less than 1,000 families and less than 100 trials
per individual condition (congruent and incongruent). The
estimated heritability of approximately 40% (first two
columns, Figure 6) aligns with the general range observed in
typical phenotypic traits in the literature (Polderman et al.,
2015). However, the contrast between conditions is often the
focal point of interest. Even with HLM estimation, the
uncertainty of heritability for this contrast remains unresolved
(third column, Figure 6), creating imprecision regarding its
magnitude. In other words, despite attempts by the
Consortium (Iacono et al., 2018; Smolker et al., 2022) to
address the sample size issue, the dataset from the ABCD
Study (consisting of 461 MZ and 641 DZ twin pairs, with less
than 48 trials per condition) does not provide sufficient certainty
for estimating the heritability of the Stroop effect. Achieving a
reasonable level of precision may require impractical sample
sizes (e.g., hundreds of trials and thousands of individuals).

The relative magnitude of intra-individual variability, as
quantified by the ratio Rv, serves as an informative indicator in
heritability modeling. As a dimensionless parameter, it influences
not only the accuracy and uncertainty of heritability estimation but
also those of test-retest reliability (Rouder et al., 2019; Chen et al.,
2021). Historical power analyses in twin studies have suggested a
minimum sample size of 600 twin pairs (Martin et al., 1978; Sham

et al., 2020). However, our simulations demonstrate that, in the
presence of measurement errors, a large Rv poses a significant
challenge for future studies in the field of individual differences,
particularly when examining effect contrasts and higher-order
interactions. Additionally, this ratio highlights the relative
importance of trial sample size compared to participant sample
size across various experimental modalities, such as functional
magnetic resonance imaging, magnetoencephalography,
electroencephalography, and psychometrics. In all these cases, the
Rv ratio exceeds 1, and sometimes even surpasses 10 (Baker et al.,
2021; Chen et al., 2021; Chen et al., 2022). Due to this substantial
ratio, the sample size of trials can be nearly as crucial as the number
of participants in terms of experimental efficiency in neuroimaging
and psychometrics.

5.3 Heritability estimation in neuroimaging

To date, there has been an increasing number of twin studies
utilizing task-based functional magnetic resonance imaging
(fMRI). In these studies, it has been a common practice to
aggregate data across trials during fMRI data analysis, resulting
in the neglect of intra-individual variability, which is neither
accounted for nor reported. For instance, Polk et al. (2007)

FIGURE 6
Estimated heritability for RT data. (A) The three columns represent the two conditions (congruent and incongruent), as well as their contrast, with the
corresponding variability ratio Rv indicated in the column labels. The three rows correspond to h2, c2, and e2. In each panel, the HLM result is represented
by a solid blue density curve, derived from random draws from posterior chains. The mode is marked by a vertical blue dashed line, and the shaded blue
region represents the 95% uncertainty interval. The SEM counterparts are also displayed in each plot, with the point estimate depicted as a red dot
and its 95% uncertainty interval represented by a horizontal red line. Notably, the SEM point estimates tend to be smaller than their HLM counterparts for
h2 and c2 (while larger for e2). Adjustments for the SEM estimates, using the Formula 19, are denoted as SEM1 and shown as green triangles. (B)
Comparisons among the threemodels are presentedwith their point estimates and 95% uncertainty intervals. For the HLM, estimates are derived from the
modes and highest density intervals of the posterior distributions in (A).
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reported a small heritability estimate of blood oxygenation level-
dependent (BOLD) response (h2 ~ 0.2) for face and house
processing (the specific contrasts were not analyzed), but
negligible heritability for pseudowords and chairs in the
ventral visual cortex, based on an fMRI experiment involving
13 MZ and 11 DZ twins, with 90 trials per condition. Similarly,
Matthews et al. (2007) revealed a moderate heritability
(h2 � 0.37; 90% interval: (0, 0.74)) for the interference effect
in the dorsal anterior cingulate cortex during a multi-source
interference task with congruent and incongruent conditions,
involving 20 MZ and 20 DZ twins, with 144 trials per condition.
The heritability estimates for other regions were negligible. In
contrast, the heritability of reaction time was moderate for the
congruent condition (h2 � 0.45; 90% interval: (0, 0.76)), but
negligible for the incongruent condition and the interference
effect. Additionally, Blokland et al. (2011) found moderate to
high heritability estimates (h2 � 0.40 to 0.65) in more than ten
regions during an n-back working memory experiment involving
150 MZ and 132 DZ twins, with 128 trials per condition.

Is intra-individual variability a concern for heritability
estimation in neuroimaging? The aforementioned task-based
fMRI experiments have primarily relied on a large number of
trials to obtain reliable estimates of condition-level effects. This is
similar to the Stroop dataset we investigated here, with the
distinction that the focus is on BOLD response rather than
reaction time. However, the family sample size has often been
relatively small, leading to larger uncertainty ranges in the
estimates. This issue is particularly pronounced because the
relative intra-individual variability across the brain, as reported
in the literature, tends to be substantial, with Rv ≫ 1 (Chen et al.,
2021; Baker et al., 2021; Chen et al., 2022). Thus, heritability
estimation in neuroimaging is at least as challenging as typical
traits such as psychometric data.

5.4 Limitations of heritability estimation
through HLM

The HLM approach comes with additional costs. Firstly,
introducing an extra level in the data hierarchy significantly
increases the complexity of the model structure. Secondly, and
perhaps the greater challenge, this increased complexity brings
along numerical burdens. Traditional tools like linear mixed-
effects estimation are not well-suited for solving hierarchical
models of heritability. Instead, resorting to a Bayesian approach
may be necessary to handle the numerical challenges (e.g.,
singularity).

There is always room for improvement in modeling. For
example, the full details of the underlying mechanism and
framework of cognitive inhibition involved in the reaction
time of the Stroop effect are not fully known to researchers.
Therefore, no model can fully replicate their structure. However,
HLM attempts to model as much as is known and observed in a
study. Model fitting can be improved by incorporating auxiliary
information, such as accommodating abnormalities like
skewness, outliers, and truncation through more inclusive and
adaptive distributions (e.g., log-normal, ex-Gaussian).
Additionally, one could reconsider the chosen partitioning

into three components of h2, c2, and e2 in twin studies and
other assumptions (Robette et al., 2022): the additivity of genetic
effects, the absence of assortative mating, the nonexistence of
genetic dominance or epistasis, the generalizability from twins to
the rest of the population, equal environment impact between
MZ and DZ twins, and the absence of gene-environment
correlation or interaction.

Further integrating HLM with the conventional SEM
framework presents a promising avenue for future research.
SEM, with its long-established history, offers distinct
advantages, including intuitive interpretation, specialized
applications, and computational efficiency. While beyond the
scope of this study, leveraging the strengths of both SEM and
HLM (e.g., Mehta and Neale, 2005) holds significant potential. A
unified approach could enable greater flexibility in modeling
distributions, account for intraindividual variability, and reduce
estimation biases. In addition, this study focuses on within-
individual categorical variables, such as task conditions.
Future research could extend this framework to within-
individual quantitative variables, particularly in the context of
longitudinal data (e.g., Eaves et al., 1986).

The interpretation of heritability is subtle and sometimes
controversial. Our focus here is solely on the technical aspects of
heritability estimation. Nevertheless, we emphasize caution in its
interpretation. As a statistical metric, heritability captures
variation and/or correlation rather than causation. Therefore,
one must not confuse the extent of phenotype variability with the
contribution of genetic factors. The concept of heritability
effectively pertains to the population level and cannot be
realistically applied to a particular individual. On the other
hand, the information provided by heritability lies in its
potential predictability. It can probabilistically predict, but
not causally determine, the extent of phenotypic variability. A
high heritability for a phenotypic trait may warrant further
investigation into the underlying complex genetic mechanisms
or the etiology of genetic risk factors, such as biomarkers. This
perspective highlights the need to complement heritability
research of variance partitioning with mechanism elucidation
(Downes and Turkheimer, 2022).

6 Conclusion

We propose an HLM approach to improve heritability
estimation in twin studies when the phenotypic trait is
measured with multiple samples. The methodology aims to
separate measurement errors from the variations of interest and
addresses issues such as information loss due to data reduction,
distribution violations, and uncertainty characterization in current
modeling approaches. We demonstrated that the conventional
SEM is likely to underestimate heritability when intra-
individual variability is moderate to high (which is common
in many real-world scenarios). We supported this finding with
analytical derivations, simulations and an experimental dataset
from the ABCD study, validating the performance of the HLM
approach. Our simulation results suggest that traits with small
effect sizes may require much larger sample sizes than
currently practiced.
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