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Introduction: Melanoma, a highly aggressive form of skin cancer, and Parkinson's
disease (PD), a progressive neurodegenerative disorder, have been
epidemiologically linked, showing a positive association that suggests a shared
etiology. This association implies that individuals with one condition may have an
increased risk of developing the other. However, the specific molecular
mechanisms underlying this relationship remain unclear. This study aimed to
elucidate the molecular mechanisms by conducting a comprehensive
comparative analysis of gene expression profiles in both PD and melanoma to
identify common differentially expressed genes (DEGs) that may contribute to the
pathophysiological overlap between these two conditions.

Methods: We analyzed two independent publicly available genomic datasets to
identify overlapping DEGs associated with both PD and melanoma. Regulatory
networks, including transcription factors (TFs), DEGs, and microRNAs (miRNAs),
were constructed. Protein-protein interaction (PPI) networks were established to
identify hub genes. Additionally, we investigated the interplay between PD,
melanoma, and immune cell infiltration to uncover potential correlations
between the expression levels of hub genes and specific subsets of immune
cells. Molecular docking studies were performed to identify potential therapeutic
agents targeting the DEGs.

Results: A total of 41 overlapping DEGs were identified, including VSNLZ,
ATP6V1G2, and DNM1, which were significantly down-regulated in both PD
and melanoma patients. These genes play critical roles in biological processes,
cellular components, and molecular functions relevant to the pathogenesis of
both diseases. VSNL1 is associated with synaptic vesicle fusion and may impact
neuronal communication compromised in PD. ATP6V1G2, a subunit of the V-
ATPase, is involved in the dysregulated pH homeostasis observed in melanoma.
DNML1, a key player in vesicle trafficking, may influence aberrant cellular transport
processes in both diseases. Regulatory and PPI networks revealed potential hub
genes and their interactions. Molecular docking studies identified retinoic acid as
a potential therapeutic agent targeting VSNL1, ATP6V1G2, and DNML1.
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Discussion: Our study provides insights into the shared molecular characteristics of
PD and melanoma, identifying potential biomarkers for early diagnosis and
prognosis and revealing new therapeutic targets. The discovery of retinoic acid
as a promising therapeutic agent represents a significant step forward in drug
development and treatment strategies for these diseases. This comprehensive
analysis enhances our understanding of the intricate molecular mechanisms
underlying the association between PD and melanoma, paving the way for
further research and therapeutic advancements. The findings hold the promise
of improved diagnosis, prognosis, and personalized treatment strategies for
individuals affected by these debilitating diseases.

melanoma, Parkinson’s disease, bioinformatics analysis, differentially expressed genes,

molecular docking

1 Introduction

Melanoma, a highly aggressive form of skin cancer, and
(PD), a progressive
disorder, have been reported to exhibit a positive association.

Parkinson’s  disease neurodegenerative
However, the underlying molecular mechanisms remain unclear.
Recent scientific evidence has highlighted an increased risk of
occurrences for one disease in patients suffering from the other,
sparking significant interest among researchers (Bose et al., 2018).
Melanoma is one of the most immunogenic tumors, and its
progression 1is significantly influenced by the host’'s immune
system. The interplay between melanoma cells and immune cells
within the tumor microenvironment plays a crucial role in tumor
biology, including proliferation, differentiation, and progression
(Snyman et al, 2024). It accounts for the majority of skin
cancer-related deaths globally and exhibits high metastatic
potential (Statescu et al., 2023). On the other hand, PD primarily
affects the substantia nigra pars compacta region of the brain,
leading to the degeneration of dopaminergic neurons. This loss
of neurons results in motor impairments, including tremors,
bradykinesia, and postural instability. The immune system also
plays a role in PD, where neuroinflammation contributes to the
degeneration of dopaminergic neurons. This inflammation involves
the activation of microglia and astrocytes, which release cytokines
and other inflammatory mediators that can exacerbate the disease
(Morris et al., 2024; Camargo et al., 2024). Several recent studies
have already shed light on potential connections between melanoma
and PD through different avenues. For instance, both diseases
exhibit dysregulation of various cellular processes, including
protein degradation pathways (Sun et al, 2023; K et al, 2022),
oxidative stress response (Subramaniam and Chesselet, 2013; Tsoi
etal., 2018), and immune modulation (Huang and Zappasodi, 2022;
Tansey et al,, 2022). Additionally, common genetic variants have
been identified in genes associated with both melanoma and PD,
(Lubbe et al, 2016).
Additionally, common genetic variants have been identified in

suggesting shared susceptibility loci

genes associated with both melanoma and PD. Some examples
include variants in the PDCDI1 gene, such as the PD1.5 and
PD1.7 SNVs,
(Boutros et al, 2024). These variants are thought to influence
shared
susceptibility observed in melanoma and PD. Furthermore, the

which have been linked to both conditions

immune responses and may contribute to the
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SLC45A2 gene, which is associated with melanoma, has also been
implicated in PD through its role in melanin production and
oxidative stress management. This body of work provides a
foundation for our hypothesis that there may be common
molecular pathways and mechanisms underlying both conditions.

The field of biomedical research has witnessed a remarkable
transformation in recent years due to the emergence of high-
throughput sequencing technologies and the vast repositories of
genomic data. The application of bioinformatics, which
combines biology, computer science, and statistics, has
provided researchers with powerful tools to analyze large-scale
biological datasets and uncover hidden patterns, associations,
and potential mechanisms. This integrative approach allows us
to explore the complex interactions between genes, proteins, and
other thereby

underpinnings of various diseases.

biomolecules, unraveling the molecular

Understanding the shared mechanisms underlying melanoma
and PD holds immense value from both scientific and clinical
perspectives. The findings of this study have the potential to
drive future research and clinical applications. Firstly, it provides
an opportunity to identify common molecular signatures that can
serve as potential biomarkers for early detection and diagnosis. Early
identification of these diseases is critical, as timely intervention
significantly improves patient outcomes. Secondly, elucidating
shared pathways could lead to the discovery of new therapeutic
targets for both melanoma and PD. Many existing drugs target
specific molecules or pathways, and the identification of shared
targets may allow for repurposing of approved drugs or the
development of novel targeted therapies. Moreover, a deeper
understanding of the overlapping mechanisms may aid in the
development of preventive strategies, potentially reducing the
incidence and burden of both diseases.

It is important to note that while previous studies have suggested
an increased risk for one disease in patients with the other, there is
no clear evidence of comorbidity between melanoma and PD. This
study aims to explore the potential shared molecular mechanisms
between these two conditions using bioinformatics analysis of
publicly available genomic datasets. By integrating data from
diverse sources, such as gene expression profiles, protein-protein
interaction networks, and pathway enrichment analyses, we seek to
identify key genes, pathways, and regulatory mechanisms that are
commonly dysregulated in both diseases. Our analysis will involve
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mining large datasets to extract meaningful biological insights,
ultimately contributing to a deeper understanding of the
pathogenesis of melanoma and PD.

2 Methods

2.1 Data source and identification of
differentially expressed genes (DEGs)

The dataset GSE8397, sourced from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
focuses on PD and leverages microarray technology to explore
gene expression variances in the substantia nigra (SN).
Specifically, the dataset includes Postmortem brain tissue samples
from PD and control cases (substantia nigra, split into medial and
lateral portions, and frontal cortex). 15 samples of medial
parkinsonian SN, 9 samples of lateral parkinsonian SN, 8 medial
nigra control samples and 7 lateral nigra control samples.
Furthermore, data from the GSE46517 dataset, which investigates
gene expression distinctions between melanoma tumor tissues (n =
104) and normal skin samples (n = 7), were also obtained from the
GEO database. This dataset encompasses both male and female
patients. The analysis of these datasets involved utilizing the R
Project, with LIMMA and DESeq2 serving as tools for standardizing
the data and performing the analysis of differential gene expression.
Subsequent visualization of the DEGs in the datasets was
accomplished through the creation of volcano plots and
heatmaps in R. The statistical significance threshold was
established at [log2(fold change)] > 1 and a FDR-adjusted
p-value < 0.05.

2.2 KEGG and GO enrichment analysis

We have chosen to filter out genes with TPM values below a
threshold of 1 in at least 75% of the samples. The 41 identified DEGs
were subjected to KEGG (Kanehisa et al., 2021) pathway enrichment
analysis and Gene Ontology (GO) enrichment analysis using the
DAVID database (https://davidbioinformatics.nih.gov/) (Dennis
et al.,, 2003). The top 10 most relevant pathways were selected for
KEGG analysis, as well as the top 10 for GO analysis. Enriched
pathways were identified based on a false discovery rate (FDR)
threshold of less than 0.05, serving as the cut-off criterion for
significance.

2.3 Construction of TFs-DEGs-miRNAs
regulation network

To investigate the connections between DEGs, Transcription
Factors (TFs), and microRNAs (miRNAs), we utilized the JASPAR
website set a threshold of a minimum matrix similarity score of 0.85
(https://jaspar.elixir.no) to predict 60 TFs that interact with each
gene and the miRTarBase website (https://mirtarbase.cuhk.edu.cn)
to predict 763 miRNAs associated with the DEGs. Subsequently, the
regulatory network encompassing TFs-DEGs-miRNAs was

visualized using Cytoscape. Furthermore, to enhance the analysis
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of our findings, we integrated biomolecular interaction networks
with the high-throughput expression data and other molecular
states. For this purpose, we accessed protein-protein and
functional  interaction  networks from the  STRING
database (https://string-db.org/) for the 41 hub genes identified in
our study. To visualize these networks and better understand their

relationships, we utilized Cytoscape software (Shannon et al., 2003).

2.4 Hub genes identification

To explore the network of hub genes, we utilized the CytoHubb
Plugin within Cytoscape, which provides several methodologies for
identifying key nodes in biological networks and understanding
their connections with other genes. Our study aimed to identify the
top 10 hub genes using various algorithms such as betweenness,
closeness, degree, EPC, and MNC ranking methods. These
algorithms helped us highlight critical genes within the network.
In the resulting network, we visually represented the hub nodes by
color-coding them based on their significance. The highest score was
denoted by red, while the lowest was indicated by yellow. To further
analyze the identified hub genes, we applied Venn diagram analysis
to determine the common interacting hub genes among the top
10 genes generated by each ranking method. Through this analysis,
we identified a set of common interacting hub genes, including
NFKBIA, STXBP1, VSNL1, SNCA, MYO5A, TAGLNS,
ATP6V1G2, and DNMI.

2.5 Immune cell infiltration and
correlation analysis

The immunological infiltrations of immune cells were assessed
using the CIBERSORT algorithm (Newman et al., 2015) to examine
the immune microenvironment in patients with PD and melanoma.
The expression profiles of 22 immune infiltrating cell types were
illustrated through box plots. Furthermore, the ggplot2 package was
utilized to visualize the relationship between different immune cell
types and VSNLI, ATP6V1G2, and DNM1 through Spearman
correlation analysis.

2.6 Identification of diagnostic genes

Receiver Operating Characteristic (ROC) curve analysis was
conducted, and the Area Under the Curve (AUC) values were
computed using the pROC package in R software to assess the
predictive capabilities of VSNL1, ATP6V1G2, and DNM1 in
datasets GSE8397 and GSE46517. To investigate the dynamic
variations in diagnostic genes associated with PD and
melanoma, ROC curves of these diagnostic genes in PD and
control groups, as well as in melanoma and normal patients,
were analyzed. AUC > 0.8 indicates good discrimination. The
biomarker or test is more effective at separating the disease
group from the control group. It suggests that the biomarker has
a reasonably high accuracy in predicting the presence of the
disease, although some false positives and false negatives may
still occur.
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FIGURE 1
The identification of DEGs. (A) Volcano plot displaying DEGs in the GSE8397 dataset. Upregulated genes are highlighted in red, while downregulated
genes are shown in blue. (B) Volcano plot presenting DEGs in the GSE46517 dataset. Upregulated genes are denoted in red, and downregulated genes in
blue. (C) Heat maps illustrating the top 40 DEGs with the most prominent changes in the GSE8397 dataset. (D) Heat maps depicting the top 20 DEGs with
the most significant alterations in the GSE46517 dataset.
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2.7 Prediction of potential therapeutic drugs
and molecular docking

The DSigDB database (Yoo et al., 2015) was utilized to predict
potential therapeutic drugs targeting hub genes. The ligand
structures were imported into the AutoDock Vina (Eberhardt
et al., 2021) environment. AutoDockTools was used to charge
and hydrogenate the ligand small molecule, and then rotate the
small molecule around any Angle to remove the binding memory.
The initial protein structures (VSNL1, ATP6V1G2, and DNM1)
were obtained from the Protein Data Bank (PDB) and processed
using PyMOL. Water molecules were removed from the structures
to facilitate subsequent processing. Hydrogen atoms were added to
the protein to account for missing hydrogens, and the protonation
states of ionizable residues were adjusted to reflect physiological
conditions. The protein structures were validated using PyMOL to
assess their quality and reliability. The grid box is centered to cover
the domains of each protein and accommodate free molecular
motion, and the docking pocket is set as a 30 A x 30 A x 30 A
square pocket with a lattice distance of 0.05 nm. Results of docking
were then visualized using molecular graphics software PyMOL. The
ranking of the docking poses was performed using the scoring
function provided by AutoDock Vina, with lower values
indicating stronger binding.

2.8 Statistical analysis

Data analysis was performed using R version 4.2.0 software and
GraphPad Prism version 8.0.1. The data are presented as normalized
using the limma package’s
Group comparisons

expression values

normalizeBetweenArrays function. were
conducted using unpaired Student’s t-test, comparing PD
patients to controls and melanoma samples to normal skin
samples. Receiver operating characteristic (ROC) curves were
generated to assess the area under the curve (AUC) values and
evaluate the predictive performance of the analyzed data. A
statistical significance threshold of p < 0.05 was used to

determine the significance of the results.

3 Results

3.1 Common DEGs identified in patients with
PD and melanoma

We conducted an analysis of gene expression in two datasets,
GSE8397 and GSE46517, to investigate common DEGs associated
with Parkinson’s disease and melanoma. In GSE8397, we observed a
downregulation of 174 genes, while 13,291 genes remained stable,
and 51 genes were upregulated (Figure 1A). To provide a visual
representation of the most significant changes, we present heat maps
displaying the expression patterns of the top 40 DEGs in Figure 1C.
Similarly, in  the GSE46517  dataset, we identified
1,458 11,367 stable genes, and
691 upregulated genes (Figure 1B). The heat maps in Figure 1D

downregulated  genes,

illustrate the expression patterns of the top 40 DEGs with the most
significant changes.
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3.2 Functional enrichment analysis of DEGs

We identified 41 overlapping genes from the combination of
DEGs in GSE8397 and GSE46517 for further investigation
(Figure 2A). To gain deeper insights into these DEGs, we
conducted functional enrichment

analysis. Specifically, we

performed KEGG pathway analysis to uncover potential
biological pathways associated with the 41 overlapping DEGs.
The results revealed a significant enrichment of these genes in
the Synaptic Vesicle Cycle and Metabolic Pathways (Figure 2B).
Furthermore, we conducted Gene Ontology Biological Process (GO-
which highlighted the proteins’

involvement in positive regulation of exocytosis, synaptic vesicle

BP) enrichment analysis,
cycle, and negative regulation of striated muscle cell apoptotic
process. In terms of Gene Ontology Cellular Component (GO-
CC), the majority of these proteins were found to be enriched in
synaptic vesicle, transport vesicle membrane, and membrane coat.
Lastly, Gene Ontology Molecular Function (GO-MF) enrichment
analysis indicated that the 41 overlapping DEGs were associated
with tubulin binding, protein C-terminus binding, and microtubule
binding (Figure 2C).

3.3 Analysis of TFs-targets-miRNAs
regulating networks

To gain a deeper understanding of the regulatory mechanisms
underlying the selected DEGs, as well as the miRNAs targeted by
these genes, we utilized JASPAR to predict the TFs of the DEGs and
miRTarBase to identify the miRNAs associated with the DEGs. The
predictions resulted in a network comprising 39 DEGs, 60 TFs, and
763 miRNAs (Figure 3). Among the top five TFs identified in this
network are FOXC1, GATA2, YY1, E2F1, and NFIC. This TF-
DEGs-miRNAs network encompasses a total of 862 nodes and
1,370 edges, highlighting the complex interactions between these
elements. In the network visualization, DEGs are represented by
yellow nodes, miRNAs by blue nodes, and TFs by orange
nodes (Figure 3).

3.4 Analysis of protein-protein interaction
(PPI) networks and identification of
hub genes

We constructed a PPI network for the 41 overlapping genes
using the STRING database and visualized it using Cytoscape
software (Figure 4A). To identify hub genes within this network,
we employed the cytoHubba tool in Cytoscape v3.10.0, which
employs various ranking methods. Specifically, we employed
several ranking methods including betweenness, closeness, degree,
edge percolated component (EPC), and maximal neighborhood
component (MNC) rankings (Figures 4B-F). Each method
provided a list of top-ranked proteins, allowing us to compile a
set of potential hub genes. By intersecting the results from these five
approaches, we identified NFKBIA, STXBP1, VSNLI1, SNCA,
MYO5A, TAGLN3, ATP6V1G2, and DNM1 as the common
interacting hub genes (Figure 5A). To validate the expression
levels of these hub genes in each dataset, we extracted their
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FIGURE 3

Network of TFs, DEGs, and microRNAs. The network includes 39 DEGs, 60 TFs,
blue nodes, and TFs by orange nodes.

expression data from the two datasets. Our analysis revealed that
among these eight hub genes, only VSNL1, ATP6V1G2, and
DNMI1 exhibited significant downregulation in both PD patients
and melanoma patients (Figures 5B, C).

3.5 Association between PD, melanoma, and
immune cell infiltration

Immune cell infiltration in the substantia nigra of PD patients
and postmortem brain substantia nigra samples from control cases
(including the medial and lateral substantia nigra) was assessed.
Monocytes and macrophages were found to constitute a substantial
portion of the immune microenvironment in both patient groups.
Notably, PD tissues exhibited a higher presence of monocytes

Frontiers in Genetics 07

, and 763 miRNAs. DEGs are represented by yellow nodes, miRNAs by

compared to controls, although the difference was not statistically
significant. Furthermore, the PD group displayed a greater
proportion of CD4 memory activated T cells but significantly
lower expression levels of activated mast cells compared to the
control group (Figure 6A). The roles of VSNL1, ATP6V1G2, and
DNMI1 genes in the immune microenvironment of PD patients were
explored through evaluation of inflammatory cell infiltration. The
results indicated a strong negative correlation of these genes with
monocytes, a certain negative correlation with CD4-activated
T cells, and a certain positive correlation with mast cells,
suggesting a close relationship between these proteins and the
microenvironment in PD patients 6B).
Figure 6C our analysis wusing data from the
GSE46517 database depicted the relative abundance of different
immune cell subsets in the context of melanoma. Notable variations

immune (Figure

in
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FIGURE 4
Identification of Hub Genes in overlapping DEGs between the two GEO datasets. (A) Protein-Protein Interaction (PPI) network of DEGs constructed

using String and Cytoscape. (B—F) Hub genes identified using various ranking methods: betweenness, closeness, degree, EPC, and MNC.
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were observed in multiple immune cell populations, including
T cells, monocytes, dendritic cells, mast cells, and neutrophils,
between the melanoma group and the normal group. Specifically,
the melanoma group exhibited significantly lower levels of
regulatory T cells, monocytes, resting dendritic cells, and mast
cells compared to the control group. Conversely, higher levels of
CD4-activated memory T cells and M0 macrophages were observed
in the melanoma group. Furthermore, Figure 6D presented the
correlation analysis between immune cell infiltration and the
of VSNLI, ATP6V1G2, and DNMI in
melanoma. Among these genes, VSNL1 demonstrated the highest

expression levels
positive correlation with resting mast cells. ATP6V1G2 showed the
strongest negative correlation with regulatory T cells. On the other
hand, DNM1 exhibited limited correlation with various immune cell
types collectively.

3.6 Diagnostic values of hub genes

The diagnostic performance of hub genes was highlighted through
the presentation of ROC curves and the corresponding AUC statistics in
GSE8397 and GSE46517 datasets (Figures 7A, B). The ROC curve
serves as a tool to assess the predictive model’s performance, while the
AUC value reflects the overall accuracy of the model in discriminating
between PD and Control, as well as between Melanoma and Normal
samples. In the GSE8397 dataset, ATP6V1G2 exhibited the highest
diagnostic value with an AUC of 0.8218, followed by VSNLI with an
AUC of 0.8056. Furthermore, in GSE8397, both VSNL1 and
DNMI1 genes displayed AUC values surpassing 0.800, with
VSNLI recording an AUC of 0.8599 and DNM1 with an AUC of
0.8613. These results offer valuable insights into the expression profiles
of the hub genes and underscore their potential utility as diagnostic
markers for Parkinson’s disease and melanoma.

3.7 Molecular docking diagrams of
simvastatin with target proteins

In the quest for potential anti-PD and anti-melanoma
medications, drugs capable of targeting VSNLI, ATP6V1G2, and
DNM1 were identified through screening in the DsigDB database
(Supplementary Table S1). The analysis identified retinoic acid and
valproic acid as potential therapeutic agents for VSNL1, ATP6V1G2,
and DNMI. Although experimentally validated data did not confirm
their binding to ATP6V1G2, our results indicated that retinoic acid
could successfully bind to VSNLI, ATP6V1G2, and DNMI.
However, valproic acid did not exhibit binding affinity towards
these proteins (Supplementary Table S2). The molecular docking
outcomes are depicted in Figures 7C-E. These findings provide
insights into the potential mechanisms of action and therapeutic
effects of retinoic acid under the conditions of the study.

4 Discussion

Our study holds significant importance in understanding the
potential connections between PD and melanoma at the molecular
level. The novelty of this study lies in the identification of
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overlapping DEGs between PD and melanoma, which sheds light
on potential shared molecular mechanisms underlying these two
conditions. Our hypothesis, grounded in the scientific evidence of
increased risk of occurrences, led us to explore the molecular
underpinnings that may explain this association.

Our study identified 41 overlapping DEGs in Melanoma and PD,
suggesting potential shared molecular mechanisms between these two
diseases. Functional enrichment analysis provided deeper insights into
the biological processes and pathways associated with these DEGs.
These pathways provide valuable insights into the molecular
mechanisms that may underlie the shared pathogenesis of these two
seemingly disparate diseases. Notably, the Synaptic Vesicle Cycle and
Metabolic Pathways were prominently enriched, highlighting the
potential convergence of these processes in melanoma and PD
(Calafate et al,, 2023; Yu et al, 2017). The Synaptic Vesicle Cycle
pathway is crucial for neurotransmitter release, a process that is
disrupted in PD, leading to motor impairments (Ratnikov et al,
2017; Shao et al, 2021). Our findings suggest that similar
dysregulations may be at play in melanoma, potentially affecting
neural mechanisms that contribute to tumor behavior. The
enrichment of Metabolic Pathways points to the disruption of
energy metabolism, a hallmark of PD, and suggests a similar
metabolic reprogramming in melanoma that may support its
aggressive growth and resistance to therapy. Furthermore, the
enrichment analysis highlighted the association of the overlapping
DEGs with tubulin binding, protein C-terminus binding, and
microtubule binding. Tubulin, a key component of microtubules,
plays a critical role in maintaining neuronal structure and function.
Altered tubulin dynamics have been observed in both melanoma and
PD, suggesting their potential involvement in disease pathology
(Kapitein and Hoogenraad, 2015). In PD, disruptions in microtubule
dynamics can impair the transport of synaptic vesicles and other
organelles, leading to neuronal degeneration. Similarly, in melanoma,
altered microtubule dynamics can affect cell division and migration,
contributing to tumor progression and metastasis (Higgins et al., 2020;
Naren et al., 2023). The identification of these pathways allows us to
hypothesize that melanoma and PD may share common molecular
vulnerabilities. In melanoma, the dysregulation of pigmentation and
immune response pathways is well-documented. Our study extends this
by suggesting that these pathways may also be perturbed in PD,
potentially contributing to the neuroinflammatory aspects of the
disease. Conversely, pathways typically associated with PD, such as
those involved in dopamine metabolism and neuronal protection, may
play a role in melanoma progression, influencing tumor
microenvironment and response to treatment. Additionally, our
study identified several transcription factors, such as FOXC1 and
GATA2, within the TF-DEGs-miRNAs network. These transcription
factors are known to modulate the expression of the hub genes and
regulate disease-relevant pathways. For instance, FOXCI has been
implicated in the regulation of cell proliferation and migration in
various cancers, including melanoma. GATA2, on the other hand,
plays a role in immune cell development and function, which could
influence the immune response in both PD and melanoma. By
modulating the expression of key hub genes, these transcription
factors may contribute to the dysregulation of critical pathways
involved in disease pathogenesis (Han et al, 2017; Menendez-
Gonzalez et al, 2019; Fang et al, 2019; Hoie et al, 1987).
Understanding the regulatory interactions between these TFs and
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the identified DEGs may shed light on the underlying mechanisms
contributing to PD and melanoma.

Furthermore, the construction of a PPI network enabled the
identification of hub genes within the overlapping DEGs. NFKBIA,
STXBP1, VSNLI, SNCA, MYO5A, TAGLN3, ATP6V1G2, and
DNMI emerged as common interacting hub genes. Among these,
VSNLI, ATP6V1G2, DNM1  exhibited
downregulation in both PD patients and melanoma patients, suggests

and significant
a common molecular mechanism underlying these two conditions.
VSNLI proteins have been implicated in various cellular processes,
including calcium signaling, apoptosis, and neuroprotection (Tage et al.,
2023; Spilker et al, 2002). Several studies have reported altered
VSNLI expression in the brain tissues of PD patients, suggesting its
involvement in PD pathogenesis (Lin et al, 2015; Groblewska et al,
2015). ATP6V1G2 is a component of the vacuolar ATPase (Qi et al,
2022). Dysregulation of ATP6V1G2 has been associated with
neurodegenerative diseases (Li et al., 2020). DNMI1 is involved in the
process of endocytosis and vesicle formation (Xie et al, 2020; von
Spiczak et al., 2017). The diagnostic values of these genes were evaluated
through ROC curve analysis, and the results demonstrated their
potential utility as diagnostic markers for PD and melanoma. The
high AUC ATP6V1G2, VSNLI,
DNMI indicate their potential as reliable biomarkers for the early

values obtained for and
detection and diagnosis of these diseases. Our analysis of immune
cell infiltration in Parkinson’s disease (PD) and melanoma has shed
light on the immune microenvironment specific to these conditions. In
the context of PD, we observed that monocytes and macrophages were
notably prevalent within the immune microenvironment, and there was
a significant increase in the frequency of activated CD4 memory T cells
when compared to non-diseased states. This observation is consistent
with existing literature that emphasizes the role of both innate and
adaptive immune components in the pathogenesis of PD (Weiss et al.,
2022; Dhanwani et al., 2022). Moreover, our research has identified a role
for the genes VSNLI, ATP6V1G2, and DNMI1 within the immune
microenvironment of PD patients. The inverse relationship between
these genes and the levels of monocytes and CD4-activated T  cells,
coupled with a positive association with the density of mast cells, suggests
that these genes may be instrumental in regulating the presence and
activity of certain immune cell populations in PD. In the context of
melanoma, our findings reveal a unique pattern of association between
these genes and immune cell infiltration, underscoring their potential
role in the immunological response to tumors.

Lastly, molecular docking analysis provided insights into
potential therapeutic agents targeting the hub genes. Retinoic
acid was found to have binding affinity for VSNL1, ATP6V1G2,
and DNM], indicating its potential as a therapeutic agent for PD and
melanoma. Retinoic acid, a derivative of vitamin A, has been
extensively studied for its therapeutic potential in various
diseases, including cancer and neurodegenerative disorders
(Brown, 2023; Szutowicz et al., 2015). Previous studies have
shown the involvement of retinoic acid in regulating gene
expression, cell differentiation, and apoptosis pathways (Mezquita
and Mezquita, 2019; Zhou et al., 2016). The docking results provide
valuable insights into the potential mechanisms of action of retinoic
acid on VSNL1, ATP6V1G2, and DNMI. By interacting with these
proteins, retinoic acid may regulate their activities and downstream
signalling pathways, thereby influencing the pathogenesis of PD and
melanoma. Further studies are warranted to investigate the specific
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molecular interactions between retinoic acid and these target
proteins and to elucidate the downstream effects of such
interactions.

However, it is crucial to acknowledge the limitations of this
study. Firstly, the scope of our analysis was constrained by the
selection of a limited dataset from the Gene Expression Omnibus
(GEO) database. Although the chosen datasets, GSE8397 and
GSE46517, are well-characterized and provide valuable gene
expression data, the generalizability of our findings may be
limited due to the restricted sample size and demographic
representation. This constraint affects the breadth of our
conclusions and suggests that our results should be interpreted
with caution until further validated with larger and more diverse
datasets. The analysis was based on publicly available gene
expression datasets, which may introduce potential biases and
confounding factors. Furthermore, while our study suggests an
increased risk for one disease in patients with the other, it does
not provide direct evidence of comorbidity between melanoma and
PD. The functional enrichment analysis and network analysis relied
on computational algorithms and databases, which are subject to
inherent limitations and potential errors. Experimental validation of
the identified pathways and interactions is necessary to confirm their
biological relevance. Lastly, the exploration of environmental
factors, lifestyle choices, and genetic predispositions in the
context of melanoma and PD comorbidity is an area ripe for
investigation. Understanding how these factors interact with the
molecular mechanisms we have identified could offer new avenues
for prevention and personalized treatment strategies.

In conclusion, our analysis identified common DEGs associated
with PD and melanoma, shedding light on potential shared
molecular pathways and mechanisms underlying these diseases.
The functional enrichment analysis highlighted the involvement
of synaptic processes, vesicular trafficking, and microtubule
dynamics in PD and melanoma. The identification of hub genes
and their correlations with immune cell infiltration emphasized the
potential interplay between these genes and the immune system.
Lastly, the diagnostic values of the hub genes and the potential
therapeutic targets revealed through molecular docking analysis
provide a foundation for future research and clinical applications
in the field of PD and melanoma.
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