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Breast cancer is one of the most common malignancies among women globally,
with its incidence rate continuously increasing, posing a serious threat to
women’s health. Although current treatments, such as drugs targeting
estrogen receptor alpha (ERα), have extended patient survival, issues such as
drug resistance and severe side effects remain widespread. This study proposes a
machine learning-based optimization model for anti-breast cancer candidate
drugs, aimed at enhancing biological activity and optimizing ADMET (Absorption,
Distribution, Metabolism, Excretion, Toxicity) properties through multi-objective
optimization. Initially, grey relational analysis and Spearman correlation analysis
were performed on the molecular descriptors of 1,974 compounds, identifying
91 key descriptors. A Random Forest model combined with Shapley Additive
Explanations (SHAP) values was then used to further select the top 20 descriptors
with the greatest impact on biological activity. The constructed Quantitative
Structure-Activity Relationship (QSAR) model, using algorithms such as
LightGBM, Random Forest, and XGBoost, achieved an R2 value of 0.743 for
biological activity prediction, demonstrating strong predictive performance.
Additionally, a multi-model fusion strategy and Particle Swarm Optimization
(PSO) algorithm were employed to optimize both biological activity and
ADMET properties, thereby improving the prediction of Caco-2, CYP3A4,
hERG, HOB, and MN properties. For example, the best model for predicting
Caco-2 achieved an F1 score of 0.8905, while the model for predicting
CYP3A4 reached an F1 score of 0.9733. This multi-objective optimization
model provides a novel and efficient tool for drug development, offering
significant improvements in both biological activity and pharmacokinetic
properties, with practical implications for the optimization of future anti-
breast cancer drugs.
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1 Introduction

Over two million women are diagnosed with breast cancer each year, and some of these
patients progress to advanced stages, urgently requiring effective treatments (Sung et al.,
2021; Waks and Winer, 2019). While existing treatment options have extended survival,
issues such as drug resistance and side effects persist (Giaquinto et al., 2022; Lumachi et al.,
2011), creating a pressing need for the development of new anti-breast cancer drugs,
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particularly those targeting estrogen receptor alpha (ERα) and
optimizing ADMET (Absorption, Distribution, Metabolism,
Excretion, Toxicity) properties (Marra et al., 2020). With the
rapid advancements in computer science and technology,
machine learning has provided new solutions for drug design
and optimization (Mak et al., 2023; Zhavoronkov et al., 2019). By
constructing Quantitative Structure-Activity Relationship (QSAR)
models based on compound structural features and biological
activity data (Cherkasov et al., 2014), and integrating various
machine learning algorithms, it is possible to efficiently predict
the biological activity and ADMET properties of new compounds,
reducing the time and cost of drug development (Jimé et al., 2020).
Furthermore, optimization algorithms such as Particle Swarm
Optimization (PSO) have shown excellent performance in multi-
objective optimization tasks (Liu et al., 2021; Liu et al., 2024; Poli
et al., 2007), enhancing both the biological activity and ADMET
properties of compounds, thus providing powerful tools for drug
screening and optimization.

Based on this background, the present study proposes a machine
learning-based optimization model for anti-breast cancer candidate
drugs. By integrating QSAR models, multi-model fusion techniques,
and the PSO algorithm, this study aims to achieve multi-objective
optimization of anti-breast cancer compounds, enhancing their
biological activity against ERα while ensuring excellent ADMET
properties. Here is the experimental procedure in this paper:

Phase 1: Data preprocessing, where 225 features with all zero
values are removed and the data is normalized. A gray relational
analysis is performed to select the 200 molecular descriptors most
related to biological activity, followed by Spearman coefficient
analysis, retaining 91 features. Then, Random Forest combined
with SHAP value analysis is used to select the top 20 molecular
descriptors with the most significant impact on biological
activity (Table 2).

Phase 2: Using pIC50 (negative logarithm of the IC50 value) as
the target variable, 10 regression models are used to predict the
20 selected features. By comparing evaluations, LightGBM,
RandomForest, and XGBoost are identified as the best
performers. To further improve prediction accuracy, these three
models are combined using three ensemble methods: simple
averaging, weighted averaging, and stacking. Finally, the stacking
ensemble model is used to predict the pIC50 values for 50 target
compounds and calculate their corresponding pIC50 (half-maximal
inhibitory concentration) values, with the final results recorded in
“ERα_activity_test.csv.”

Phase 3: After removing the 225 features with all zero values in
Phase 1, Random Forest is used for recursive feature elimination
(RFE) on the remaining 504 features. This selects 25 important
features for each of the five ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) properties: Caco-2, CYP3A4,
hERG, HOB, and MN. Using these selected features, 11 machine
learning classification models are constructed. By comparing
evaluation metrics such as F1 score and ROC curve, the best
models for predicting Caco-2, CYP3A4, and hERG are identified
as LightGBM, XGBoost, and NaiveBayes, respectively, with
XGBoost being the best model for predicting MN. Finally, use
the selected models to predict the classification results for
50 target compounds on Caco-2, CYP3A4, hERG, HOB, and
MN, with the final results recorded in “ADMET_test.csv.”

Phase 4: First, a single-objective optimization model is
constructed to improve the inhibition of ERα (Estrogen Receptor
Alpha) biological activity while satisfying at least three ADMET
properties. A total of 106 feature variables with high correlation to
biological activity and ADMET properties from Phases 2 and 3 are
selected. Regression and classification models are constructed based
on these features to create the single-objective optimization model.
Finally, a Particle Swarm Optimization (PSO) algorithm is used for
multi-objective optimization search. Through multiple iterations,
the best solution from each iteration is recorded and gradually
converges to obtain the optimal value range. The final results are
recorded in “results.csv.”

2 Related work

Breast cancer is one of the most common malignant tumors
among women worldwide. Although current treatments such as
surgery, radiotherapy, chemotherapy, and endocrine therapy have
extended patient survival, these methods still have limitations due to
the heterogeneity, drug resistance, and severe side effects associated
with breast cancer (Hong and Xu, 2022; Belachew and Sewasew,
2021). Endocrine therapies targeting estrogen receptor alpha (ERα),
such as tamoxifen and letrozole, have played a key role in treating
ERα-positive breast cancer. However, as treatment progresses, these
therapies increasingly face drug resistance, limiting their clinical
application (Marra et al., 2020). Additionally, these drugs are
associated with side effects such as cardiotoxicity and
hepatotoxicity, creating an urgent need to develop new candidate
drugs that not only address biological activity but also optimize
ADMET (Absorption, Distribution, Metabolism, Excretion,
Toxicity) properties (Caron and Nohria, 2018; Larroquette et al.,
1986; Xu et al., 2015).

Recent advances in computer science and artificial intelligence
have opened new avenues for drug design and optimization, offering
substantial potential for overcoming these limitations (Rodrigues
and Schneider, 2022; Stokes et al., 2020b; Schneider et al., 2020).
Specifically, machine learning (Zitnik et al., 2019; Vamathevan et al.,
2019) has proven to be a powerful tool for predicting the biological
activity and ADMET properties of novel compounds, leveraging vast
amounts of molecular descriptors and biological activity data (Mak
et al., 2023; Zhavoronkov et al., 2019; Stokes et al., 2020a; Jimé et al.,
2021). Traditional Quantitative Structure-Activity Relationship
(QSAR) models, which correlate the physicochemical properties
of compounds with their biological activity, have long been the
cornerstone of drug development (Cherkasov et al., 2014; Jimé et al.,
2020; Xu et al., 2015). However, these models often struggle to
handle the complex nonlinear relationships between molecular
features, limiting their ability to provide accurate predictions
(Chen et al., 2020). To address this, recent studies have
increasingly relied on multi-model fusion techniques, which
combine the advantages of multiple models to improve
prediction accuracy and stability (Lin et al., 2022; Chen and
Guestrin, 2016). For instance, gradient boosting models such as
LightGBM and XGBoost are particularly adept at handling high-
dimensional data and capturing complex nonlinear relationships,
making them widely used in predicting biological activity and
ADMET properties (Shou, 2020; Lei et al., 2016).
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The success of drug development depends not only on the
biological activity of the drug but also on its ADMET properties.
Favorable ADMET properties are crucial for the successful
conversion of a candidate compound into an effective drug (Er-
rajy et al., 2022; Ahmad et al., 2023). Some studies have utilized
machine learning algorithms for classification and regression
predictions of ADMET properties, achieving significant success
in predicting permeability, metabolism, toxicity, and other
pharmacokinetic attributes (Atallah et al., 2013; Komura et al.,
2023). Algorithms such as Support Vector Machines (SVM),
Random Forest, and XGBoost have been effective in screening
compounds with favorable ADMET properties, reducing
experimental costs and minimizing the risk of failure (Ferreira
and Andricopulo, 2019; Huang et al., 2021).

However, optimizingmultiple objectives simultaneously, such as
enhancing biological activity and improving ADMET properties,
remains a significant challenge in drug development (Luukkonen
et al., 2023a). Traditional optimization methods struggle to
effectively manage the trade-offs between these competing
objectives (Deb et al., 2002). Particle Swarm Optimization (PSO),
a swarm intelligence optimization technique that simulates
cooperative search behavior within a population, has become a
powerful tool for multi-objective optimization tasks, including drug
design (Poli et al., 2007; Luukkonen et al., 2023b; Wang et al., 2018).
PSO has been effectively applied to simultaneously optimize
biological activity and ADMET properties, achieving the global
optimal selection of candidate drugs and balancing these key
attributes (Merk et al., 2018).

Building on these advances, this study integrates machine
learning models with optimization algorithms such as PSO to
successfully achieve multi-objective drug design. For example,
integrating PSO with QSAR models has successfully enabled
multi-objective optimization of both biological activity and
ADMET properties in drug design. Additionally, multi-model
fusion strategies have been employed to further improve
predictive performance, combining different machine learning
algorithms to reduce the bias of individual models and enhance
overall prediction accuracy. These efforts have significantly
advanced the development of drug optimization methods and
tools.Based on previous work, this study proposes a novel
machine learning-based optimization model for anti-breast
cancer drugs. By combining QSAR models, multi-model fusion
techniques, and the PSO algorithm, this study aims to
simultaneously optimize the biological activity and ADMET
properties of candidate compounds. Specifically, it enhances
biological activity against ERα while ensuring optimal ADMET
performance. This method not only provides an efficient and
reliable tool for the development of anti-breast cancer drugs but
also lays the foundation for future drug optimization research.

3 Dataset description

3.1 Dataset source

The core dataset used in this study is the “Anti-Breast Cancer
Candidate Drug Optimization Modeling (2021)” dataset provided
by the China Association for Science and Technology. This dataset is

primarily focused on the biological activity prediction and ADMET
property analysis targeting the breast cancer marker ERα, providing
key data support for the machine learning modeling conducted in
this study.

3.2 Dataset description

3.2.1 ERα activity dataset (ERα_activity.xlsx)
Training Set (training table): Contains biological activity data for

1,974 compounds.

SMILES Format: The first column records the SMILES
(Simplified Molecular Input Line Entry System) representation
of each compound, which describes its structure.
IC50 Values: The second column lists the biological activity
values against the ERα target in nanomoles (nM). Lower
IC50 values indicate higher biological activity.
pIC50 Values: The third column records the negative logarithm
of the IC50 values (pIC50), facilitating a more intuitive
representation of the compounds’ biological activity; higher
pIC50 values indicate stronger biological activity.

Test Set (test table): Contains the SMILES representation for
50 compounds, used for model prediction testing.

3.2.2 Molecular descriptor dataset (Molecular_
Descriptor.xlsx)

Training Set (training table): Includes 729 molecular descriptors
for 1,974 compounds, describing each compound’s structure and its
physicochemical properties.

SMILES Format: The first column contains the SMILES
representation of the compounds, consistent with those in the
ERα_activity.xlsx.
Molecular Descriptors: The subsequent 729 columns cover
various molecular descriptors for each compound, including
molecular weight, number of hydrogen bond donors, and
hydrophobicity parameters (such as LogP), detailing their
physicochemical characteristics and topological structure.

Test Set (test table): Contains the molecular descriptors for
50 compounds, used for model testing and evaluation.

3.2.3 ADMET properties dataset (ADMET.xlsx)
Training Set (training table): Includes data on five ADMET

properties for 1,974 compounds, all represented in a binary format.

Caco-2: Indicates the intestinal epithelial cell permeability of the
compounds; 1 for good permeability, 0 for poor permeability.
CYP3A4: Indicates whether the compound can be metabolized
by CYP3A4; 1 for metabolizable, 0 for non-metabolizable.
hERG: Indicates whether the compound has cardiotoxicity; 1 for
toxic, 0 for non-toxic.
HOB: Indicates the oral bioavailability of the compound; 1 for
good bioavailability, 0 for poor.
MN: Indicates whether the compound has mutagenicity; 1 for
toxic, 0 for non-toxic.
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Test Set (test table): Contains the SMILES representation for
50 compounds, used for model prediction and validation.

4 Experimental method and the
solution results

4.1 Experimental design

This research consists of four main experimental steps,
designated for selecting important molecular descriptors,
predicting the biological activity of compounds, classifying
ADMET properties, and multi-objective optimization.

4.1.1 Feature selection and preprocessing
1. Feature Cleaning: Remove 225 molecular descriptors where all

observations are zero to avoid redundancy and reduce the risk
of overfitting.

2. Feature Normalization: Perform min-max normalization on
the remaining 504molecular descriptors to ensure that features
are trained on the same scale, avoiding issues related to
different dimensions affecting model training.

3. Grey Relational Analysis (GRA): Evaluate the correlation
between pIC50 values and molecular descriptors using grey
relational analysis, selecting the top 200 descriptors most
relevant to biological activity.

4. Spearman Correlation Analysis: To further reduce feature
redundancy, Spearman correlation analysis is used to
process highly correlated features, retaining 91 key features
to enhance model efficiency and accuracy.

5. Random Forest and SHAP Values: Further select 20 features
with the greatest impact on biological activity.

4.1.2 Construction of biological activity
prediction model
1. Regression Model Selection: We utilize ten common machine

learning regression models, including Linear Regression,
Ridge, Lasso, ElasticNet, RandomForest, LightGBM,
XGBoost, Gradient Boosting Decision Tree (GBDT), SVM,
and Decision Tree.

2. Multi-Model Fusion: To improve the predictive performance
of the model, we experimented with three fusion strategies on
the three best-performing models (LightGBM, RandomForest,
and XGBoost), including simple averaging, weighted
averaging, and stacking. The stacking fusion showed the
best effect.

3. Prediction Results: Use the best model to predict the
pIC50 values for 50 test set compounds and convert them
to IC50 values.

4.1.3 Classification prediction of ADMET properties
1. Recursive Feature Elimination (RFE): Using RandomForest as

the base model, the RFE method is applied to select features for
ADMET properties, selecting 25 most representative molecular
descriptors for each ADMET attribute.

2. Classification Model Selection: Utilize 11 classification models,
including Logistic Regression, Naive Bayes, LDA, Decision
Tree, RandomForest, AdaBoost, GradientBoosting, SVM,

MLP, XGBoost, and LightGBM, to predict the ADMET
properties of compounds.

3. Classification Effectiveness Assessment: Evaluate model
performance using metrics such as the F1 score and ROC
curve, and select the best models. The best classification models
for different ADMET properties are LightGBM (Caco-2),
XGBoost (CYP3A4 and hERG), NaiveBayes (HOB),
and XGBoost (MN).

4. ADMET Property Prediction: Use the selected best models to
predict the ADMET properties of 50 compounds.

4.1.4 Multi-objective optimization
1. Single-Objective Optimization: Establish a single-objective

optimization model aiming to enhance the biological
activity (pIC50 value) of compounds while ensuring that at
least three ADMET properties perform well.

2. Particle Swarm Optimization (PSO): Apply the PSO algorithm
for global optimization of 106 important features, recording
the optimal solution in each iteration, and ultimately finding
the value range that provides the best performance in both
biological activity and ADMET properties.

3. Final Results: Apply the optimized compound features to
50 test compounds, outputting their optimal predictive values.

4.2 Selection of molecular descriptors

4.2.1 Data preprocessing and feature selection
4.2.1.1 Data preprocessing

Basic statistical analysis is performed on the data provided in the
“Molecular_Descriptor.xlsx” file. Some of the statistical results are
shown in Table 1.

As observed, the values for the molecular descriptor nB are all
zeros. Although a value of zero can have practical significance,
prediction models are unable to recognize its meaning.
Consequently, these variables are considered redundant features,
which can affect the accuracy of the model. Therefore, we choose to
remove these features, totaling the elimination of 225 molecular
descriptors.

To eliminate the impact of dimensions and reduce the range of
variables, the remaining features are normalized. The normalization
formula is shown in Equation 1.

TABLE 1 Statistical information for selected molecular descriptors.

nAtom nHeavyAtom nH nB nC

Count 1974 1974 1974 1974 1974

Mean 50.76 28.11 22.65 0 22.61

Std 18.09 8.07 10.78 0 6.63

Min 21 14 5 0 7

25% 36.25 21 14 0 17

50% 50 28 22 0 22

75% 62 34 29 0 28

Max 343 163 180 0 95
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x � xi − xmin

xmax − xmin
(1)

Where x is the result after normalization, xi is the value in the
original data table, xmax is the maximum value of a certain
molecular descriptor in the original data table, and xmin is the
minimum value of that molecular descriptor in the original
data table.

4.2.1.2 Grey relational analysis (GRA)
Grey relational analysis is used to identify the primary and

secondary factors among the many influencing the development of a
system. The fundamental idea is based on the degree of similarity in
the geometric shapes of the sequence curves to determine the
closeness of their relationships. The closer the curves are, the
greater the degree of association between the corresponding
sequences, and vice versa.Consider the reference sequence
(biological activity) as X0 and the compared sequences
(influencing factors) as (X1,X2, · · ·,Xm). The steps for
calculating the grey relational analysis are as follows:

1. Calculate the correlation coefficients between each parameter
in the compared sequences and the corresponding parameters
in the reference sequence. Define the grey relational
coefficients, which represents the extent of association
between biological activity and each influencing factor, as
presented in Equation 2.

ξ x0 k( ), xi k( )( ) � a + αb

x0 k( ) − xi k( )| | + αb
  i � 1, 2,/, m, k � 1, 2,/, n( )

(2)
Where a is the minimum difference between the extremes, b is

the maximum difference between the extremes, and α is the
resolution coefficient (typically set to 0.5).

a � min
i

min
k

x0 k − xi k( )( )| |
b � max

i
max
k

x0 k − xi k( )( )| |

2. Calculate the grey relational degree. Define r(X0, Xi) as the
grey relational degree, obtained by calculating the mean of each
column in the correlation coefficient matrix As shown in
Equation 3.

r X0, Xi( ) � 1
n
∑n
k�1

ξ x0 k( ), xi k( )( ) (3)

Next, we calculate the grey relational degree between each
molecular descriptor and biological activity, retaining the top
200 molecular descriptors with the highest association values. As
shown in Figure 1, only the top 30 molecular descriptors with the
highest association values are displayed.

Figure 1 shows the top 30 molecular descriptors most strongly
correlated with biological activity, selected through GRA. These
molecular descriptors are ranked based on their grey relational

FIGURE 1
The top 30 molecular descriptors with the highest grey relational degree.
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degree with the pIC50 values (biological activity prediction values).
The higher the grey relational degree, the stronger the correlation
between the molecular descriptor and biological activity.

The molecular descriptors are sorted in descending order of
grey relational degree, starting from the top. Each row represents
a molecular descriptor, with the horizontal axis indicating its grey
relational degree, ranging from 0 to 0.8. Descriptors such as
MDEC-23, LipoaffinityIndex, MLogP, and nRing are displayed,
all of which are used in subsequent models to predict
molecular activity.

4.2.1.3 Analysis of correlations between influencing factors
The Pearson correlation coefficient assumes that data follows

a normal distribution and can only analyze linear relationships
between variables. However, there are also complex nonlinear
relationships between the data variables obtained. Therefore, the
Spearman coefficient is chosen for analysis, as shown in
Equation 4

ρxy �
∑
i

xi − �x( ) yi − �y( )�������������������∑
i

xi − �x( )2 ∑
i

yi − �y( )2√ (4)

Where x and y are the values of the two variables being analyzed,
�x and �y are the mean values of the two variables. The Spearman
correlation coefficient measures the monotonic relationship
between two variables, with values ranging from −1 to +1.
Positive values indicate a positive correlation between the
variables, negative values indicate a negative correlation, and
values close to 0 indicate a weaker correlation. By calculating the
Spearman coefficients between the 200 molecular descriptors, we
obtained the heatmap shown in Figure 2.

Figure 2 displays a heatmap of the Spearman correlation
coefficient matrix for all molecular descriptors. In the heatmap,
the intensity of the colors represents the magnitude of the Spearman
correlation coefficient. Dark red indicates a strong positive
correlation, dark blue indicates a strong negative correlation, and
lighter colors represent weaker correlations. Highly correlated
variables (greater than 0.85) were then filtered out, removing
109 molecular descriptors, and ultimately leaving 91 molecular
descriptors.

4.2.1.4 Variable selection model based on random forest
Subsequently, we used the remaining 91 molecular descriptors

as feature variables to establish a random forest model for regression

FIGURE 2
Spearman correlation coefficient heatmap between features.
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prediction of molecular activity and calculated the SHAP values for
each molecular descriptor.

The random forest is an ensemble learning method used for tasks
such as classification and regression. It builds multiple decision trees
during the training process and uses the majority vote (for classification)
or the average (for regression) of these trees’predicted classes or values for
final prediction. The random forest algorithm utilizes bagging (Bootstrap
Aggregating) to create multiple training subsets from the original dataset.

Suppose the original dataset is D � {(xi, yi)}ni�1, containing n
samples. The bagging process generates B bootstrap samples Db,
where b ∈ 1, 2, . . . , B{ }. Each bootstrap sample Db is used to build a
decision tree. At each node, a subset of features is randomly selected
for the splitting strategy, and the best feature within this subset is
chosen for the split. If there are p total features, typically m features
are selected, m ≈ ��

p
√

. For regression problems, the final prediction is
the average of all predictions from each tree: ŷ � 1

B∑B

b�1Tb(x).

4.2.1.5 SHAP interpretation of machine learning model
The SHAP (Shapley Additive Explanations) value was initially

proposed to address the problem of reward distribution in
cooperative game theory. In machine learning, the model’s
prediction result can be seen as the outcome of the “cooperation”
of all features. The SHAP value assigns a contribution value to each
feature to explain its importance in the model output.

The process of calculating the SHAP value for a specific feature
Xi is as follows:

1. Perform weighting for all possible feature subsets S, where S
does not contain the feature Xi.

2. Calculate the difference in model output between the model
f(S) before adding the feature Xi and the model f(S ∪ i{ }) after
adding the feature Xi.

3. Calculate the contribution value ϕi for feature Xi by averaging
all these differences with weights.

As shown in Equation 5:

ϕi � ∑
S⊆N i{ }

S| |! N| | − S| | − 1( )!
N| |! f S ∪ i{ }( ) − f S( )[ ] (5)

where ϕi is the SHAP value for feature Xi, S is a subset of features
that does not include Xi, N is the set of all features, f(S) is the model
output prediction for the feature subset S, and |S| is the number of
features in subset S.

SHAP values are used to explain the contribution of features in
machine learning models, assessing the specific impact of each feature
on the model’s predictions. Through the above calculations, the top
20 molecular descriptors with the highest SHAP values were selected,
representing the 20 descriptors with the most significant impact on
biological activity, as shown in Figure 3. Each violin plot in the figure
represents the SHAP value distribution for each molecular descriptor,
with the SHAP value reflecting the extent to which the descriptor
influences the model output.

In Figure 3:

1. The SHAP values of each molecular descriptor are mapped to
dots of different colors, with the color bar on the right
indicating the magnitude of the feature values. Blue

represents low feature values, while red represents high
feature values.

2. The horizontal axis represents themagnitude of SHAP values. The
larger the SHAP value, the greater the positive contribution of the
feature to the model’s prediction. Conversely, smaller SHAP
values indicate a smaller contribution.

3. The shape of the violin plot shows the distribution of SHAP
values at different feature values. A wider distribution indicates
greater variation in the feature’s influence on the model output
across different values.

The final selected molecular descriptors are shown in Table 2.

4.3 Construction of biological activity
prediction model

The feature variables selected are the 20 molecular descriptors
shown in Table 2, with the data divided into training, testing, and
validation sets in an 8:1:1 ratio.

1. Regression Model Selection: Ten common machine learning
regression models were used, including Linear Regression,
Ridge, Lasso, ElasticNet, RandomForest, LightGBM,
XGBoost, Gradient Boosting Decision Tree (GBDT), SVM,
and Decision Tree.

2. Multi-Model Fusion: To improve the predictive performance of
the model, we experimented with three fusion strategies on the
three best-performing models (LightGBM, RandomForest, and
XGBoost), including simple averaging, weighted averaging, and
stacking fusion. Stacking fusion yielded the best results.

3. Prediction Results: The optimal model was used to predict the
pIC50 values for 50 test set compounds, which were then
converted into IC50 values.

4.3.1 Regression prediction model
4.3.1.1 Linear regression

The linear regression model is a type of model that attempts to
find the best linear relationship to describe the relationship between
the target variable y and input features X. As shown in Equation 6:

y � Xβ + ϵ (6)
Where, X is the feature matrix, and β is the regression coefficient,
and ϵ represents the error terms.

4.3.1.2 Ridge regression
Ridge regression is an improved form of linear regression that

incorporates an L2 regularization term into the regression model to
reduce model complexity. As shown in Equation 7:

β̂ � argmin
β

‖ y − Xβ‖2 + λ ‖ β‖2{ } (7)

Where, λ is the regularization parameter.

4.3.1.3 Lasso regression
Lasso regression introduces an L1 regularization term into the

regression model, which can cause some regression coefficients to
become zero. As shown in Equation 8:
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β̂ � argmin
β

‖ y − Xβ‖2 + λ ‖ β‖1{ } (8)

Where λ is the regularization parameter.

4.3.1.4 Elastic net
Elastic Net combines the advantages of Ridge Regression and

Lasso Regression. As shown in Equation 9:

β̂ � arg min
β

‖ y − Xβ‖2 + λ1‖ β‖1 + λ2‖ β‖2{ } (9)

Where λ1 and λ2 are the regularization parameters.

4.3.1.5 XGBoost
XGBoost is an implementation of gradient boosting decision

trees that provides optimized computational performance and
memory usage. It accomplishes regression and classification tasks
by incrementally enhancing the tree models. XGBoost employs
regularization to prevent overfitting, as shown in Equation 10:

F x( ) � ∑K
k�1

αkhk x( ) (10)

Where hk(x) is the K-th tree, and αk is its weight.

4.3.1.6 LightGBM
LightGBM is an efficient implementation of gradient boosting

decision trees that uses a histogram-based method to accelerate the
training process and supports efficient handling of categorical
features. It builds multiple trees incrementally, with each tree
being optimized on the basis of gradient boosting. The model
form is similar to that of XGBoost.

4.3.1.7 Gradient boosting decision tree (GBDT)
GBDT is an ensemble learning method that builds multiple

decision trees incrementally, with each tree attempting to correct the
errors of the previous one to make predictions. The final prediction
of the model is the weighted sum of all the decision tree predictions.

FIGURE 3
Top 20 molecular descriptors with the highest SHAP values based on the random forest model.
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4.3.1.8 Support vector machine (SVM)
SVM is a model for classification and regression that separates

different categories of data points by finding the optimal hyperplane.
As shown in Equation 11:

f x( ) � sgn wTx + b( ) (11)

Where w is the weight vector, and b is the bias term.

4.3.1.9 Decision tree
Decision Tree is a tree-structured model that performs

classification or regression by making conditional judgments on
features. Each internal node represents a test on a feature, and each
leaf node represents a class or value. As shown in Equation 12:

f x( ) � leafclass (12)
Where x is the feature vector, and f(x) is the predicted class.

4.3.2 Model evaluation criteria
To measure the goodness of fit of the model, we used Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
and R-Squared (R2) to evaluate the model.The calculation formula is
shown in Table 3:

In Table 3, yi and ŷi represent the actual and predicted values on
the test set, respectively. The smaller the values of MSE, RMSE,

MAE, and MAPE, the higher the predictive accuracy of the model.
The closer the R2 value is to 1, the better the model’s fit.

4.3.3 Model solving
The feature variables selected are the 20 molecular descriptors

listed in Table 2, which are divided into training, testing, and
validation sets in an 8:1:1 ratio. Initially, ten different machine
learning models were used for regression prediction. The predictive
performance of these regression models is illustrated in Figure 4.

As can be seen, the three models with the highest R2 values are
LightGBM, RandomForest, and XGBoost, with values of 0.737,
0.736, and 0.711, respectively. To enhance the prediction
accuracy, we experimented with multi-model fusion predictions.
We selected the three models with the highest R2 values and tried
three types of fusion strategies: simple average fusion, weighted
fusion (5:3:2), and stacking fusion, to improve the predictive
performance of the models. The stacking fusion model, which
showed the best predictive effect, achieved an R2 value of 0.743.
The predictive performance of the stacking model is depicted in
Figure 5, and the final results were populated in “ERα_
activity_test.csv.”

In Figure 5, the left plot displays a comparison between the
actual values (on the horizontal axis) and predicted values (on the
vertical axis) for the test set. Each red dot represents the
corresponding actual and predicted value for a test sample, with
the dashed line indicating a perfect prediction. It can be observed
that the overall trend of the predictions is quite close to the perfect
prediction line. The right plot shows a line chart of the actual values
versus predicted values for the first 30 samples. Red dots represent
actual values, and blue squares represent predicted values. The
dashed line connecting these points illustrates the variation trend
between the actual and predicted values for each sample. By
observing this line, it can be concluded that the model fits the
data well in most cases.

4.4 Classification prediction of ADMET
properties

1. Recursive Feature Elimination (RFE): Using RandomForest as
the base model, the Recursive Feature Elimination method was
applied to select features for ADMET properties, selecting
25 most representative molecular descriptors for each
ADMET attribute.

2. Classification Model Selection: Eleven classification models
were used, including Logistic Regression, Naive Bayes, LDA,
Decision Tree, RandomForest, AdaBoost, GradientBoosting,
SVM, MLP, XGBoost, and LightGBM, to predict the ADMET
properties of compounds.

3. Classification Performance Evaluation: Model performance
was evaluated using metrics such as F1 score and ROC
curve, and the best model was selected for each ADMET
property. The best classification models for different
ADMET properties were LightGBM (Caco-2), XGBoost
(CYP3A4 and hERG), Naive Bayes (HOB),
and XGBoost (MN).

4. ADMET Property Prediction: The selected best models were
used to predict the ADMET properties of 50 compounds.

TABLE 2 The 20 molecular descriptors.

No. Molecular descriptor

1 LipoaffinityIndex

2 BCUTc-1l

3 minsssN

4 minHsOH

5 maxsOH

6 ATSc3

7 nHBAcc

8 BCUTp-1h

9 minsOH

10 minHBint10

11 MEDC-23

12 MLogP

13 minHBint5

14 XLogP

15 ATSc2

16 mindssC

17 MDEO-12

18 MAXDP2

19 ETA_BetaP_s

20 C3SP2
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TABLE 3 Model evaluation metrics and their calculation formulas.

Evaluation metrics Calculation formulas

MSE MSE � 1
m∑m

i�1(yi − ŷi)2

RMSE RMSE �
�������������
1
m∑m

i�1(yi − ŷi)2
√

MAE MAE � 1
m ∑

i�1
|yi − ŷi |

MAPE MAPE � 100%
n ∑n

i�1|ŷi−yi

yi
|

R2

R2 � 1 −
∑
i�1

(ŷi−yi)2∑
i�1

(�yi−yi )2

FIGURE 4
Comparison of ten regression models.

FIGURE 5
Prediction performance of the stacking model.
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4.4.1 Recursive feature elimination (RFE)
RFE is an algorithm used for feature selection. Its core idea is to

recursively train a model and eliminate the least important feature
after each training cycle based on the importance scores assigned to
features. Assuming a dataset contains nnn features, RFE can be used
to select the optimal subset of features.

4.4.2 Classification prediction models
4.4.2.1 Logistic Regression

Logistic regression is a linear model used for binary classification
problems. It maps the predicted values to probabilities by applying
the sigmoid function to a linear combination of features. As shown
in Equation 13:

P y� 1 |X( ) � 1

1 + e− β0+βTX( ) (13)

Where X is the feature vector, β is the regression coefficient
vector, and β0 is the bias term.

4.4.2.2 Naive Bayes
The Naive Bayes classifier is a simple classifier based on Bayes’

theorem, assuming that features are independent of each other. As
shown in Equation 14:

P y
∣∣∣∣X( ) � P y( )∏n

i�1P xi

∣∣∣∣y( )
P X( ) (14)

Where, y is the class label, X is the feature vector, and xi is the
i-th feature.

4.4.2.3 Linear discriminant analysis (LDA)
LDA is a technique used for dimensionality reduction and

classification. It seeks to find the projection direction that
maximizes between-class scatter while minimizing within-class
scatter. The objective is to find the optimal linear transformation
by maximizing the ratio of between-class scatter to within-class
scatter, As shown in Equation 15:

J w( ) � wTSBw

wTSWw
(15)

Where SB is the between-class scatter matrix, SW is the within-
class scatter matrix, and w is the projection vector.

4.4.2.4 Adaptive boosting (AdaBoost)
AdaBoost is an ensemble learning method that iteratively trains

a series of weak classifiers (e.g., decision stumps), with each classifier
improving upon the previous one. The final classification result is a
weighted vote of all weak classifiers. As shown in Equation 16:

f x( ) � ∑M
m�1

αmhm x( ) (16)

where hm(x) is the m-th weak classifier, and αm is its weight.

4.4.2.5 Gradient boosting
Gradient Boosting Trees is an ensemble learning method that

builds decision trees sequentially, where each tree attempts to
correct the errors of the previous trees. The model’s final

prediction is the weighted sum of all decision trees’ predictions.
As shown in Equation 17:

F x( ) � Fm−1 x( ) + η · hm x( ) (17)
where Fm−1(x) is the prediction from the first m − 1 trees, hm(x) is
the m-th tree, and η is the learning rate.

4.4.2.6 MLP
A Multilayer Perceptron is a feedforward neural network

consisting of an input layer, one or more hidden layers, and an
output layer. Each layer comprises multiple neurons that perform
nonlinear transformations through activation functions (such as
ReLU, Sigmoid, etc.). As shown in Equation 18:

a l( ) � σ W l( )a l−1( ) + b l( )( ) (18)

Where a(l) is the activation vector of the l-th layer, W(l) is the
weight matrix of the l-th layer, b(l) is the bias term, and σ is the
activation function.

4.4.3 Model evaluation metrics
To select the most effective models, this study utilizes the

following classification algorithm evaluation metrics to assess the
performance of each model. Let us define:

True Positives (tp): the number of samples correctly predicted as
class 1 (predicted as 1 and actually being 1).

False Positives (fp): the number of samples incorrectly predicted
as class 1 (predicted as 1 but actually being 0).

False Negatives (fn): the number of samples incorrectly
predicted as class 0 (predicted as 0 but actually being 1).

True Negatives (tn): the number of samples correctly predicted
as class 0 (predicted as 0 and actually being 0).

4.4.3.1 F1 score
The F1 score is a weighted measure of precision and recall, defined

as the harmonic mean of precision and recall. As shown in Equation 19:

F1 � 2
Precision × Recall
Precision + Recall

(19)

Where, Precision � TP
TP+FP, Recall � TP

TP+FN. In model evaluation,
a higher F1 score indicates better performance.

4.4.3.2 ROC curve
The ROC curve, also known as the Receiver Operating

Characteristic curve, is a graphical tool used in binary
classification problems. In this context, each point on the ROC
curve represents a specific threshold. The classifier assigns a score to
each sample; if the score exceeds the threshold, the sample is
classified as a positive instance; if it is below the threshold, it is
classified as a negative instance. The closer the ROC curve is to the
upper-left corner of the plot, the better the classification
performance of the model.

4.4.4 Model solving
4.4.4.1 Data preprocessing

Initially, using the molecular descriptors remaining after
removing single-value variables from Problem 1, the Recursive
Feature Elimination (RFE) algorithm was used to select
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25 feature variables corresponding to each ADMET property. The
specific feature selections for each property are shown in Tables 4–8.

4.4.4.2 Results of the model in ADMET property prediction
Subsequently, eleven machine learning models were used to

classify the five ADMET features individually. The F1 scores of each
model’s prediction results are shown in Figure 6.

Figure 6 displays the F1 scores of different classification models
for five distinct ADMET properties: Caco-2, CYP3A4, hERG, HOB,
and MN. The performance of 11 classification models is compared
using line charts. Each target variable is represented by different
symbols to distinguish their performance in predictions.

Application Results of Different Models in ADMET Property
Prediction:

In the confusion matrix of the following set of figures, the
symbols represent the following meanings.

1. True 0: Samples where the actual value is 0 (poor intestinal
absorption).

2. True 1: Samples where the actual value is 1 (good intestinal
absorption).

3. Predicted 0: Samples predicted as 0 by the model.
4. Predicted 1: Samples predicted as 1 by the model.

The best-performing model for Caco-2 prediction is LightGBM,
with an F1 score of 0.8905. The ROC curve and confusionmatrix are
shown in Figure 7.

The best-performing model for CYP3A4 prediction is XGBoost,
with an F1 score of 0.9733. The ROC curve and confusionmatrix are
shown in Figure 8.

The best-performing model for hERG prediction is XGBoost,
with an F1 score of 0.9138. The ROC curve and confusionmatrix are
shown in Figure 9.

The best-performing model for HOB prediction is Naive Bayes,
with an F1 score of 0.6824. The ROC curve and confusionmatrix are
shown in Figure 10.

The best-performing model for MN prediction is XGBoost, with
an F1 score of 0.9695. The ROC curve and confusion matrix are

TABLE 4 Selected features for Caco-2.

No. Molecular descriptor

1 BCUTc-1h

2 SP-1

3 SP-2

4 ECCEN

5 SHBd

6 SHother

7 SsCH3

8 SaaO

9 minHBa

10 minwHBa

11 minaaO

12 maxaaO

13 ETA_Alpha

14 ETA_Beta_s

15 ETA_Eta_R_L

16 FMF

17 MDEC-23

18 MLFER_S

19 MLFER_L

20 TopoPSA

21 MW

22 WTPT-1

23 WTPT-3

24 WTPT-4

25 WPATH

TABLE 5 Selected features for CY3A4.

No. Molecular descriptor

1 ATSc1

2 bpol

3 VCH-6

4 SP-4

5 SP-7

6 VP-2

7 VP-4

8 VP-7

9 SHaaCH

10 ETA_dEpsilon_D

11 ETA_Eta

12 WTPT-1

13 Zagreb

14 ATSc2

15 SCH-7

16 SP-3

17 SP-5

18 VP-1

19 VP-3

20 VP-5

21 SHBd

22 minHBa

23 ETA_Beta_s

24 ETA_Eta_L

25 WTPT-3
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shown in Figure 11.In this figure, the AUC (Area Under the Curve)
of the ROC curve is 0.99, indicating that the model performs
exceptionally well in the MN prediction task.

Finally, we used the best-performing models to predict the
ADMET properties of 50 compounds, and the final results were
entered into “ADMET_test.csv.”

4.5 Multi-objective optimization

1. Single-Objective Optimization: Establish a single-objective
optimization model with the goal of enhancing the
biological activity (pIC50 value) of the compounds while
ensuring that at least three ADMET properties perform well.

2. Particle SwarmOptimization (PSO): Utilize the PSO algorithm
to globally optimize 106 important features, recording the
optimal solution in each iteration, and ultimately finding
the value range that provides the best performance in both
biological activity and ADMET properties.

3. Final Results: Apply the optimized compound features to
50 test compounds, outputting their optimal predicted values.

4.5.1 Constrained optimization
A constrained optimization problem (COP) involves

optimizing an objective function under specific constraints. In
this case, we can establish a constrained optimization model to
solve the problem.

4.5.1.1 Decision variables
In the model established for this problem, there are a total of

106 molecular descriptors that affect both the biological activity and
ADMET properties of the compounds. This includes 20 molecular
descriptors affecting biological activity identified in the first
question, and 25 descriptors affecting each ADMET property
identified in the third question, with 39 of these descriptors
being duplicates.

The decision variable x is denoted as: x � [x1, x2,/, x106]T

TABLE 6 Selected Features for hERG.

No. Molecular descriptor

1 ATSc2

2 bpol

3 VP-0

4 CrippenMR

5 SHBint8

6 SsOH

7 maxHBd

8 maxaaCH

9 LipoaffinityIndex

10 ETA_EtaP_F

11 Kier2

12 McGowan_Volume

13 WPATH

14 BCUTc-1l

15 SP-1

16 VP-1

17 ECCEN

18 SHother

19 minaasC

20 maxHsOH

21 hmin

22 ETA_EtaP

23 Kier1

24 Kier3

25 MDEO-11

TABLE 7 Selected features for HOB.

No. Molecular descriptor

1 ATSc2

2 BCUTp-1l

3 VP-3

4 VP-6

5 SHsOH

6 SdO

7 minsOH

8 maxsOH

9 hmin

10 ETA_BetaP_s

11 ETA_EtaP_F_L

12 MLFER_A

13 WTPT-4

14 BCUTc-1l

15 SC-5

16 VP-5

17 VP-7

18 SsOH

19 minHBa

20 maxHsOH

21 maxdO

22 ETA_Shape_P

23 ETA_EtaP_L

24 Kier3

25 MLFER_BO
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4.5.1.2 Objective function and constraints
As shown in Equation 20:
Objective Function:

min FPIC50 x( )
s.t. Reward gi x( )( )≥ 3
x L( )
i ≤xi ≤ x U( )

i , i � 1, 2,/, p
x ∈ Rn

(20)

Where: F(x) represents the biological activity prediction
function for the compound. gi(x), i � 1, 2, 3, 4, 5 represent the
classification models for the ADMET properties affecting
the compound.

The reward function Reward(gi) is given by:
Reward(gi) � (gi) � g1 + g2 + (1 − g3) + g4 + (1 − g5). Here, g1
represents the Caco-2 classification model, g2 represents the
CYP3A4 classification model, g3 represents the hERG
classification model, g4 represents the HOB classification model,
g5 represents the MN classification model.Assuming that the
optimal combination is achieved when Caco-2 is set to 1,

CYP3A4 is set to 1, hERG is set to 0, HOB is set to 1, and MN
is set to 0, the reward function becomes Reward = 5 under these
conditions.

The requirement is met as long as the Reward function value is
greater than or equal to 3.

4.5.2 Particle swarm optimization algorithm for
finding optimal solutions

Particle Swarm Optimization (PSO), a concept inspired by the
simulation of birds foragingBy designing particles to simulate birds,
which represent feasible solutions to optimization problems, each
particle possesses three attributes—velocity, position, and fitness
value. Each particle independently searches for the best solution in
the search space, known as the personal best, and shares it with all
particles in the swarm. The best of these personal bests is considered
the current global best solution for the entire swarm. All particles
then adjust their positions based on this global best and their own
personal bests until a globally optimal solution that meets the criteria
is found.

Assume a swarm ofm particles in aD-dimensional target search
space. The properties of the i-th particle at time t consist of
two vectors:

1. Velocity: vti � (vti1, vti2,/, vtid), vtid ∈ [vmin , vmax ]. Where vmin

and vmax represent the minimum and maximum components
of the velocity, respectively.

2. Position: xti � (xt
i1, x

t
i2,/, xt

id), xt
id ∈ [ld, ud]. Where ld and ud

are the lower and upper bounds of each particle’s search space
components.

In each iteration, two optimal positions are recorded.

1. Individual optimal position: pti � (pt
i1, p

t
i2,/, pt

id);
2. Global optimal position: ptg � (pt

g1, p
t
g2,/, pt

gd); where
1≤ i≤M, 1≤ _d≤D.

According to the above theory, the velocity and position of the
particle are updated at time t + 1 and the formulas are shown in
Equations 21, 22:

vt+1i � vti + c1r1 pt
i − xt

i( ) + c2r2 pt
g − xt

i( ) (21)
xt+1
i � xt

i + vt+1i (22)

Here, r1 and r2 are random numbers in the range (0,1), and c1
and c2 are learning factors.

4.5.3 Model solving
The selected feature variables consist of the 20 variables most

highly correlated with biological activity, identified in the first
question, and the top 25 variables most highly correlated with
each of the five ADMET properties, identified in the third
question. There are 39 duplicate variables, making a total of
106 feature variables.

In our Particle Swarm Optimization approach, after various
trials and adjustments, we determined the optimal parameters: the
inertia weight w = 0.8, cognitive coefficient c1 � 0.5, and social
coefficient c2 � 0.5. The convergence process is illustrated
in Figure 12.

TABLE 8 Selected features for MN.

No. Molecular descriptor

1 nN

2 VPC-5

3 SssCH2

4 minHBa

5 maxsCH3

6 ETA Epsilon 1

7 ETA dEpsilon A

8 ETA BetaP

9 ETA EtaP B RC

10 nHBAcc Lipinski

11 MLFER E

12 WTPT-3

13 WTPT-5

14 SCH-7

15 nssCH2

16 SssO

17 mindssC

18 maxsssCH

19 ETA Epsilon 4

20 ETA dEpsilon C

21 ETA BetaP s

22 FMF

23 MLFER S

24 TopoPSA

25 WTPT-4

Frontiers in Genetics frontiersin.org14

Dong et al. 10.3389/fgene.2025.1523015

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1523015


In Figure 12, the X-axis represents the number of iterations in
the Particle Swarm Optimization (PSO) process, ranging from 0 to
80 iterations; the Y-axis represents the global best objective function
value after each iteration; the blue curve in the figure shows the trend
of the objective function value, starting from the initial value and
decreasing rapidly with each iteration, eventually stabilizing and
approaching the final converged value.

This figure demonstrates that the PSO algorithm converges rapidly
after multiple iterations, with the objective function value gradually
decreasing from an initially high value and eventually stabilizing,
indicating that the optimization process effectively finds a solution.

The optimal value ranges for some molecular descriptors are
shown in Table 9. The complete results are available in the attached
document “results.csv.”

5 Results

This study proposes a machine learning-based optimization
model for anti-breast cancer candidate drugs, which has achieved
significant results in enhancing the biological activity of compounds
and optimizing their ADMET (absorption, distribution,

FIGURE 6
Comparison of F1 scores for 11 classification models in ADMET property prediction.

FIGURE 7
LightGBM prediction for Caco-2.
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metabolism, excretion, toxicity) properties. After feature selection
from 1,974 compounds, 20 molecular descriptors highly correlated
with biological activity were retained. The QSAR (Quantitative
Structure-Activity Relationship) model built upon these
descriptors demonstrates high predictive accuracy. The results of
the conducted experiments are presented below, highlighting the
performance of the various models used in this study. A comparison
of performance metrics for different regression and classification
models is shown, with models being evaluated based on their ability
to predict biological activity (pIC50 values) and ADMET properties.
The metrics include R2 for regression tasks, and F1 score and
accuracy for classification tasks. As shown in Table 10, the
stacking ensemble model performed the best in predicting
biological activity, achieving an R2 value of 0.743. For ADMET
property prediction, models such as XGBoost and LightGBM

achieved the highest F1 scores for specific properties, detailed
further in Table 10.

The stacking ensemble model achieved an excellent R2 value of
0.743 for predicting biological activity. In terms of ADMET property
prediction, XGBoost performed best for predicting CYP3A4 and
MN, while Naive Bayes demonstrated strong performance in
predicting HOB. By applying the Particle Swarm Optimization
(PSO) algorithm, effective multi-objective optimization was
performed for both biological activity and ADMET properties.
The optimized compounds met the pre-defined combination of
ADMET properties and exhibited good biological activity.
Ultimately, the 50 optimized test compounds achieved ideal
predictive results for both biological activity and ADMET
properties, validating the effectiveness and practicality of this
model in the development of anti-breast cancer drugs.

FIGURE 8
XGBoost prediction for CYP3A4.

FIGURE 9
XGBoost Prediction for hERG.
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6 Discussion

This study proposes a machine learning-based optimization
model for anti-breast cancer candidate drugs, which has made
significant progress in enhancing the biological activity of
candidate compounds and optimizing their ADMET properties.
However, there are still several potential directions for future
research and practical applications.

6.1 Future research directions

With the continuous development of drug discovery and
optimization, this study opens several potential avenues for
future progress:

6.1.1 Incorporating more data
While this study primarily relies on molecular descriptors and

biological activity data, future research could consider incorporating
more diverse datasets, such as gene expression profiles, protein-
ligand interactions, and in vivo pharmacokinetic data. These
additional data could improve the robustness of the model and
enhance the generalizability of predictions.

6.1.2 Exploring other optimization algorithms
Although Particle Swarm Optimization (PSO) has shown

effective results in multi-objective optimization, exploring other
optimization algorithms such as Genetic Algorithms (GA),
Differential Evolution (DE), or multi-objective versions of
Reinforcement Learning could potentially extend the model’s
applicability to drug screening and optimization for other diseases.

FIGURE 10
NaiveBayes prediction for HOB.

FIGURE 11
XGBoost prediction for MN.
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6.1.3 Applying the model to other cancer types
While this study focuses on breast cancer, the machine learning-

based optimization approach can be extended to other types of
cancer. Future research can incorporate biomarkers and therapeutic
targets specific to different diseases and apply the model to various
cancer targets, such as ovarian cancer, lung cancer, or prostate
cancer. This would broaden the scope and applicability of the model,
making it a valuable tool in the global fight against cancer.

6.2 Practical applications of the model

The model proposed in this study not only provides theoretical
insights but also has great potential in the practical application of
drug development and personalized medicine:

6.2.1 Early drug discovery screening
The multi-objective optimization model can be applied in the

early stages of drug discovery to screen large compound libraries. By
predicting both biological activity and ADMET properties
simultaneously, the model can help researchers identify promising
lead compounds with favorable characteristics, reducing experimental
screening time and costs. This can accelerate the identification of
promising drug candidates, especially in cancer treatment.

6.2.2 Personalized cancer therapy
In the context of precision medicine, the model can be used to

optimize drugs based on individual patients’ genomic profiles and
tumor characteristics. By predicting how specific compounds interact
with a patient’s unique molecular features, this approach can contribute
to the development of more effective and personalized treatment plans,
ultimately improving patient outcomes and reducing side effects.

6.2.3 Optimizing existing drugs
The model can also be applied to optimize existing anti-cancer

drugs that are already in clinical use. By fine-tuning their biological
activity and ADMET properties, the model can suggest
modifications or derivatives of these drugs to overcome existing
limitations such as drug resistance, toxicity, or poor bioavailability.
This can enhance the therapeutic effectiveness of existing drugs and
provide new treatment options for patients.

6.2.4 Integration into drug discovery platforms
In industrial settings, themodel can be integrated into drug discovery

platforms as a valuable decision-support tool. Pharmaceutical companies
can use the model to guide their drug development strategies, especially
during the preclinical phase. The ability to predict the combined impact
of biological activity and ADMET properties on the success of drug
candidates will be a key asset in determining which compounds should
proceed to further testing and clinical development.

FIGURE 12
Optimal values obtained using the particle swarm optimization algorithm.

TABLE 9 Optimal value ranges for molecular descriptors.

Molecular descriptors Optimal value ranges

ATSc1 (0.03, 1.89)

ATSc3 (−0.37, −0.16)

BCUTc-1l (−0.32, −0.19)

ATSc2 (−2.38, −1.00)

BCUTc-1h (0.07, 0.33)

BCUTp-1h (7.97, 16.75)

BCUTp-1l (3.01, 7.00)

CrippenMR (56.15, 400.61)

C3SP2 (0.00, 9.30)

ECCEN (196.00, 1294.89)
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7 Conclusion

This study proposes an optimization model for anti-breast cancer
candidate drugs based on machine learning and particle swarm
optimization, achieving significant results in enhancing the biological
activity and ADMET properties of candidate compounds. Through
grey relational analysis, Spearman correlation analysis, and SHAP value
screening from the random forestmodel, 20molecular descriptorsmost
influential to biological activity were successfully selected. A multi-
model fusion technique was applied to improve the accuracy of
biological activity predictions. The use of efficient classification
models in ADMET property prediction further ensures the superior
pharmacokinetic performance of candidate drugs. The successful
application of the particle swarm optimization algorithm in multi-
objective optimization tasks demonstrates its potential in drug design.

The model proposed in this study provides a novel and efficient
solution for the field of drug design and development, accelerating
the development process of new anti-breast cancer drugs and
offering theoretical foundations and technical support for future
multi-objective drug optimization. Future research will focus on
validation and optimization on large-scale datasets, integrating
laboratory data to further improve the performance of machine
learning models, thereby achieving a closed-loop development
process from computational prediction to experimental validation.
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